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This work develops an automated diagnostic system using medical image analysis methods such 

as feature extraction, segmentation, and localization. The system locates or identifies the 

Intervertebral Discs (IVDs) by using the Gabor features and the Mathematical Morphology 

approach on original spine MRI data. In order to detect the existence and location of IVD in 

pictures, the Gabor features are applied to MRIs of the spine. For IVD localization, we used the 

Stacked Hourglass deep learning model. For a given assignment, we investigate the efficacy of a 

feature combination strategy that makes use of geometric features and the Gabor features. Our 

investigation shows that combining these two different feature classes leads to a notable 

performance gain. The suggested approach addresses the intended problem with an astounding 

88.06% accuracy, highlighting the effectiveness of feature combination approaches in computer 

vision applications. Moreover, the Dice coefficient was employed to assess the model's 

performance, highlighting the resilience and dependability of our methodology. These results 

highlight how feature combination might improve IVD segmentation and classification's 

robustness and accuracy.  

 

Keywords: IVD Segmentation, IVD feature extraction, IVD classification, intervertebral disc 

analysis. 
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Chronic conditions such as low-back pain (LBP) are highly prevalent and pose a significant 

threat to human well-being. LBP, a widespread symptom with substantial societal and 

economic implications, affects a significant portion of the adult population in the United 

States, ranging from 25% to 50% [1]. The associated healthcare expenditures linked to spine-

related pain, primarily attributable to LBP, are consistently increasing [2]. The main 

contributor to chronic LBP and disability is intervertebral disc (IVD) degeneration [3]. 

Magnetic resonance imaging (MRI) analysis plays a crucial role in evaluating the spinal 

cord, ligaments, lesions, and assessing degenerative disc disease [4]. Historically, manual 

disc localization and segmentation in spine MRI scans were conducted by radiologists, 

relying heavily on prior knowledge and experience. However, this approach was labor-

intensive and lacked consistency among different observers [5]. Therefore, there is a critical 

need for automated methods to precisely localize and segment IVDs. The development of 

accurate techniques, aided by computer-aided diagnosis (CAD), holds the potential to 

facilitate the quantification of disc degeneration, disease diagnosis, and computer-assisted 

spinal surgeries [6–8]. However, challenges arise from variations in the size, shape, 

appearance, and intensity of different IVDs, along with the indistinct boundaries and 

resemblance in intensity to surrounding tissues, complicating the recognition process.  

Geometric characteristics hold paramount importance in medical imaging, serving diverse 

objectives that enhance diagnosis, assist in treatment planning, and advance research. In the 

context of In Vitro Diagnostics (IVD) and region analysis, the extraction of geometric 

features from medical images has witnessed substantial advancement, contributing to a 

deeper understanding of anatomical structures, pathological conditions, and physiological 

processes. This dynamic field plays a pivotal role in uncovering intricate patterns, shapes, 

and spatial relationships within medical images. The exploration of IVD geometric feature 

extraction for region analysis stands as a progressive stride toward harnessing the power of 

computational analysis to enhance medical insights, paving the way for more precise and 

personalized healthcare interventions. This paper delves into the methodologies, challenges, 

and potential applications of IVD geometric feature extraction, emphasizing its 

transformative impact on medical imaging and diagnostics. In summary, IVD feature 

extraction and description are critical components of medical image analysis, enabling 

quantitative assessment, diagnosis, treatment planning, and research related to spinal 

conditions, thereby advancing medical knowledge and improving patient care in the field of 

spine and musculoskeletal disorders. The subsequent section provides an in-depth literature 

review on IVD Geometric Feature Extraction for Region Analysis, focusing on the 

involvement of deep learning and machine learning in this domain. 

1.1. Literature Review:  

 

2. Research Methodology: 

This study employed a mixed-methods research approach of deep learning and machine 

learning to investigate the significance of automatic IVD segmentation and analysis. The 

research methodology encompassed quantitative methods to provide a comprehensive 

understanding of the IVD feature extraction. Fig. 1 depicts the overall methodology of IVD 

feature extraction and classification. It starts with data collection followed by pre-processing. 
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Prepocessed data is sailed through deep learning approach to localize IVD. Furthermore, 

localized IVD has been used for segmentation and feature extraction. We extract two type of 

features namely geometric features and GABOR features (textual features). The extracted 

features have been concatenates and used for classification. 

 

 
Figure 1. Proposed Methodology for IVD feature extraction and classification 

 

2.1. Data:  

We employed MRI spinal cord dataset [1]. The dataset consist of T1w MRI data from 235 

subjects, the dataset includes inconsistent images since, images were captured from 40 

different centers. The network was fed an average of each subject's six center slices as input 

images. For training and testing the dataset was divided into two parts: 1342 images and 658 

images, respectively. Ground truth data was manually labeled. Labels drawn according to the 

sequence of cervical vertebrae from (C1 = top to C7= Bottom) using is shown in Figure 

3.2(b). Nine patients' T1-weighted MR images were used to assess the performance of the 

suggested technique (using the Spine generic image dataset). Slice spacing ranges from 3.3 

to 4.4 mm, with an in-plane resolution of 0.5*0.5 and 2 mm slice thickness. Slices of each 

image series are 320*320 pixels in size. There are 39 slices taken from each patient. 

Technical details are described in table 1 and 2. 

 

Table 1.TechnicalDetails of the Dataset 
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Sl.No. Parameters 

1 FastSpinEcho(FSE) 

2 Slicethickness=2mm 

3 Slicespacing=0.5mm 

4 Resolution=320x320 

 

Table2.Training/Testing ratio 

 Sample size 

Training 1342 

Testing 658 

Total 2000 

 
Figure. 2(a) Original Image of IVD Fig. 2(b) Ground truth labels IVDs. 

 

2.2. Pre-processing: 

The Spinal Cord Toolbox (SCT) v4.0.1 was used to pre-process 3D volumes of the MRI data 

[2]. The images were re-sampled at 1 mm isotropic resolution and straightened using the 

spinal cord segmentation method to produce the spinal cord centerline [3]. The image was 

cropped to 256*256 pixels around the spinal region as part of the straightening procedure 

[4]. To reduce contrast variability in the image, a Contrast Limited Adaptive Histogram 

Equalization technique was used [5]. We increased the target size to deal with class 

imbalance by applying a 10-pixel Gaussian kernel to single-pixel labels. 

Further we extract the average of 6 sagittal slices (centered in the middle slice) as a data 

sample for each subject. We normalize each image to be in range [0, 1] to reduce the effect 

of data variation. In order to prepare the ground truth data for the training process, first, we 

extract the intervertebral disc position (single pixel) from the ground truth data then we 

convolve the image with a Gaussian kernel to generate a smooth ground truth with increased 

target size (radius 10). We repeat this process for each IVD separately to produce V channel 

ground truth, where V is the number of intervertebral discs. Since the Spine Generic dataset 

consists of samples with variable number of IVDs (between C1-C7), we extract 6 IVDs for 

each subject. For any missing IVDs we consider unknown position and eliminate its effect 

on the training process by simply filtering out with the visibility flag on the loss function. 

The proposed method starts with the pre-processing for the proposed model. The position of 

the intervertebral discs were extracted using the pose estimation method with attention 

mechanism of Hourglass model.  Figure 6 Depicts the proposed method. Steps involved in 

the methodology are discussed in the subsequent section. 
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2.3. Contrast Limited Adaptive Histogram Equalization (CLAHE): 

CLAHE, originally developed to enhance low-contrast medical images, offers a contrast-

limited approach compared to ordinary AHE. It tackles the problem of noise amplification 

by implementing a clipping limit. Prior to computing the Cumulative Distribution Function, 

the CLAHE applies a predefined value to clip the histogram, thus limiting amplification. The 

technique divides the original image into non-overlapping contextual regions called sub-

images, tiles, or blocks. 

The CLAHE's performance is influenced by two primary parameters: Block Size (BS) and 

Clip Limit (CL). These parameters significantly impact image quality. Increasing CL results 

in a brighter image, especially when the input image has low intensity, as a larger CL makes 

the histogram flatter. 

Moreover, increasing the BS expands the dynamic range and enhances image contrast. When 

selecting the two parameters based on maximum entropy curvature, the resulting image 

quality is subjectively perceived as good, as determined using image entropy. 

Equation 1 in the entropy function yields a specific value that indicates the level of 

complexity present in the corresponding section of an image. This value represents the 

degree of intricacy or information content within that particular region of the image. 

        Eq. 1 

The cosine weighting function, as depicted in equation 2, is utilized to measure the local 

contrast and luminance. In this equation, "p" represents the path radius, (xi, yi) denotes the 

location of theith pixel within the given patch, and (xc, yc) represents the center location of 

the given patch. 

    Eq.2 

Equation 3 is employed to calculate the local luminance of the provided patch. Within this 

equation, the raised cosine weighting function is represented by "wi," the total number of 

pixels within the patch is denoted by "N," and the luminance of the ith pixel is indicated by 

"Li." 

   Eq.3 

And contrast is calculated using equation 4. 
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    Eq. 4 

In this research, the provided image of the cervical region (Cervicalimg) (Figure 4) is 

processed using the CLAHE method with specific settings to obtain an enhanced image. 

  

Figure.3  Original Image Figure.4 CLAHE Output Image 

2.4. The mathematical morphology: 

Mathematical morphology, initially formulated based on set theory by Martheron, was later 

expanded for image analysis by Serra et al [3]. This approach utilizes structuring elements, 

which represent specific structures and features, to evaluate the shape of an image and 

perform image processing. The objective is to extract information regarding the unique set 

structures present in the original image using the corresponding set of structuring elements. 

The resulting set is linked to certain characteristics of the structuring element given by Yu-

Qian, et al. [4]. The fundamental operators in mathematical morphology include erosion and 

dilation. 

2.4.1. Erosion: 

Erosion, known as the shrinking operation in mathematical morphology, is a transformation 

that involves combining two sets with different dimensions of an image through vector 

subtraction. If X and Y represent sets in N-dimensional Euclidean space (EN) with elements 

x = (x1, ..., xN) and y = (y1, ..., yN) respectively, the erosion of X by Y is defined as the set 

of all elements for which x + y belongs to X for every y⊆ Y. The erosion of X and Y can be 

denoted X Θ Y and it can be defined by equation 5. 

𝑋𝛩𝑌 = {𝑥 ∈  𝐸𝑁|𝑥 + 𝑦 ∈ 𝑋 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑦 ∈ 𝑌} Eq. 5 

In the proposed approach, the line filter is chosen as the structuring element to perform 

erosion on the Cervical IVD image in order to obtain the boundaries of the intervertebral 

discs (IVDs). The expected outcome of this erosion on Cervical IVD image is to obtain the 

pathological IVD boundaries in a sequential labeling order from C1 to C7. However, during 

the erosion process, the IVD boundaries are not obtained in the desired order. To address this 

issue, a horizontal-wise maximum response extraction technique is employed. This involves 

rotating the Cervical IVD image by 90 degrees counterclockwise and performing erosion 

using the line filter with specific length and degree settings, namely (15,0), (15,15), and 

(45,0). The purpose of these settings is to erode unwanted white spots and extract the IVD 

boundaries in the correct order. The resulting images are combined to obtain the 

horizontally-wise maximum response eroded image (HMaxR), as depicted in Figure 3(a). 
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2.4.2. Dilation: 

Dilation, the counterpart of erosion in mathematical morphology, is a transformation that 

enlarges the input image. It is a morphological operation that combines two sets by using 

vector addition. If X and Y represent sets in EN with elements x = (x1, ..., xN) and y = (y1, 

..., yN) respectively, the dilation of X by Y can be defined as the set of all possible sums of 

paired elements. It can be represented as X ⊕ Y and is mathematically defined as (Haralick, 

et al. 1987). 

𝑋 ⊕ 𝑌 = {𝑧 ∈  𝐸𝑁|𝑧 = 𝑥 + 𝑦 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑦 ∈ 𝑌} Eq. 6 

In the proposed approach, dilation is employed to expand the HMaxR image by utilizing a 

disk as the structuring element with a radius of 2 mm. The resulting image, referred to as 

Dilationimg, is presented in Figure 3(b). Following that, unwanted white spots are eliminated 

from the dilated image by removing pixel values that fall below 100 or above 580. From the 

remaining connected components representing the valid upper and lower boundaries of the 

Cervical intervertebral discs (IVDs), the midpoint of the upper and lower boundaries is 

detected. This midpoint is then used to estimate the localization. Figure 3 illustrates the 

resulting images of the IVD localization process. Figure 3(a) clearly displays the combined 

erosion of the CervicalBimg, where unwanted edges and boundaries are eliminated, 

revealing the upper and lower boundaries of the vertebrae and IVDs. Figure 3(b) 

demonstrates the expanded boundaries of the vertebrae and IVDs obtained through dilation 

of the upper and lower boundaries. The final IVD boundary mask is applied to the 

Cervicalimg, as illustrated in Figure 4.3(c), and the IVD centers are identified using the 

midpoint Equation (7). Initially, the midpoint of the lower and upper boundaries is 

determined, and subsequently, the IVD centers are identified from the connected 

components' midpoints, resulting in the localized IVDs shown in Figure 3(d). 

𝑀 = (
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
) 

Eq. 7 

Where x and y represent the pixel positions of the corner of the connected 

components. 

  

Figure 5 (a).Erosion result Figure 5 (b).Dilation result 

 

The output of the dilation is used to create masks, these mask send over the Stacked 

Hourglass Network Deep learning architecture. The mask image is depicted in figure 5.2 (b). 
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Figure 5.2 (a) Pre-processed 

image 

Figure 5.2(b) The IVD Mask 

2.4.3. Localization using Stacked Hourglass Network: 

The overall schematic of the proposed method can be observed in Figure 6. The initial stage 

of the method involves pre-processing the input data before feeding it into the model. The 

model itself employs a pose estimation technique with an attention mechanism to acquire 

knowledge about the position of intervertebral discs. In the following subsections, we will 

delve into these steps in detail. 

 

Figure6.The model utilized in this study is a stacked hourglass network that incorporates an 

attention mechanism. During training, the model calculates the loss function between each 

hourglass prediction and the corresponding ground truth mask, which allows for intermediate 

supervision. Additionally, the intermediate representation is passed through an attention 

layer to generate an attention map. This attention map serves as a guide for the decoder 

layer, enabling it to focus specifically on the intervertebral disc region. 

To obtain data samples for each subject, we extract the average of six sagittal slices, with the 

middle slice being the center of the selection. To minimize the impact of data variation, we 

normalize each image to a range of [0, 1]. For the training data's ground truth preparation, we 

start by extracting the position of the intervertebral disc as a single pixel from the ground 

truth data. Next, we convolve the image with a Gaussian kernel to generate a smooth ground 

truth representation with an enlarged target size, using a radius of 10. We repeat this process 

for each intervertebral disc individually, resulting in a separate ground truth channel 

(referred to as the V channel) for each intervertebral disc. The number of intervertebral discs 

varies across samples in the Spine Generic dataset, ranging from 7 to 11. To account for this 

variability, we extract 11 intervertebral discs for each subject. If any intervertebral disc is 

missing, we consider its position as unknown and mitigate its impact on the training process 

by filtering it out using the visibility flag in the loss function given by equation 4.8. 
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𝑋 =  
1

𝑉 ∗ 𝑁
∑ ∑ 𝑦𝑗 − 𝑦̂𝑗

2

𝑁

𝑗=1

𝑉

𝑖=1

 

Eq. 8 

Localization is a crucial initial step in achieving accurate segmentation of Cervical IVDs. In 

this study, the CLAHE technique and Deep Learning Stacked Hourglass Network are 

employed for localization in the given MRI images. The CLAHE technique effectively 

enhances and highlights the edges and boundaries of the cervical vertebrae. To further refine 

the image, an erosion-based mathematical morphological technique is applied, extracting the 

maximum response horizontally. This erodes the unwanted edges and boundaries, followed 

by a dilation process that expands the remaining edges and boundaries. The resulting image 

allows for the automatic localization of the midpoint of the cervical IVD. 

2.4.4. Post-Processing: 

While the proposed network achieves a high level of accuracy in learning IVDs, further post-

processing of the predicted masks is necessary to reduce the false positive rate. To address 

this, we propose a skeleton-based approach for fine-tuning the predicted results. In this 

approach, we create a general skeleton model based on the training set. For each subject in 

the training set, we extract the location of the intervertebral discs and calculate the distance 

from each intervertebral disc (𝑣𝑖) to the first intervertebral disc (𝑣1). This provides 

information about the relational structure among the intervertebral discs. To normalize this 

representation, we shift 𝑣1 to the world coordinate (0, 0) and divide all the relational 

distances by the distance from 𝑣1 to 𝑣5. Each intervertebral disc 𝑣𝑖is calculated based on the 

average location of all subjects' IVDs. Using this generated skeleton, we define the skeleton 

model S as equation 9:  

𝑆 = 𝑠𝑒𝑡 {𝑣𝑖}, 𝑖 = 1,2, … . 𝑉, 𝑣𝑖 = 𝑣(𝑥, 𝑦) Eq. 9 

The skeleton model S comprises V intervertebral discs with their respective 2D positions (x, 

y). During testing, for each predicted mask, a search tree is generated. Each node in this tree 

represents a possible combination of intervertebral disc locations in a specific order. Along 

each path in the tree (from leaf to node, forming a S'), the error function between the general 

skeleton S and the predicted skeleton S' is computed using equation 10. It's important to note 

that for each intervertebral disc (𝑣𝑖), multiple candidates are available, denoted as (𝑣𝑖, 𝑐) 

where 𝑐 represents the 𝑐𝑡ℎ candidate for 𝑣𝑖. The solution to equation 10 is the S' that 

minimizes the error. To account for missing intervertebral discs, we introduce the flag δ in 

equation 10, indicating the availability of each candidate. Consequently, if the algorithm fails 

to detect a specific intervertebral disc, it will not impact the error function. 

𝑒𝑟𝑟𝑜𝑟(𝑆, 𝑆′) = ∑ 𝑑(𝑣𝑖, 𝑣𝑗′
), 𝑑(𝑣𝑖, 𝑣𝑗′

) = √∑ 𝛿(𝑣𝑖
𝑗

− 𝑣′𝑖
𝑗
)2

𝑛

𝑖=1

𝑁

𝑗=1

 Eq. 10 

2.4.5. Feature Extraction:  
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Extracting geometric features from objects within an image is a common task in biomedical 

image processing, computer vision and image processing. Geometric features describe the 

shape, size, orientation, and position of objects in an image. Here are some commonly used 

geometric features and their mathematical formulas: 

Area (A): The area of an object is a measure of its size. It is calculated by eq. 11.  

A = Number of Pixels in the Object Eq. 11 

Perimeter (P): The perimeter of an object is the total length of its boundary. 

Perimeter can be calculated using eq. 12. 

Sum of the lengths of all boundary pixels 𝑝 = ∑ 𝐼(𝑏) Eq. 12 

Eccentricity (E): Elongation measures how stretched or elongated an object is. 

Eccentricity can be calculated using eq. 13. 

   E = (Major Axis Length) / (Minor Axis Length) Eq. 13 

Orientation (θ): Orientation represents the angle at which an object is oriented. It 

can be calculated using eq. 14 

θ = 0.5 * arctan((2 * Covariance_xy) / (Covariance_xx - 

Covariance_yy)) 

Eq. 14 

Centroid (X_c, Y_c): The centroid is the center point of an object. Coordinates of 

the centroid can be calculated using eq. 15&16. 

X_c = (Sum of x-coordinates of object pixels) / (Number of object 

pixels) 

Y_c = (Sum of y-coordinates of object pixels) / (Number of object 

pixels) 

 

Eq. 15 

Eq. 16 

2.4.6. GABOR feature extraction:  

The GABOR descriptor operates by accumulating gradient directions across pixels within 

small spatial regions known as "cells." It then constructs a 1D histogram based on these 

accumulations, and the concatenation of these histograms forms the feature vector used for 

subsequent analysis. Let's assume there's an intensity (grayscale) function denoted as L that 

represents the image under examination. This image is divided into cells, each consisting of 

N×N pixels, as depicted in Figure 6(b). The orientation 𝜃𝑥,𝑦of the gradient at each pixel is 

computed (as shown in Figure 6(b) and 6(d)) using the following rule: 

GABOR represents a feature descriptor technique that centers on feature extraction. Within 

this image feature descriptor, only valuable information is retained, and irrelevant details are 

discarded. In the GABOR approach, the entire image is divided into small blocks, and a 

feature descriptor is constructed for each of these blocks [28]. Once the pertinent features 

from each image block are extracted, these blocks are assembled and subsequently 

normalized to derive contrast-normalized features. The process of Histogram of Oriented 

Gradients (GABOR) feature extraction encompasses multiple steps, as outlined in equation 

8.1. 
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𝜃𝑥,𝑦=𝑡𝑎𝑛−1

𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)
 

Eq. 8.1 

Furthermore, the orientations 𝜃𝑖
𝑗
𝑖 = 1 … . 𝑁2The gradient directions that fall within the same 

cell (let's call it "cell j") are quantized and combined into a histogram with M bins. 

Ultimately, all these individual histograms are arranged and joined together to form a single 

GABOR histogram. This consolidated GABOR histogram represents the final result of this 

algorithmic step, serving as the feature vector for subsequent processing. 

  
Figure 6(a).pre-processed image 

with CLAHE. 

Figure 6(b).Extracted GABOR 

features 

 
 

Figure 6(c).Segmented IVD Fig 6(d).Extracted GABOR 

from IVD 

3. Experimental setup 

To assess the effectiveness of our proposed method, we utilize the Spine Generic Dataset [1]. 

This dataset comprises T1-weighted (T1w) contrasts for each subject, obtained from 42 

different centers worldwide. The dataset exhibits significant variations in terms of image 

quality, scale, and imaging devices, presenting a challenging benchmark for intervertebral 

disc labeling. 

The proposed model is trained for 150 epochs using Adam optimization, with a learning rate 

of 0.00025 and a batch size of 4. Through experimentation, we obtained the best results on 

the validation set using 2 stacks. The implementation and model training were conducted 

using ivadomed [12], and the method can be readily applied through the Spinal Cord 

Toolbox [2]. 

In order to compare our method with the existing literature, we adopt the same settings as 

described in [16].The figure 7 provided below illustrates the architecture of the model. 
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Fig. 7 (a) Original image and 

Corresponding ground truth mask 

Fig. 7 (b)Attention 

map visualization. 

Fig. 7 (c)Prediction 

results in 

representative 

images. 

3.1. IVD SEGMENTATION USING ACTIVE REGION GROWING TECHNIQUE: 

The approach relies on identifying and extracting the most significant outlines in the image, 

which are distinguished by their considerable length relative to the entire image and by 

noticeable differences in color and texture between separated regions. Additionally, seeds are 

positioned in contour-free areas, or the central "core" of the regions. Each region is 

represented by a Gaussian distribution, where the mean and standard deviation initially 

derive from the seeds and depict the behavior of the homogeneous region. Consequently, the 

likelihood of a pixel (x, y) belonging to a region characterized by (μ, σ) can be determined. 

𝑃𝑅(𝑥,𝑦)|(𝜇,𝜎)=

1

√2𝜋𝜎
𝑒𝑥𝑝 {

(𝐼(𝑥,𝑦) − 𝜇)2

2𝜎2
} Eq. 17. 

Here, 𝐼(𝑥,𝑦)represents the intensity of the pixel (𝑥, 𝑦). The background is considered as a 

unified region with a uniform probability distribution denoted as 𝑃. 

The objective of image segmentation is to divide the image into subregions with uniform 

intensity properties within their interiors and distinct boundaries from neighboring regions. 

To achieve an optimal segmentation, a global energy function is defined with two 

fundamental components. The boundary term quantifies the likelihood that boundary pixels 

represent actual edge pixels. This probability, denoted as𝑃𝐵(𝑥, 𝑦), is directly proportional to 

the magnitude gradient of the pixel, indicating its probability of being on a real boundary. On 

the other hand, the region term assesses the homogeneity within the interior of the regions by 

measuring the probability of a pixel (𝑥, 𝑦)belonging to a region modeled by𝜇, 𝜎, denoted 

as𝑃𝑅(𝑥, 𝑦)|𝜇, 𝜎.  

To establish these definitions, additional concepts are necessary. Let 𝜌(𝑅) =
{𝑅𝑖: 𝑖𝜖[0, 𝑁]}represent a partition of the image into {𝑁 + 1}non-overlapping regions, where 

𝑅0 corresponds to the background region. Furthermore, let 𝜕𝑝(𝑅) = {𝜕𝑅𝑖: 𝑖𝜖[1, 𝑁]}denote 

the boundaries of the partition 𝜌(𝑅). The energy function is then formulated as follows:  

𝐸(𝜌(𝑅)) = (1 − 𝛼) ∑ −𝑙𝑜𝑔𝑃𝐵((𝑥, 𝑦): 𝜖𝜕𝑅𝑖)
𝑁

𝑖=1

+ 𝛼 ∑ −𝑙𝑜𝑔𝑃𝑅((𝑥, 𝑦): (𝑥, 𝑦)𝜖𝑅𝑖|(𝜇𝑖 , 𝜎𝑖)
𝑁

𝑖=1
 

Eq. 18 
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Here, represents a model parameter that determines the relative importance of the boundary 

probability and region homogeneity terms. The energy function is optimized using a region 

competition algorithm, which considers the neighboring pixels surrounding the current 

region boundaries 𝜕𝜌(𝑅) to determine the next step. Specifically, a region incorporates a 

neighboring pixel if this updated classification reduces the overall segmentation energy. 

The diagnosis process heavily relies on accurately identifying the boundaries of the 

intervertebral discs (IVDs) since disc bulges can cause shape deformations. If the boundaries 

are not properly segmented, it becomes difficult to detect abnormalities in the IVD. To 

address this, a new technique called active region growing is proposed to segment the IVDs 

from localized spine MR images. The underlying concept of this technique is to gather pixels 

with similar values to establish a boundary. In the Cervical IVD, there are two layers: the 

nucleus pulposes (inner layer) and the annulus fibrosis (outer layer). In MR images, the 

nucleus pulposes appears as a grey color, while the annulus fibrosis appears black. In 

grayscale images, pixel values range from 0 to 255, with 0 representing black and 255 

representing white, and the values in between represent various shades of grey. In the 

proposed method, an initial pixel with a value less than 35 (closest to black) is selected from 

the boundaries formed by the CLAHE to mark the annulus fibrosis. Seed point for region 

growing is collected from Stacked Hourglass Network. The neighboring pixel values are 

then examined, and if they fall between 35 - 40, they are clustered with the initial pixel; 

otherwise, they are disregarded. This process is repeated until the entire image is examined, 

resulting in the identification of the annulus fibrosis, as shown in Figure 4.10 (b) where the 

boundaries of the annulus fibrosis are highlighted. Next, the inner layer, the nucleus 

pulposes, is filled using the hole filling method. In this method, pixels that cannot be reached 

within the marked boundaries are replaced with colored pixels. The resulting image is 

displayed in Figure 4.10 (c). 

   
Figure8 

(a).Original IVD 

image 

Figure8 (b).Region 

Growing Result 

Figure8 

(c).Segmented 

IVDs 
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Figure 9(a). original image Figure 9(b).Extracted IVD within bounding box. 

 
Fig. 10a Extracted features from sample 1. 

 

3.2. Evaluation Metrics: 

To showcase the effectiveness of our proposed method we employ various evaluation 

metrics. One of the metrics utilized is the Dice Overlap Coefficients, which measures the 

precision of the prediction by calculating the pixel overlaps percentage between each 

predicted intervertebral disc position and the corresponding ground truth along the superior-

inferior axis. 

4. Results and Discussion: 

In this section we describe results obtained by using various performance measures. For 

reducing the space we have given some of the sample results. 

 
 

Fig. 11(a) Confusion 

matrix for Sample 1 

Fig. 11(b) Precision, Recall and F1 score for 

sample 1 

Fig11(a)depictstheeventsthatassignTruePositive(TP)7discscorrectly localized as per the 

ground truth , False Negative (FN) 0 discswrongly classified, True Negative (TN) 0 

correctlyclassified,andFalsePositive(FP) 0wronglyclassifieddiscs. The performance 

metrics for classification is given in Section(3.3.1). 

According to the figure 11(b) the precision measure evaluates the accuracy of positive 



512 Pradip Salve et al. Geometric Feature Extraction In IVD...               

 

Nanotechnology Perceptions 20 No. S11 (2024)                                         

predictions made by the confusion matrix from Fig 11(a). A precision value of 1.00 indicates 

that 100% of the IVD instances predicted as positive by the Stacked Hourglass Model were 

indeed true positives, while the remaining (0)% were false positives. A recall value of 1.00 

implies that 100% of the actual positive instances were successfully captured by the model, 

while the remaining (0)% were false negatives. Altogether, F1 score indicates a better trade-

off between precision and recall that is 1.00 for the sample 1. 

  

Fig. 11(c) Confusion 

matrix for Sample 2 

Fig. 11(d) Precision, Recall and F1 score for 

sample 2 

Fig11(c)depictstheeventsthatassignTruePositive(TP)6discscorrectly localized as per the 

ground truth , False Negative (FN) 1 discswrongly classified, True Negative (TN) 0 

correctlyclassified,andFalsePositive(FP) 0wronglyclassifieddiscs. The performance 

metrics for classification is given in Section(3.3.1). 

According to the figure 11(d) the precision measure evaluates the accuracy of positive 

predictions made by the confusion matrix from Fig 11(c). A precision value of 0.81 

indicates that 88% of the IVD instances predicted as positive by the Stacked Hourglass 

Model were indeed true positives, while the remaining (19)% were false positives. A 

recall value of 0.88 implies that 88% of the actual positive instances were successfully 

captured by the model, while the remaining (12)% were false negatives. Altogether, F1 

score indicates a better trade-off between precision and recall that is 0.88 for the sample 2. 

  

Fig. 11(e) Confusion 

matrix for Sample 3 

Fig. 11(f) Precision, Recall and F1 score for 

sample 3 

Fig11(e)depictstheeventsthatassignTruePositive(TP)6discscorrectly localized as per the 

ground truth , False Negative (FN) 2 discswrongly classified, True Negative (TN) 0 

correctlyclassified,andFalsePositive(FP) 0wronglyclassifieddiscs. The performance 
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metrics for classification is given in Section(3.3.1). 

According to the figure 11(f) the precision measure evaluates the accuracy of positive 

predictions made by the confusion matrix from Fig 11(e). A precision value of 0.72 

indicates that 72% of the IVD instances predicted as positive by the Stacked Hourglass 

Model were indeed true positives, while the remaining (28)% were false positives. A 

recall value of 0.78 implies that 78% of the actual positive instances were successfully 

captured by the model, while the remaining (22)% were false negatives. Altogether, F1 

score indicates a better trade-off between precision and recall that is 0.78 for the sample 3. 

 

Table3.ClassificationMetrics 

 

  Classification Metrics 

Sample. No. Total 

IVDs 

per 

Imag

e 

Accurac

y 
Precision Recall F1-Score 

1. 7 100% 1 1 1 

2. 8 88% 0.8

1 

0.8

8 

0.8

3 

3. 8 88% 0.8

1 

0.8

8 

0.8

3 

4. 9 78% 0.7

2 

0.7

8 

0.7

4 

5 8 88% 0.8

1 

0.8

8 

0.8

3 

6 8 100% 1 1 1 

7 7 100% 1 1 1 

8 9 67% 0.5

6 

0.6

7 

0.5

9 

9 8 88% 0.8

1 

0.8

8 

0.8

3 

10 7 100% 1 1 1 

11 7 100% 1 1 1 

12 8 88% 0.8

1 

0.8

8 

0.8

3 

13 8 88% 0.8

1 

0.8

8 

0.8

3 

14 9 78% 0.7

2 

0.7

8 

0.7

4 
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15 8 88% 0.8

1 

0.8

8 

0.8

3 

16 8 100% 1 1 1 

17 9 78% 0.7

2 

0.7

8 

0.7

4 

18 7 100% 1 1 1 

19 8 88% 0.8

1 

0.8

8 

0.8

3 

20 7 100% 1 1 1 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

65

8 

7 100% 1 1 1 

 

 

Table 4. Overall Accuracy 

Total IVD tested Correctly localized IVDs Wrongly localized IVDs 

3950 3500 450 

Accuracy 88.60% 

Overall accuracy, precision, recall and F1 score is shown in table x. 

Accuracy Precision Recall F1 Score 

0.88 1.0 0.88 0.93 

 

In this experiment, we analyze the accuracy of the localization and segmentation of cervical 

IVDs with the help of Dice coefficient metrics. The Dice coefficient accepts predicted pixels 

and ground truth pixels. This will help into calculate percent of pixels in image that are 

classified correctly.The predicted labels from the table 3, it was observed that out of 3950 

IVDs from 658 MRI images 3500 IVDs are localized correctly. Similarly, 450 IVDs out of 

3950 IVDs system has mis-classified. The overall accuracy of the proposed system is 

88.60%.  

The confusion matrix, precision, recall and F1 score curve are depicted in figure 11. The 

diagonaly conferred elements are correctly segmented IVD labels, while misclassified IVD 

are placed out of the diagonal. For the better visualization and simple understanding some 

the predicted IVD are given in the figure 11. The precision, recall and F1-score are computed 

from confusion matrix. The results were obtained from the input of the Dice Coefficient.  

The results obtained are tabulated in Table 3 and 4. 

 

Conclusion 
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In this research study, we conducted an automatic localization of the Cervical Intervertebral 

Disc (IVD) using the feature combination of geometric features and texture feature 

descriptor GABOR. We have employed Stacked Hourglass Network a deep learning 

technique with the help of CLAHE for localization and segmentation of IVD. To simplify 

the diagnosis process for radiologists, we employed a novel active refined region growing 

technique for segmentation. The effectiveness of our proposed method was evaluated on an 

MRI dataset comprising 3950 IVDs from 39 subjects.The proposed method achieved 

accuracy in localizing the cervical IVDs, with 88.60% accuracy for both training and testing 

data, the significant advantage of this approach is its automated nature, eliminating the need 

for manual intervention while providing improved localization and segmentation of cervical 

IVDs. The segmented IVDs can now be categorized as normal, disc desiccation, and disc 

bulge.  
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