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Detecting and monitoring abnormalities in intracranial pressure (ICP) is crucial within intensive 

care units (ICUs) to avert life-threatening outcomes. Despite the widespread use of deep learning 

(DL) in clinical diagnosis, there has been limited research focused on applying DL techniques for 

continuous ICP monitoring. This work presents an efficient method that incorporates a hybrid 

model comprising a one- dimensional customized convolutional neural network and Long Short-

Term Memory . The aim is to predict and continually assess ICP status, including normotension, 

and hypertension with subtypes such as secondary intracranial hypertension and idiopathic 

intracranial hypertension for the condition of brain injuries.The model's performance was evaluated 

to gauge its proficiency in predicting elevated intracranial pressure, revealing a high level of 

accuracy in classifying ICP levels within our dataset.  
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1. Introduction 

TBI remains a significant global health concern, causing substantial mortality and 

disability rates worldwide. Patients afflicted with TBI necessitate immediate and intensive 

medical intervention within an Intensive Care Unit (ICU), where a multidisciplinary team 

of medical specialists provides essential care. In many instances of TBI, hemorrhage 

occurs, leading to elevated Intracranial Pressure (ICP). 

Elevated ICP not only exerts dangerous pressure on vital brainstem structures but can 

swiftly escalate into life-threatening situations, underlining the critical importance of 

continuous and accurate intracranial pressure monitoring in TBI cases. Effective 

management and real-time monitoring of ICP are paramount, as they can significantly 
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influence patient outcomes and mitigate the risks associated with high intracranial 

pressure. Recent advancements in medical science, particularly in the realms of intensive 

care and technology, have led to the development of sophisticated monitoring techniques 

and predictive models to enhance the precision and effectiveness of ICP management. This 

burgeoning field has witnessed a diverse range of studies, each contributing unique 

perspectives and methodologies.  

From intensive care protocols that incorporate multimodal monitoring to innovative 

machine learning algorithms and noninvasive estimation techniques, the landscape of TBI 

management is continuously evolving. These advancements not only signify the progress 

in medical research but also underline the pressing need for accurate and real-time ICP 

monitoring. This study delves into the contemporary landscape of ICP monitoring and TBI 

management, surveying recent literature to understand the state-of-the- art techniques and 

methodologies. Understanding the nuances of these methodologies is crucial in refining 

existing protocols and exploring novel avenues for more effective and personalized TBI 

management. As the integration of technology and medical expertise continues to shape 

the future of healthcare, this study contributes to the ongoing discourse, paving the way 

for more precise, data-driven, and patient-centric approaches in the realm of TBI 

management and intracranial pressure monitoring. 

 

2. Literature Survey 

Guochang Ye, Vignesh Balasubramanian, John K-j Li , Mehmet Kaya et al.[1], predicts 

and categorizes intracranial pressure (ICP) events for patients with injuries in the brain 

using a recurrent neural network (RNN). RNN may have overfitting issues and struggle to 

generalize to new patients. 

Hosseinali Khalili, Maziyar Rismani, Mohammad Ali Nematollahi et al.[2], tests several 

cutting-edge machine learning algorithms, such as Deep Learning, K nearest neighbor, 

Random Forest, Rule induction, and Naive Bayes. More assessment of the models under 

investigation is required. Make plans to prepare more adaptable datasets from various 

hospitals. More extensive datasets result in more reliable model evaluation and training. 

Ahammed Mekkodathil , Ayman 

 EI-Menyar , Mashhood Naduvilekandy , Sandro Rizoli and Hassan AI- Thani et al.[3], 

carries out a retrospective study for patients with penetrating injuries at the Hamad Trauma 

Center. The ATLS protocol, or Advanced Trauma Life Support, is utilized to evaluate 

trauma patients systematically. In order to create a reliable machine learning model for 

TBI prediction, future research will gather more diverse, representative, and unbiased 

datasets. 

Jean-Denis Moyer , Patrick Lee , Charles Bernard et al.[4], uses a cross-sectional, 

retrospective, multicenter diagnostic design to estimate the need for neurosurgery within 

a day. For moderate and severe head injuries, emergency neurosurgery is predicted using 

machine learning (ML)-based models. Since the study was carried out in France, it might 

not be applicable to other nations with various healthcare systems. Robert McNamara , 

Shiv Meka , James Anstey , Daniel Fatovich , Toby Jeffcote , Andrew Udy et al.[5], Uses 



217 S. Rohini et al. Intracranial Pressure Monitoring for...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S11 (2024) 

ICP forecasting algorithm, tIH Prediction Algorithms. Nils Schweingruber , Marius Marc-

Daniel Madar , Anton Wiehe , FrankRoder et al.[6], uses a single-center cohort to train the 

model, and it needs outside validation. Depending on the patient population and the kind 

of ICP probe being used, the model's performance may change. Preprocessing procedures 

and the caliber of the data gathered may also have an impact on the model's performance. 

Shiker S.Nair , Alina Guo , Joseph Boen , Ataes Aggarwal , Ojas Chahal ,Arushi Tandon 

et al.[7], included individuals with ECG, PPG, ABP, and ICP recordings for a minimum 

of five minutes who were at least eighteen years old. Selective pre-processing techniques 

used to identify high-quality waveform data may introduce bias and subjectivity into the 

training set, thereby jeopardizing the robustness and performance of the model. 

Avika Trakulpanitkit , Thara Tunthanathip et al.[8], Uses regression model of Machine 

learning algorithm . ONSD measurement is significantly correlated with ICP 

measurement. Honghao Dai MS , Laura Pahren MS , Laura B Ngwenya MD PhD et al.[9], 

Add all patients who, over a two-year period, require intracranial neuromonitoring at a 

Level I trauma center due to severe traumatic brain injury. At the individual level, more 

accurate outcome prediction can be obtained through computational techniques that 

leverage the properties of the ICP signal. 

Yeongho Choi , Jeong Ho Park , Ki Jeong Hong , Young Sun Ro , Kyoung Jun Song , 

Sang Do Shin et al.[10], gathers information from three teaching hospitals located in South 

Korea's cities. Therefore, in order to generalize the developed prediction model, external 

validation for other domains needs to be carried out. 

    

3. Methodology Existing System 

Currently, machine learning methods are commonly used for intracranial pressure (ICP) 

classification tasks, but they tend to exhibit lower accuracy compared to deep learning 

approaches.This difference in accuracy can be attributed to the inherent complexity of ICP 

data. Machine learning methods often rely on manually engineered features and 

algorithms, which may struggle to capture intricate patterns and nuances in ICP data. 

Proposed System 

ICP signals are collected from the CHARIS database, sourced from PhysioNet. This 

database serves as the primary data source for the analysis. 

1. Before proceeding with the analysis, it's crucial to preprocess the ICP signals. In 

this step, the signals undergo filtering through a notch filter. This preprocessing helps 

prepare the data for effective model training. 

2. Once the preprocessing stage is complete, the system progresses to the training 

phase. In this phase, the ICP signals are employed to train the hybrid model, which is 

designed to learn and capture underlying patterns and features within the ICP data. 

3. After successful hybrid model training, the system is ready for the classification 

of ICP status. When new ICP data is input, it undergoes the same preprocessing steps as 

during training. The preprocessed ICP data is then fed into the customized hybrid model 

classifier. Leveraging its learned knowledge, the model continuously classifies ICP status, 
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categorizing it as either intracranial normotension (within normal pressure ranges) or 

intracranial hypertension (elevated pressure) with subtypes like secondary intracranial 

hypertension and idiopathic intracranial hypertension. 

4. To evaluate the effectiveness of the hybrid model, the system analyzes the results 

in terms of various performance metrics. 

ARCHITECTURE DIAGRAM 

 

Fig 1: Architectural Diagram 

ICP Signal Acquisition 

The ICP signal acquisition module serves as the foundation for the entire system. By 

retrieving raw intracranial pressure data from the CHARIS database, this module 

establishes the basis for subsequent analysis and model development. The reliability of the 

acquired information directly influence the effectiveness of the pre-processing, model 

building, training, and classification stages. 

Hence, this initial step is indeed vital, laying the groundwork for precise and meaningful 

results in the continuous monitoring and classification of intracranial pressure status. 

Pre-processing 

In this module, the acquired ICP signals undergo preprocessing. A Notch filter is applied 

to eliminate specific frequencies, ensuring a cleaner signal. Preprocessing enhances the 

quality of the data, making it suitable for accurate analysis. 

Hybrid Model Building 

The essence of the system lies in this module, where the hybrid model, integrating both a 
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one-dimensional customized CNN and LSTM model, is constructed. The hybrid model 

architecture comprises both CNN and LSTM layers. The CNN layers are designed to 

extract spatial features from the ICP data, while the LSTM layers capture temporal 

dependencies, allowing the model to understand sequential patterns in the data.In the 

hybrid model building phase, the outputs from the final layers of both the 1DC-CNN and 

LSTM branches are concatenated. Subsequently, a dense output layer with a random forest 

activation function is introduced to generate multiclass predictions. 

 

FIG 2: Integration of 1DC-CNN & LSTM 

Train the Hybrid Model 

In this module, the constructed hybrid model is trained using pre-processed ICP data. The 

model learns from the data, adjusting its parameters iteratively to minimize prediction 

errors. Training involves epochs of forward and backward passes, fine-tuning the model's 

weights for accurate classification. 

 

Fig 3: Error Vs No.Of Trees In RFC 
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MODEL TESTING 

 

Fig 4: Test Signal 

 

Fig 5: Filtered Signal 

Classification 

Once the hybrid model is trained, the classification module receives the test intracranial 

pressure (ICP) signal as input. The signal undergoes preprocessing and is then passed 

through the trained hybrid model. Leveraging the learned patterns and features, the model 

classifies the input data into either intracranial normotension or intracranial hypertension, 

including subtypes such as secondary intracranial hypertension and idiopathic intracranial 

hypertension, thus offering continuous and accurate classification of ICP status in real-

time scenarios. 
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Fig 6: Classification Of Intracranial Pressure 

 

4. Algorithm Description 

Hybrid Model 

The proposed work introduces a novel approach called the Hybrid Model. The approach 

integrates a one- dimensional customized convolutional neural network (1DC-CNN) and 

Long Short-Term Memory (LSTM) recurrent neural network for classification of 

Intracranial Pressure (ICP) status.The   algorithm 1DC-CNN exhibits a multi-layered 

architecture, combining three convolutional and four dense layers, designed to achieve 

optimal performance.Simultaneously, the LSTM component captures temporal 

dependencies in sequential data through LSTM layers with ReLU activation functions and 

100 units, followed by additional dense layers with 256, 128 and 64 neurons and also apply 

Dropout regularization with rates of 0.3 & 0.2. The training involves learning patterns 

from both structured and sequential aspects of the dataset. 

Proposed Algorithm Structure (Hybrid Model) 

 

Fig 7: Hybrid Model’s Structure 
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1D Customized CNN Model Structure (1DC-CNN) 

Convolutional Layer 

The first two layers employ a kernel size of 3x3 with 64 kernels, while the third 

convolutional layer uses a kernel size of 3x3 with 128 kernels.After the convolutional 

layers, a flatten operation is applied to prepare the data for the subsequent dense layers. 

Dense Layers 

Four dense layers follow the convolutional layers, housing 512, 256, 128, and 64 neurons, 

respectively.The last before dense layer incorporates a dropout mechanism with a rate of 

0.1. This technique aids in mitigating overfitting and enhancing the model's generalization 

capabilities. In summary, the proposed algorithm boasts a sophisticated architecture 

comprising 1D convolutional layers, followed by densely connected layers.The 

incorporation of dropout mechanisms adds a layer of regularization, enhancing model 

robustness. 

LSTM 

The dimension of the data always determines how many nodes are in the input layer of a 

neural network (NN) with a single hidden layer. The input layer's nodes are connected to 

the hidden layer by links called "synapses." The relationship between every pair of nodes 

in the input to the hidden layer contains the weight coefficient, which acts as the signal 

decision-maker. After learning has ended, the Artificial Neural Network will have the right 

weights for every synapse. 

 

5. Performance Measure 

 

Fig 8: Metric Results 
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ROC Analysis Result 

 

Fig 9: Roc Curve 

The Receiver Operating Characteristic (ROC) curve analysis conducted for the 

classification of intracranial pressure (ICP) status yielded a commendable Area Under the 

Curve (AUC) value of 0.9706. This metric serves as a robust indicator of the model's 

ability to effectively differentiate between positive and negative instances for each ICP 

category. The AUC, ranging from 0 to 1, signifies the discriminative power of the model, 

where a higher value implies superior performance. In this context, an AUC of 0.9706 

attests to the model's capability to discern between all classes based on predicted 

probabilities. Notably, this value surpasses random guessing (AUC of 0.5) and signifies 

robust predictive performance, indicating that the model's predictions exhibit substantial 

accuracy and reliability in distinguishing between different intracranial pressure statuses. 

 

6. Conclusion 

Intracranial pressure (ICP) monitoring stands as a pivotal element in the intensive care of 

patients, especially those with traumatic brain injuries. This work has introduced and 

implemented an advanced system for continuous ICP classification, leveraging a 

sophisticated hybrid model that integrates a one-dimensional customized convolutional 

neural network (1DC-CNN) and Long Short-Term Memory (LSTM) model. Through 

meticulous steps of collecting raw ICP signals, preprocessing, hybrid model training, and 

classification, the system has showcased its ability to accurately distinguish between 

intracranial normotension and intracranial hypertension, including subtypes such as 

secondary intracranial hypertension and idiopathic intracranial hypertension. By drawing 

data from the CHARIS database on PhysioNet and employing intricate preprocessing 

methods, such as the notch filter, the system ensured that the input ICP signals were 

optimally prepared for analysis. 

The hybrid model, combining the spatial pattern recognition capabilities of the customized 

CNN and the temporal sequence learning of the LSTM, demonstrated its effectiveness in 

discerning intricate patterns within the ICP data. This hybrid model allows for a 
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continuous and precise classification of ICP status, offering a more nuanced understanding 

of intracranial pressure dynamics. It provides efficacy in real-time clinical applications. A 

major development in continuous ICP tracking has been made with the inclusion of deep 

learning techniques in the form of a hybrid model, which provides a more accurate and 

comprehensive method of comprehending and treating intracranial pressure issues. The 

knowledge gained from this study advances the ongoing effort to improve patient 

treatment and outcomes in the field of managing traumatic brain injuries as medical 

science continues to advance. 
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