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The development of high-strength alloys, such as nonferrous alloys, has been driven by 

advancements in metallurgy and the increasing demand for robust materials across various 

industries. These alloys, however, pose significant challenges when machined using traditional 

methods. Conventional machining often leads to damage of both the workpiece and the tool due to 

the physical removal of material using a sharp cutting tool. In contrast, Non-Traditional Machining 

(NTM) processes remove material through the application of thermal, chemical, or electrical 

energy, or a combination of these energies, making them better suited for hard and brittle materials. 

Among the non-traditional techniques, Abrasive Water Jet Machining (AWJM) stands out for its 

flexibility and precise control over process parameters. This study employs a combination of 

experimental observations, multiple regression modeling, and Regression Neural Networks (RNN) 

to optimize AWJM process parameters for machining Aluminium 6061 alloy, Copper-Iron alloy, 

and Lead-Tin alloy. The findings indicate that the G method effectively determines the optimal 

AWJM process settings for these alloys.  
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1. Introduction 

WJC machines commence to function in the early 1970s to cut wood and plastics material 

proposed by Kovacevic. R. [1] and cutting by AWJ was initially commercialized in the late 

1980s as a pioneering step forward in the NTM technologies area by Chithirai Pon Selvan. M 

[2]. In the early 1980s, AWJM has preferred as an impractical application. Today, state of the 

art abrasive jet technology was brought up into a production process of full scale with steady 

and persistent outcome proposed by Adnan Akkurt [3]. In AWJM process, removal of the 

work piece material is by the high velocity jet of water action assorted with particles that are 

abrasive depending upon the material erosion principle upon which gets hit by the water jet by 

Metin Kok [4]. AWJM is one of the highly superior recent techniques utilized in 

manufacturing industry for processing of material. AWJM exhibits little benefits namely less 

cutting forces, exclusive versatility in machining, superior flexibility and no thermal distortion 

probsed by Caydas Ulas., and Ahmet Hascalik [5]. Assessing against other corresponding 

process of machining, no Heat Affected Zone (HAZ) on the work piece is generated by Bostjan 

Jurisevic [6].  

Srinivasu. D.S. and Ramesh Babu. N. [7] developed a machine vision dependant technique to 

monitor and get hold of the bore diameter of the nozzle which has been focused from time to 

time and a neuro genetic technique has been engaged as a strategy for controlling and for 

modifying the parameters of process. On combination the strategies to control and monitor, an 

integrated technique to control adaptive of AWJC process has been recognized. Przemyslaw. 

J. and Borkowski [8] showed a narrative technique for the 3D sculpturing of various materials 

utilizing a high pressure AWJ and this deals with scanning an image, such as a photograph, 

and associating the values of color of each pixel in the consequential bitmap image to the water 

jet feed rate. Holding every other parameters namely water pressure constant and SOD, various 

water jet feed rates would end up in material’s dissimilar erosion levels. As a consequence, a 

3D sculptured surface would be recognized from a 2D image. The work presented a systematic 

and investigational erosion ends up together with a specific example of bas relief from metal. 

Mahabalesh Palleda [9] presented the influence of utilizing dissimilar chemicals on MRR, with 

diverse SODs and concentration of chemical in AWJM and usage of those chemicals on the 

taperness of drilled holes has also been learnt and this investigation discloses that the usage of 

polymer could decline the drilled holes taper. Hassan. A.I. and Kosmol. J. [10] developed the 

academic and experimental models that were brought up for AWJM, the specific nature of 

erosion hasn’t been understood yet. This work contributes an attempt for modeling AWJM 

involving the Finite Element Method (FEM) in the idea of explaining the abrasive particle 

work piece process of interaction. Finally, the present FEM results are consistent with 

experimental results. Paul. S. [11] illustrated, in the AWJM of brittle materials, the stress wave 

energy, related with the abrasive particles impact, contributes as a significant factor in removal 

of material by fracture. The models which are availably currently are idealized and modified 

and won’t take into account the shape or size of the particle. The work deals with the issue of 

considering the particles size and shape. The outcomes symbolize that utilization of spherical 
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blunt particles in the AWJM of brittle materials will show the way to more fracture.  

Wang.J. and Wong. W.C.K. [12] presented AWJC of metallic coated sheet steels on a 

statistically DOE. AWJC is a feasible technique to process metallic coated sheet steels with 

better productivity and kerf quality. Chithirai Pon Selvan. M. and Mohana Sundara Raju. N 

[13] illustrated AWJC is better to few other cutting techniques to process range of materials, 

specifically complicated to cut materials. In this work, a set of experimental data was utilized 

in assessing the authority of AWJC parameters of process in cutting of Aluminium. 

Experiments have been performed in varying the AFR, traverse speed, water pressure and 

SOD to cut Aluminium utilizing AWJC process. Study was performed on the influence of 

pressure and traverse speed on DOC. Using regression analysis, a predictive model for the 

DOC in AWJC process of Aluminium is then developed and verified. Model verification for 

utilizing it as a sensible guideline which was identified for agreeing along the experiments. 

Limbachiya [14] described AWJM is a NTM process. On a work piece AWJM is a technique 

for material removal by impact erosion of high pressure (1500-4000bar), entrained high 

velocity, high velocity of water of grit abrasives. It’s a UCM process. At first this targets on 

theoretical work later on it create few experimental work and analyzing of both outcomes have 

been done. Theoretical MRR identified to be equal to the experimental MRR. For three 

dissimilar materials like Acrylic, Aluminium and EN8 has been implemented involving 

Taguchi DOE method. Experiments were performed in L25 orthogonal array by changeable 

material traverse speed and mass flow rate of abrasive for every material and ANOVA is 

executed for identifying significant parameters.  

Adel.A. Abdel-Rahman [15] developed an elastic plastic erosion model that has been adopted 

for developing an AWJ model to cut materials that are brittle. As an outcome, a cutting model 

that is in closed form is dependent on fracture mechanics that has been derived and 

commenced. The recommended model forecasts the highest DOC of the intended material as 

a purpose of the toughness and hardness of fracture, together with parameters of process. The 

utmost DOC forecasted by the recommended model has been assessed with published 

investigational outcome for AD99.5 ceramic material. The control of parameters of the process 

in utmost DOC for AD99.5 ceramic material has also been researched and weighed against 

with investigational task. The assessment makes known that better understanding among the 

model forecasting and investigational outcomes exist, where the dissimilarity among the 

forecasted and investigational values of the utmost DOC was identified for taking a value in 

average of 3.9%.The forecasted DOC of the current model for 7 dissimilar ceramic materials 

has been assessed with that by a preceding model, where the both models have been identified 

for forecasting the similar kind of utmost depth of cut within an average value of 4%. 

Ma.C. and Deam. R.T. [16] investigated AWJC could generate tapered edges on the kerf of 

work piece which is cut and this could restrict the competent applications of AWJC, for the 

part when additional machining over edges is required for achieving engineering tolerance 

necessary. Measurement for the kerf geometry was done involving an optical microscope in 

this research and with those measured values, a basic empirical association for the kerf profile 

shape beneath dissimilar traverse speed has been brought up fitting much the shape of kerf. 

Farhad Kolahan and Hamid Khajavi. A. [17] investigated a cumbersome of experimental data 

was utilized for weighing the effect of AWJ parameters of process to cut 6063 T6 Aluminium 
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alloy. Variables of the process preferred at this point comprise nozzle diameter, jet pressure, 

jet traverse rate and AFR. Influence of these input parameters have been researched on DOC 

(h); one of the highly significant characteristics of AWJ. Regression modeling and Taguchi 

method have been utilized in the idea of presenting relationships among input and output 

parameters. ANOVA technique assesses the sufficiency of the model. Projected model is 

entrenched into a Simulated Annealing (SA) algorithm for optimizing AWJ process 

parameters in later stage. Purpose for resolving an appropriate group of parameters of process 

could generate a preferred DOC, preferring the ranges of parameters of the process. 

Computational outcomes confirm efficiency of the projected model and procedure to optimize. 

Jiyue Zeng and Thomas. J. Kim [18] investigate the phenomenon of erosion connected with 

AWJC of polycrystalline ceramics. Mechanism of erosion has been monitored here comprise 

inter granular network cracking and plastic flow. Removal of material because of cracking of 

network has been considered with a crack network model that associates the surface energy of 

fracture in creating the crack network to the energy of the impact induced stress waves. 

Involvement of plastic flow has been assessed with Finnie’s model. The model of derived has 

been confirmed with experiments of AWJ erosion. 

The literature survey made for this research work revealed that the researchers conducted on 

AWJM are related to recent trends in AWJM, different materials and effects of process 

parameters on MRR, SR and Kerf and also optimization/prediction using modeling of soft 

computing approaches. It is also inferred that more research involving number of process 

parameters are to be done in this area. The literature survey helped to successfully design, 

construct, and conduct the experimentation, modeling and performance evaluation of this 

research work. 

 

2. Data Collection and Experimentation  

The experimental design and investigation methodology is very important in maintaining the 

reliability of entire research work. It is useful for fixing the level of experiments, conducting 

experiments, recording the experimental results, evaluating the results and analysis of the 

results. The methodology for the present work has been designed effectively to conduct 

numerous experiments to study the entire spectrum of levels of AWJM process parameters for 

maximum MRR and minimize SR on nonferrous metals and its alloys. The reduction in 

number of experiments greatly reduces the time and the cost. To understand the cause of each 

AWJM parameters on response MRR and SR and to identify the significant parameters, 

experiments need to be conducted by varying the level of each parameter one at a time. This 

proves very cumbersome as the number of experiments to be conducted increases 

exponentially with the number of process parameters. Hence, it’s highly difficult to draw any 

conclusion with minimum number of experiments in this approach. Thus, well scheduled set 

of experiments, where all parameters are varied with specified range, is a better approach for 

obtaining systematic data. 

Performing the experiments on the sub set of complete set of experiments makes the 

experimentation process quick and cost effective. The RSM using the Box-Behnken design is 

highly effective in identifying the sub set of experiments to be done to study the complete 



                                                           Regression Neural Network Approach… E.Srimathi et al. 342  
 

Nanotechnology Perceptions Vol. 20 No. S11 (2024) 

range and combination of process parameters in minimal number of experiments. Thus, RSM 

is used to select optimum levels of process parameters and number of experiments required to 

ensure the quality of experimentation. Employing this statistical method to design the 

experiments and analyze the result sets enables the researcher to locate the optimal levels of 

process parameters. Estimation of the experimental error greatly helps to improve the quality 

of experiments conducted on Aluminium 6061, Copper Iron and Lead Tin Alloys. The close 

up view of block used for cutting the specimens which is mounted on the AWJM for all the 

three materials is shown in Figure 1. The Composition of the three alloys is shown in Table 1. 

 

Figure 1: Aluminium 6061, Copper Iron and Lead Tin Alloys Mounted on AWJM 

Table 1: Composition of Work Materials 

Aluminium 6061 Alloy Copper Iron Alloy Lead Tin Alloy 

Elements Composition Elements Composition Elements Composition 

Aluminium 97.9 % Copper 96 % Lead 95 % 

Magnesium 1 % Iron 4 % Tin 5 % 

Silicon 0.6 % -- -- -- -- 

Copper 0.28 % -- -- -- -- 

Manganese 0.08 % -- -- -- -- 

Zinc 0.07 % -- -- -- -- 

Titanium 0.066 % -- -- -- -- 

Chromium 0.04 % -- -- -- -- 

A representative graph of pressure vs output parameters is shown. Similar graphs can be 

plotted for various output by taking other parameters also in the x axis. Anyhow it won’t give 

any further details. In the optimization techniques the influence of this parameters will be taken 

care off. That’s why the graphs are not plotted for other parameters in the x axis. 

a. For a particular thickness of the Al, Cu and Pb alloys (50mm) graphs are plotted 

between MRR vs. Pressure and SR vs. Pressure for a varying AFR of 0.4kg/min, 0.55kg/min 

and 0.7kg/min. 
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b. For a particular thickness of the Al, Cu and Pb alloys (50mm) graphs are plotted 

between MRR vs. Pressure and SR vs. Pressure for a varying Orifice diameter of 0.3mm, 

0.33mm and 0.35mm.  

 

Figure 2: MRR vs Pressure at AFR of 0.4Kg/min 

 

Figure 3: SR vs Pressure at AFR of 0.4Kg/min 

 

Figure 4: MRR vs Pressure at AFR of 0.55Kg/min 
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Figure 5: SR vs Pressure at AFR of 0.55Kg/min 

 

Figure 6: MRR vs Pressure at AFR of 0.7Kg/min 

 

Figure 7: SR vs Pressure at AFR of 0.7Kg/min 
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Figure 8: MRR vs Pressure at OD of 0.3mm 

 

Figure 9: SR vs Pressure at OD of 0.3mm 

 

Figure 10: MRR vs Pressure at OD of 0.33mm 
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Figure 11: SR vs Pressure at OD of 0.33mm 

 

Figure 12: MRR vs Pressure at OD of 0.35mm 

 

Figure 13: SR vs Pressure at OD of 0.35mm 

i) With Abrasive Flow Rate as a Variable 

a) The plot between MRR and pressure for increasing AFR in Figures. 2, 4, 6 clearly 

shows that increasing the AFR, results in increasing the MRR for Aluminium, Copper and 

Lead alloys. 
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b) The plot between SR and pressure for increasing AFR in Figures. 3, 5, 7 clearly shows 

that increasing the AFR, results in decreasing the SR for Aluminium, Copper and Lead alloys. 

ii) With Orifice Diameter as a Variable 

a) The plot between MRR and pressure for increasing orifice diameter in Figures. 8, 10, 

12 clearly shows that increasing the orifice diameter, results in decreasing the MRR for 

Aluminium, Copper and Lead alloys. This occurs due to the decrease in size of orifice 

decreases the velocity of AWJ. 

b) The plot between SR and pressure for increasing orifice diameter in Figures. 9, 11, 13 

clearly shows that increasing the orifice diameter, results in increasing the SR for Aluminium, 

Copper and Lead alloys. This occurs due to the decrease in size of orifice decreases the velocity 

of AWJ. 

 

3.  RNN Approach to Predict the MRR and SR on Aluminium 6061, Copper Iron and 

Lead Tin Alloys 

Figure 14: Proposed Architecture of G 

In this work, the accuracy of the G model in predicting MRR and SR was investigated and the 

results were compared with the experimental results. 46 set of data under AWJM process was 

used for training and testing of the G. Out of 46 experimental data, 23 training data are 

considered on MRR and SR for the three alloys and 23 testing data sets outside the training 

data set are selected for testing the G. The performance of the G is studied with the special 

attention to their generalization ability and the CPU time. The advantage of G is fast learning 

as it is a one-pass training algorithm. It does not require an iterative training process. The 

training time is just the loading time of the training matrix. Also it can work both linear and 

non-linear data. As the sample size increases, the estimate surface converges to the optimal 

regression surface. Thus it requires many training samples to span the variation in the data and 

all these to be stored for the future use. However, there is only one disadvantages that there is 
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no intuitive method for choosing the optimal smoothing factor. The results illustrates that the 

training data and predicted values have come very close to the experimental values of MRR 

and SR for all the three alloys. Figure 14 shows the proposed Architecture of G 

Table 2: Output Value of MRR and SR Through G for Aluminium 6061 Alloy 

Sl.No

. 

Experimental 

MRR (mm3/min) 

Predicted 

MRR 

(mm3/min) 

Error MRR 
Experimental 

SR(µm) 

Predicted 

SR(µm) 
Error SR 

1. 48.6111 50.30538 3.485376797 3.57 3.39488 4.90532 

2. 53.6399 52.2216 2.644113803 2.08 2.11704 1.78077 

3. 51.8519 52.21058 0.691739358 2.21 2.261173 2.31552 

4. 50.8352 51.72523 1.750814396 2.55 2.41942 5.12078 

5. 62.2222 61.31387 1.459816593 1.9 1.820049 4.20795 

6. 51.8519 56.21065 8.406152909 2.19 2.261143 3.24854 

7. 45.7516 50.12142 9.551185095 3.2 2.944572 7.98213 

8. 53.6399 52.27139 2.55129111 1.8 1.658879 7.84006 

9. 61.2423 66.31896 8.289466594 2.07 1.892532 8.57333 

10. 62.2222 61.31116 1.464171951 2.05 1.870412 8.76039 

11. 51.1696 51.72437 1.084178887 2.54 2.41967 4.7374 

12. 47.7164 50.14248 5.084373507 3.08 2.942812 4.45416 

13. 50.1792 52.17364 3.974634908 1.99 2.118437 6.45412 

14. 52.9101 52.21065 1.321959323 2.17 2.261143 4.20014 

15. 54.3901 52.21135 4.005784141 2.08 2.261098 8.70663 

16. 51.8519 47.21256 8.947290263 2.79 2.561098 8.20437 

17. 48.6111 50.14248 3.150268149 3.3 2.982812 9.61176 

18. 52.9101 52.21065 1.321959323 2.19 2.261143 3.24854 

19. 47.7164 52.15037 9.292339741 2.36 2.263405 4.09301 

20. 48.3092 50.14289 3.79573663 2.95 2.942716 0.24692 

21. 58.4785 61.28001 4.790666655 1.89 1.821466 3.62614 

22. 54.7731 51.77715 5.469747011 2.25 2.417438 7.44169 

23. 56.3607 52.26618 7.264849443 1.68 1.515364 9.79976 

24. 49.2264 52.30029 6.244393252 2.29 2.214699 3.28825 

25. 48.9168 52.30162 6.919545023 2.36 2.215338 6.12975 

26. 51.1696 52.22116 2.05504831 2.5 2.309217 7.63132 

27. 55.9552 52.35901 6.426909385 2.14 2.211431 3.3379 

28. 49.2264 47.63344 3.235987194 2.65 2.845396 7.37343 

29. 56.7721 52.35636 7.778010678 2.18 2.210989 1.42151 

30. 50.8352 52.66547 3.600398936 1.9 2.001934 5.36495 

31. 51.8519 52.6664 1.57081997 1.99 2.102359 5.64618 

32. 64.8148 61.044 5.817807044 1.7 1.865359 9.727 

33. 48.6111 52.29841 7.585325162 2.4 2.21441 7.73292 

34. 52.1999 57.22006 9.617183175 2.68 2.50935 6.36754 

35. 52.9101 52.32855 1.099128522 2.2 2.212847 0.58395 

36. 59.8291 61.01913 1.989048807 1.99 1.964843 1.26417 
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37. 51.8519 47.7287 7.95187833 2.8 3.0180838 7.78871 

38. 51.1696 52.32791 2.263668272 2.34 2.212393 5.45329 

39. 48.9168 47.71524 2.45633402 3.23 3.181011 1.51669 

40. 48.3092 52.19532 8.044264861 2.69 2.810795 4.49052 

41. 53.2725 52.32855 1.771927355 2.18 2.212847 1.50674 

42. 52.5526 52.66761 0.218847402 1.8 1.962175 9.00972 

43. 59.3724 61.02141 2.777401621 1.82 1.964684 7.94967 

44. 56.7721 52.35604 7.778574335 2.03 2.21049 8.89113 

45. 51.1696 52.221 2.054735624 2.73 2.508869 8.10004 

46. 61.2423 60.99504 0.403740552 1.72 1.85198 7.67326 

The Table 2 shows the errors between the experimental and predicted values for MRR and SR 

using G for Aluminium 6061 Alloy. The comparison between the experimental values and 

predicted values of MRR and SR using G of Aluminium 6061 alloy is shown in Figure 15 and 

Figure 16. 

 

Figure 15: Comparison of Experimental and Predicted MRR for Aluminium 6061 Alloy 

 

Figure 16: Comparison of Experimental and Predicted SR for Aluminium 6061 Alloy 
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The Table 3 shows the errors between the experimental and predicted values for MRR and SR 

using G for Copper Iron Alloy. The comparison between the experimental values and predicted 

values of MRR and SR using G of Copper Iron alloy is shown in Figure 17 and Figure 18. 

Table 3: Output Value of MRR and SR Through G for Copper Iron Alloy 

Sl.No. 
Experimental 

MRR (mm3/min) 

Predicted 

MRR(mm3/min) 
Error MRR 

Experimental 

SR(µm) 

Predicted 

SR(µm) 
Error SR 

1. 897.8 829.7916 7.575005569 3.62 3.606213 0.38086 

2. 1000.03 934.8857 6.514234573 1.63 1.546354 5.13166 

3. 961.93 917.6243 4.60591727 2.24 2.328035 3.93013 

4. 918.21 909.39 0.960564577 3.09 2.945445 4.67816 

5. 1043.96 1072.895 2.771657918 1.767 1.674749 5.22077 

6. 928.76 917.626 1.198802705 2.228 2.328133 4.4943 

7. 762.29 824.0247 8.098584528 3.309 2.992095 9.57706 

8. 985.39 918.6555 6.772394686 2.19 2.321454 6.00247 

9. 987.8 1064.94 7.809273132 1.901 1.801852 5.21557 

10. 1025.41 1072.821 4.623613969 1.66 1.574658 5.14108 

11. 907.89 989.3779 8.975525669 2.77 2.545533 8.1035 

12. 800.02 824.1133 3.01158721 2.991 2.850925 4.68322 

13. 920.3 934.0995 1.499456699 1.989 2.151262 8.15797 

14. 922.4 977.626 5.987207285 2.224 2.328133 4.68224 

15. 948.38 917.6397 3.241348405 2.43 2.328178 4.19021 

16. 950.62 917.6623 3.466968926 2.32 2.327976 0.34379 

17. 817.84 864.1133 5.657989338 2.83 2.550925 9.86131 

18. 897.8 917.626 2.208286924 2.29 2.328133 1.6652 

19. 827.89 905.5952 9.385932914 2.589 2.334749 9.82043 

20. 814.54 824.1103 1.174933091 3.19 2.950842 7.49712 

21. 961.93 1032.57 7.343569698 1.799 1.676196 6.82624 

22. 997.56 910.3442 8.742912707 2.357 2.539592 7.7468 

23. 987.8 935.6451 5.279904839 1.5 1.441329 3.9114 

24. 846.98 920.7319 8.707631821 2.7 2.790991 3.37004 

25. 863.27 934.7606 8.281371993 2.79 2.591288 7.12229 

26. 928.76 934.4588 0.613592317 3.03 2.775812 8.38904 

27. 973.52 936.0072 3.853315802 1.85 2.007869 8.53346 

28. 792.18 801.8031 1.214761797 2.24 2.395983 6.96353 

29. 973.52 935.9615 3.858010108 1.734 1.900612 9.60854 

30. 957.37 945.5005 1.239802793 2 2.072189 3.60945 
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31. 990.22 945.5431 4.511815556 1.66 1.812105 9.16295 

32. 1100.85 1007.737 8.458282236 1.407 1.464275 4.07072 

33. 824.51 901.6995 9.36186341 2.47 2.290825 7.25405 

34. 939.56 994.4436 5.84141513 2.8 2.675803 4.43561 

35. 922.4 935.3498 1.403924545 2.201 2.289308 4.01218 

36. 1035.93 935.261 9.717741546 1.564 1.664572 6.43043 

37. 831.3 810.1688 2.541946349 2.456 2.338733 4.77471 

38. 907.89 935.3346 3.02289925 2.56 2.389102 6.6757 

39. 833.01 809.8445 2.780939004 2.8 3.039874 8.56693 

40. 824.51 904.8245 9.740876399 3.01 2.977295 1.08654 

41. 928.76 935.3498 0.709526681 2.23 2.289308 2.65955 

42. 968.85 945.561 2.403777675 2 2.072016 3.6008 

43. 1049.38 1007.335 4.006651547 1.863 1.764602 5.2817 

44. 961.93 935.9512 2.700695477 1.99 2.087394 4.89417 

45. 922.4 994.4593 7.812153079 2.65 2.475247 6.59445 

46. 1138.06 1073.7 5.655237861 1.35 1.448092 7.26607 

 

Figure 17: Comparison of Experimental and Predicted MRR for Copper Iron Alloy 

 

Figure 18: Comparison of Experimental and Predicted SR for Copper Iron Alloy 

The Table 4 shows the errors between the experimental and predicted values for MRR and SR 
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using G for Lead Tin Alloy. The comparison between the experimental values and predicted 

values of MRR and SR using G of Lead Tin alloy is shown in Figure 19 and Figure 20. 

Table 4: Output Value of MRR and SR Through G for Lead Tin Alloy 

Sl.No. 
Experimental 

MRR (mm3/min) 

Predicted 

MRR(mm3/min) 
Error MRR 

Experimental 

SR(µm) 

Predicted 

SR(µm) 
Error SR 

1. 1709 1785.191 4.45822118 2.45 2.209145 9.83082 

2. 2014.86 1983.379 1.56244106 1.415 1.498477 5.89943 

3. 1970.09 2090.663 6.12017725 1.624 1.78553 9.94643 

4. 1916.85 2016.638 5.20583249 2.2 2.027944 7.82073 

5. 2182.26 2005.522 8.09885165 0.788 0.7723 1.99239 

6. 1997.84 1950.596 2.36475393 1.609 1.745509 8.48409 

7. 1688.65 1787.283 5.84093803 2.109 1.959655 7.08132 

8. 1997.84 1951.471 2.32095663 1.52 1.661969 9.34007 

9. 2085.98 2158.54 3.47846096 1.201 1.176902 2.00647 

10. 2149.19 2015.516 6.2197386 0.801 0.772334 3.57878 

11. 1896.34 1996.7 5.2922999 2.1 1.927996 8.19067 

12. 1746.88 1787.438 2.32173933 1.905 1.958929 2.83092 

13. 1943.11 1982.853 2.04532939 1.887 1.700982 9.85787 

14. 2009.16 1950.596 2.91484999 1.571 1.685509 7.28892 

15. 1948.44 1999.493 2.62019872 1.53 1.485469 2.91052 

16. 2003.48 1950.49 2.64489788 1.709 1.785454 4.47361 

17. 1751.19 1787.438 2.06990675 1.9 1.958929 3.10153 

18. 2003.48 1950.596 2.63960708 1.566 1.685509 7.63148 

19. 1842.16 1949.7 5.83771225 1.91 1.789051 6.33241 

20. 1751.19 1787.445 2.07030648 1.899 1.958881 3.15329 

21. 2136.25 2165.715 1.37928613 1.211 1.273694 5.17704 

22. 1891.29 1927.536 1.91646971 1.999 1.924443 3.72971 

23. 2055.75 1984.13 3.48388666 1.431 1.516065 5.94444 

24. 1866.4 1966.153 5.34467424 2.013 1.887854 6.21689 

25. 1842.16 1966.163 6.73139141 1.945 1.787909 8.07666 

26. 1916.85 1943.313 1.38054621 2.008 1.824438 9.14153 

27. 1970.09 1967.14 0.14973935 1.5 1.58532 5.688 

28. 1800.08 1733.842 3.67972535 1.789 1.867909 4.41079 

29. 1937.8 1967.116 1.51284962 1.699 1.685333 0.80441 

30. 2049.81 1983.562 3.2319093 1.707 1.620212 5.08424 

31. 2009.16 1983.576 1.27336797 1.5 1.620078 8.0052 

32. 2142.69 2045.98 4.51348539 0.62 0.678726 9.47194 

33. 1866.4 1966.135 5.34370982 1.934 1.787866 7.55605 

34. 1916.84 1943.306 1.38070992 2.309 2.124462 7.99212 

35. 2014.86 1966.641 2.39316876 1.597 1.686576 5.60902 

36. 2162.3 2045.818 5.38694908 0.8 0.871223 8.90287 

37. 1800.08 1732.054 3.77905426 1.9 2.007612 5.66379 

38. 2020.6 1966.637 2.67064238 1.704 1.686527 1.02541 

39. 1768.66 1731.758 2.08643832 2.102 2.008317 4.45685 
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40. 1842.16 1943.164 5.48291136 2.345 2.124662 9.39608 

41. 2020.6 1966.641 2.67044442 1.64 1.686576 2.84 

42. 2079.86 1983.594 4.62848461 1.634 1.620005 0.85649 

43. 2162.3 2105.895 2.60856495 0.881 0.950873 7.9311 

44. 1970.09 1967.116 0.15095757 1.539 1.685267 9.50403 

45. 1922.04 1943.309 1.10658467 1.997 1.824226 8.65168 

46. 2223.3 2153.135 3.15589439 0.8 0.863019 7.87737 

 

Fig. 4.23: Comparison of Experimental and Predicted MRR for Lead Tin Alloy 

 

Fig. 4.24: Comparison of Experimental and Predicted SR for Lead Tin Alloy 

 

4. Conclusion 

✓ AWJM Process Optimization for Alloys: The study has demonstrated the potential of 

Abrasive Water Jet Machining (AWJM) for optimizing cutting parameters like pressure, 

abrasive flow rate, and orifice diameter for non-ferrous alloys such as Aluminum 6061, 

Copper-Iron, and Lead-Tin. AWJM offers versatility and minimal thermal distortion, making 

it suitable for these alloys. 
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✓ Prediction Accuracy of RNN Models: The Regression Neural Network (RNN) models 

effectively predicted material removal rates (MRR) and surface roughness (SR) for all three 

alloys with a close approximation to experimental values. The models achieved an average 

prediction error of less than 10%, which validates their efficiency for this machining process. 

✓ Influence of Key Process Variables: Increasing the abrasive flow rate consistently 

resulted in higher material removal rates, while increasing the orifice diameter reduced the 

MRR and increased surface roughness. These findings highlight the importance of precise 

control over these variables to optimize AWJM outcomes. 

✓ Advantages and Limitations of RNN: The RNN model demonstrated fast learning and 

reliable predictions, without needing iterative processes. However, determining the optimal 

smoothing factor remains a challenge, which can affect the model's accuracy in certain 

scenarios. 

✓ Experimental vs Predicted Values: Across the alloys, predicted values for both MRR 

and SR were closely aligned with experimental results. The models provided significant 

insights into how different parameters influence cutting performance, supporting their use in 

machining optimizations. 

✓ Potential for Future Work: The research opens avenues for further investigations into 

other process parameters and materials. Future research could focus on enhancing the accuracy 

of predictions and exploring additional optimization methods for broader applications in 

complex material machining. 
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