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The widespread adoption of the Internet of Things (IoT) due to its ease of use and versatility has 

simultaneously raised significant security issues concerning interconnected devices and networks 

worldwide. This highlights the pressing need for robust Intrusion Detection Systems (IDS) to 

counter cyber threats. Deep learning (DL) methodologies present a highly effective solution, 

enabling the detection of anomalies in network traffic and significantly bolstering IoT network 

security while reducing the risk of cyberattacks. This paper investigates Long Short-Term Memory 

(LSTM) and Attentive Interpretable Tabular Learning (TabNet) DL methods for enhancing IDS 

classification in IoT network. Additionally, the Optuna framework is utilized to optimize classifier 

performance by fine-tuning hyperparameters and determining the ideal model configuration. These 

models are evaluated using publicly available NSL KDD and BoTNeTIoT-L01 datasets.  

Experimental results indicate that optimization process significantly improves model performance 

by achieving high accuracy. The TabNet model exhibits exceptional feature interpretation 

capabilities, providing insights into the most critical factors for detecting intrusion in IoT networks. 

Comparative analysis reveals that the Optuna-optimized TabNet model surpasses the standard 

LSTM, TabNet and Optuna based LSTM model in terms of accuracy, precision, and other 

computational efficiency. These findings highlights the efficacy of the model in significantly 

enhancing intrusion detection in IoT networks by providing timely actions to security breaches. 

Keywords: Intrusion Detection System (IDS); Long Short-Term Memory (LSTM); Attentive 

Interpretable Tabular Learning (TabNet), Optuna.   

 

1. Introduction 

The Internet of Things (IoT) plays a crucial role in revolutionizing industries and transforming 

daily life by creating a connected ecosystem of devices and systems. IoT enables the seamless 

exchange of data between physical objects, sensors, and cloud-based platforms, fostering 

unprecedented levels of automation, efficiency, and operational insights. With IoT technology, 

organizations can optimize processes, develop innovative business models, and enhance 

decision-making through real-time data analytics [1]. IoT applications has the ability to 
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enhance convenience, safety, and sustainability across various domains ranging from smart 

homes to industrial automation and smart cities. By harnessing the power of interconnected 

devices, IoT drives technological advancements, improves resource management, and paves 

the way for a more efficient, interconnected future. The International Data Corporation (IDC) 

forecasted that by 2025, there will be 41.6 billion networked IoT devices producing a whopping 

79.4 zettabytes (ZB) of data [2]. Despite managing and generating significant amounts of data, 

IoT devices are typically inexpensive and possess limited CPU, storage, and memory 

resources. Without adequate security measures, these devices can be vulnerable to cyber-

attacks, potentially leading to unforeseen disruptions within private networks. Such security 

breaches can jeopardize service availability, compromise data confidentiality, and infringe 

upon user privacy [3]. Consequently, the IoT ecosystem presents an attractive target for 

cybercriminals, necessitating innovative solutions to address cybersecurity threats and 

safeguard data protection [4]. 

Intrusion Detection Systems (IDS) serve as vital security measures for networks, 

identifying unauthorized access and potential attacks by analyzing network activity and 

internal behaviors [5]. The shift towards intelligent, data-driven solutions is essential, moving 

beyond traditional knowledge-based IDS approaches. Recently, researchers have veered 

towards innovative methodologies such as anomaly-based IDS leveraging deep learning 

methods in analyzing vast datasets across various contexts. These methods facilitate event 

correlation, pattern recognition, and the detection of abnormal activities that might otherwise 

go unnoticed [6]. However, the efficiency of deep learning models heavily reliant on the 

selection of optimal hyperparameters. This task can be quite difficult and time consuming 

because it necessitates in-depth domain expertise and experimentation.  

In this study, Optuna, an open-source framework for efficient hyperparameter 

optimization is utilized to enhance the accuracy and productivity of DL approaches for IoT 

IDS. Optuna automates the hyperparameter tuning process, employing various optimization 

algorithms and pruning techniques to efficiently explore the hyperparameter search space [7]. 

By integrating seamlessly with deep learning libraries, Optuna enables the building of 

optimized models that can accurately detect intrusions while minimizing false positives, 

ultimately fortifying the security of IoT networks. Moreover, Optuna's support for distributed 

and parallel optimization, as well as its efficient resource utilization, make it particularly well-

suited for the resource-constrained environment of IoT network devices.  

The primary contributions of this paper are listed below: 

• Designing deep learning architectures for IoT intrusion detection. 

• It enhances interpretability by leveraging TabNet's sparse feature selection and 

decision rule learning, allowing for automatic feature explanations, helping users 

understand model predictions and improving feature identification. 

• To address IoT resource constraints, the models are optimized using OPTUNA, 

ensuring computational efficiency and suitability for real-time, resource-limited 

environments. 

• Conducting extensive evaluations of the optimized IDS models on diverse datasets, 

benchmarking against state-of-the-art solutions. 
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The structure of the paper is as follows: Section 2 presents a literature survey of various 

machine learning and deep learning method in the context of IDS classification. Section 3 

outlines the Proposed framework, and the methodologies employed for constructing the IDS 

model. This includes a description of the LSTM and TabNet model, as well as insights into the 

Optuna technique. Section 4 details the NSL KDD and BoTNeTIoT-L01 dataset followed by 

data pre-processing steps. Section 5 elaborates the performance metrics and delineates the 

investigational outcomes along with their analysis. Finally, Section 6 presents the conclusion. 

 

2. Related Work 

Various studies have been done to improve IoT security and protect these systems from 

possible attacks by using machine learning and DL methods. These cutting-edge approach have 

shown remarkably adept at precisely and quickly identifying security vulnerabilities in IoT 

environments, allowing for preventative actions to reduce risks before they have a significant 

negative impact.  

Researchers investigated detection against adversarial attacks applying self-

normalizing neural network (SNN) and feedforward neural network (FNN) [8]. They employed 

Bot-IoT dataset and achieved 95.1% accuracy with FNN. SNN demonstrated higher resilience 

(9%) against adversarial attacks. Despite feature normalization improving SNN's resilience, it 

reduced its accuracy to below 50%, rendering it inappropriate for real-world defenses. In [9], 

FNN is applied for traffic analysis in a network setting, with a comparative study against the 

support vector classifier (SVC). FNN achieved outstanding performance using Bot-IoT dataset, 

with 99.414% accuracy for DDoS/DoS attacks and 99% across all metrics. IoT IDS framework 

using CNN [10] using  Bot-IoT dataset achieved 91.27%  as highest accuracy with 128 batch 

size, but lower accuracies were observed with smaller batch sizes. A deep blockchain 

framework (DBF), combining bidirectional LSTM (BiLSTM) and blockchain to enhance 

confidentiality and identify malicious behavior is introduced in [11]. Examination of the Bot-

IoT and UNSW-NB15 datasets yielded accuracies of 98.91% and 99.41%, respectively. 

However, the solution's effectiveness diminishes under heavy network traffic, particularly in 

detecting complex attacks. A cloud-based detection system is depicted in[12] using Distributed 

CNN for IoT devices and LSTM for cloud hosts to improve detection of various malicious 

attacks. Analysis using the N_BaIoT dataset revealed CNN achieving accuracy of 94.30% and 

LSTM achieving high accuracy i.e. 97.84%. However, the solution's inability to identify 

emerging attacks exposes IoT devices to threats. A robust framework for IoT attack detection 

leverages distributed techniques and deep learning [13]. It deploys detectors on fog nodes for 

efficiency and evaluates six DL models i.e. DNN, LSTM, BiLSTM, GRU, CNN, CNN-LSTM, 

with LSTM performing best. The framework achieves exceptional detection rates and 

accuracy, surpassing 99% in binary and multi-class classifications. Another paper examines 

several ML algorithms like KNN, Decision Trees (DT), Naive Bayes (NB), Random Forest 

(RF), SVM, ANN, and Logistic Regression for IoT IDS networks [14]. The Bot-IoT dataset 

shows that RF achieves 99% accuracy in binary classification of HTTP DDoS attacks, while 

KNN excels in multi-class classification with 99% accuracy. An ensemble IDS model 

combining logistic regression, NB, and DT with a voting classifier is presented in [15]. 

Evaluated on CICIDS2017 dataset, it achieved 88.96% accuracy for multi-class classification 

and  reached 88.92% overall accuracy for binary classification. The research [16] focused on 
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choosing the right hidden layers and neurons to prevent overfitting for ANN and compared 

with Random Forest using the N-BaIoT dataset for detecting Mirai malware in IoT devices. 

Results showed 92.8% accuracy, 0.3% False Negative rate, and an F-1 score of 0.99. Major 

findings contribute to cost-effective solutions for detecting Mirai malware strains. A 

Collaborative IDS that combines network and host data utilizing TabNet, named CIDS-Net for 

improved performance is proposed in [17]. SCVIC-CIDS-2021 derived from CIC-IDS-2018 is 

used for experiments. CIDS-Net improves IDS performance by achieving 99.98% F-Score  but 

the paper doesn’t describe accuracy or any other performance metrics. A lightweight NIDS 

specifically designed for IoT gateways is depicted in [18] utilizing TabNet, a model developed 

by Google for handling tabular data. Evaluation results from BoT-IoT and UNSW-NB15 

datasets demonstrate the effectiveness of the proposed system, achieving high accuracy rates 

of 98.53% and 97.95% in intrusion detection tasks. A hybrid deep learning model [19] 

combining LSTM and CNN was built to detect zero-day attacks in IoT networks. Real-time 

zero-day attack data was curated for the training process after identifying the top 12 features 

via Explainable AI. Time series GAN (TGAN) was employed to generate additional attack 

samples. By merging this data with the AWID dataset, the hybrid model achieved 93.53% 

accuracy, surpassing the 84.29% accuracy on the AWID dataset alone. Another study employs 

XGBoost-based feature selection algorithm with LSTM, GRU, Simple RNN to enhance 

detection performance on NSL-KDD and UNSW-NB15 datasets [20]. Results show significant 

improvements in test accuracy, with XGBoost-LSTM achieving 88.13% for binary 

classification on NSL-KDD and XGBoost-Simple-RNN achieved 87.07% for UNSW-NB15. 

For multiclass classification, XGBoost-LSTM outperforms others on NSL-KDD i.e. 86.93%, 

while XGBoost-GRU excels on UNSW-NB15 which is 78.40%. Overall, the proposed IDS 

framework performs better than existing methods. Researchers work have attempted to achieve 

a sophisticated IDS by implementing machine learning in large-scale IoT environments [21]. 

Different feature extraction techniques were investigated, involving image filters and transfer 

learning models like VGG-16 and DenseNet, complemented by different ML models such as 

RF, K-nearest neighbors, SVC, and stacked models for classification. The research was 

performed using the IEEE Dataport dataset and a top accuracy rate of 98.3 percent was 

achieved using the combination of VGG-16 with Stack. The novel model called TabNet-IDS 

[22] utilizes attentive mechanisms to automatically select important features from datasets. 

This model aims to enhance the explainability of the results while effectively training the IDS 

.  It is implemented using the TabNet algorithm within the PyTorch DL framework. The 

outcomes demonstrate high accuracy on various tabular datasets related to IoT security, with 

reported accuracies of 97%, 95%, 98% for CIC-IDS2017, CSE-CICIDS2018 and  CIC-

DDoS2019 dataset. LSTM-based IDS with Dynamic Access Control (DAC) is introduced in 

[23]. It achieves 97.16% validation accuracy in detecting 14 different threats. It demonstrated 

98% detection rate and fast 1.2 second response time, making it a highly accurate and efficient 

IDS for enhancing IoT security. A study proposes an intelligent framework to enhance 

cybersecurity in Industry 4.0 WSNs using MLP, DT and Autoencoder models for intrusion 

detection and threat prioritization [24]. The framework achieves high accuracy of 99.5% for 

MLP and DT, 91% for Autoencoder and outperforms benchmark models, offering a proactive 

and effective approach to prevent and mitigate cybersecurity threats by prioritizing and 

addressing high-risk intrusions. The study [25] evaluates feature selection and extraction 
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techniques for ML-based intrusion detection in IoT networks using the diverse ToN-IoT 

dataset. Feature extraction yielded better performance with smaller feature sets, whereas 

feature selection excelled in reducing training and inference times. 

Ekundayo [26] leveraged Optuna to fine-tune the CNN-LSTM for predicting various 

hyperparameters related to consumption of electric energy, resulting in reduced mean square 

error than traditional methods. The paper [27] compares four Python hyperparameter 

optimization libraries—Optuna, HyperOpt, Optunity, and SMAC—across two benchmarks: a 

CASH problem and the NeurIPS MLP optimization challenge. Optuna excelled in the CASH 

task, while HyperOpt performed best for MLP selection. Srinivas and Katarya [28] applied 

Optuna to optimize the hyperparameters of XGBoost for predicting cardiovascular diseases, 

achieving 94.7% accuracy  on the Cleveland dataset. Li et al. [29] employed Optuna to tune 

the hyperparameters influencing the accuracy of LSTM model accuracy in their research on 

drilling pressure prediction systems. Consequently, it demonstrated a reduction in Mean 

Squared Error (MSE) on both the training and test datasets. Researchers [30] presented an 

advanced solution using BILSTM with Optuna for hyperparameter optimization, leading to a 

significant 7% accuracy improvement over traditional models. This advancement enhances 

ship navigation safety and efficiency, with implications for autonomous collision avoidance 

systems and maritime traffic management. ASXAML, an anti-money laundering framework 

using XGBoost, which aims to reduce false positives proposed in [31]. It combines feature 

selection with Optuna for hyperparameter tuning, achieving 86% F-beta score with just 11% 

of money laundering cases misclassified out of 1926 in the test data. 

Table 1. Related word for IDS using ML & DL techniques 

Auth

ors 

Name 

Ye

ar 

Methodology 

Used 

Datase

t Used 

Findings Accu

racy 

(%) 

Limitations 

Ibitoy

e et. 

al. [8] 

201

9 

FNN and 

SNN 

Bot-

IoT 

Average accuracy with   

precision, recall, and 

F1-score all reaching 

95%, showcasing its 

impressive 

performance. 

95.10 Feature 

normalization of  

Bot-Io indicates that 

if applied, accuracy 

could plummet to 

below 50%. 

Ge et. 

al. [9] 

201

9 

FNN Bot-

IoT 

DDoS/DoS attacks 

attained an  accuracy 

of 99.414%. Across all 

evaluation metrics the 

model consistently 

achieved a remarkable 

99% performance. 

99.41 Binary classification 

efficiency decreased 

in defending against 

keylogging attacks 

and mitigating 

information theft.  

Susilo 

et. al. 

[10] 

202

0 

CNN Bot-

IoT 

Highest accuracy is 

91.27% using 128 

batch size and the 

lowest accuracy 

88.30% 

using 32 batch size. 

91.27 Accuracy drops to 

88.30% using 32 

batch size=32 and 

90.64% using batch 

size=64. 



747 Nitu Dash et al. Tabnet And Optuna-Driven Optimization....                                                                          

 

Nanotechnology Perceptions 20 No. S11 (2024)  

Alkad

i et. 

al. 

[11] 

  

202

0 

Smart 

contracts 

with 

BiLSTM for 

classification 

UNSW

-NB15 

and 

BoT-

IoT 

DBF effectively 

detects insider and 

outsider attacks in the 

cloud and IoT systems. 

98.91 

& 

99.41   

performance 

deteriorates under 

high network traffic 

and struggles to 

effectively detect 

complex attacks. 

Parra 

et. al. 

[12] 

202

0 

Distributed 

CNN for IoT 

devices and 

LSTM for 

cloud hosts 

N_BaI

oT 

LSTM implemented 

on client devices maps 

CNN sections, 

enabling detection and 

defense at the point of 

attack origin. 

97.84 lacks the capability 

to detect emerging 

attacks 

Samy 

et. al. 

13] 

202

0 

DNN, LSTM, 

BiLSTM, 

GRU, CNN, 

CNNLSTM 

N_BaI

oT-

2018, 

CICID

S-

2017, 

NSL-

KDD 

It deploys detectors on 

fog nodes for 

efficiency and 

evaluates six DL 

models  

99 The suggested model 

requires large 

datasets and takes 

more time to train.  

Churc

her et. 

al. 

[14] 

202

1 

KNN, SVM, 

DT, NB, RF, 

ANN, LR 

Bot-

IoT 

For binary 

classification of 

attacks, RF performed 

best, achieving 99% 

accuracy on HTTP 

DDoS attacks and for 

multi-class 

classification KNN 

outperformed other 

methods with 99% 

accuracy. 

99 Lack of diverse data 

sources containing a 

mix of different 

types of attacks 

Abbas 

et. al. 

[15] 

202

1 

 LR, NB, and 

DT with 

voting 

classifier 

CICID

S 2017 

The ensemble model 

improves multi-class 

accuracy to 88.96% by 

combining DT with 

NB and LR and 

88.92% accuracy for 

binary classification  

88.96  the need for data 

from real-time 

networks 

Palla 

et. al. 

[16] 

202

1 

ANN N-

BaIoT 

ANN out performs 

with 92.8% accuracy, 

low False Negative 

rate (0.3%), high F-1 

score (0.99), and cost-

effective solutions for 

detecting Mirai 

malware strains. 

92.8 Comparative 

analysis limited to 

ANN and Random 

Forest models. 
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Liu et. 

al. 

[17] 

202

2 

TabNet SCVIS

C-

CIDS-

2021 

CIDS-Net deep 

learning model for 

network intrusion 

classification with host 

features.  

- Accuracy not given 

but TabNet achieves 

F-Score of 99.89% 

Nguy

en et. 

al. 

[18] 

202

2 

TabNet BOT-

IoT 

and 

UNSW

-NB1 

A lightweight NIDS 

using TabNet model 

for IoT gateways. 

98.53 

& 

97.95 

Limited Testing on 

Diverse Platforms 

Asadu

zzama

n et. 

al. 

[19] 

202

2 

CNN-LSTM AWID

-GAN 

LSTM-CNN deep 

learning model detects 

zero-day attacks in IoT 

networks with 93.53% 

accuracy, surpassing 

baseline results on the 

AWID dataset. 

93.53 limited number of 

real-time attacks 

were conducted 

S. M. 

Kason

go 

[20] 

202

3 

XGBoost for 

feature 

selection  and 

LSTM, GRU, 

Simple RNN  

NSL-

KDD, 

UNSW

-NB15 

Achieves better 

accuracy for binary 

classification  than 

multi class 

classification 

88.13 

87.07 

Training time is 

more and 

performance 

decreases on 

minority classes 

Musle

h et. 

al. 

[21] 

202

3 

Feature 

extractors: 

VGG-16 and 

DenseNet. 

RF, KNN, 

SVM, and 

different 

stacked 

models  

IEEE 

Datapo

rt 

This study examined 

various feature 

extractors and machine 

learning algorithms on 

IEEE Dataport dataset. 

Combining VGG-16 

with stacking achieved 

the highest accuracy 

98.3 Difficulty in 

distinguishing threats 

Zegar

ra et. 

al. 

[22]  

202

3 

TabNet CIC-

IDS20

17, 

2018, 

2019 

TabNet-IDS, utilizes 

attentive mechanisms 

for automatic feature 

selection in IoT 

intrusion detection. 

97, 

95.58

, 

98.51 

Challenge of model 

explainability  

Alaza

b et. 

al. 

[23] 

202

4 

LSTM with 

Dynamic 

Access 

Control 

algorithm 

CICID

S 2017 

& 

BoT-

IoT 

LSTM-based IDS with 

Dynamic Access 

Control that achieves 

97.16% validation 

accuracy in detecting 

14 different threats 

98.73 high implementation 

cost using Raspberry 

Pi, lack of testing 

against adversarial 

machine learning 

attacks 

Al-

Quaye

d et. 

al. 

[24] 

202

4 

Decision 

Tree, MLP, 

and 

Autoencoder, 

LR 

WSN-

DS 

The framework 

achieves high accuracy 

of 99.5% for Decision 

Tree and MLP, 91% 

for Autoencoder 

99.52 specific domain of 

WSNs in Industry 

4.0 
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Li et. 

al. 

[25] 

202

4 

DT, RF, 

KNN, NB, 

MLP with 

feature 

selection & 

extraction 

techniques 

ToN-

IoT 

Feature extraction 

outperformed feature 

selection in detection 

performance 

88.22 

is 

highe

st 

accur

acy 

accuracy, F1-score, 

and runtime need to 

be enhanced 

 

3. Materials and Methods 

 

3.1  The Proposed Framework 

This article presents a methodology for IDS that uses DL approaches to discover and categorize 

potential vulnerabilities and threats in Internet of Things (IoT) networks. First phase involves 

gathering the essential data required for constructing the models. In this study NSL KDD and 

BoTNeTIoT-L01 datasets are selected for experimentation. The collected data then goes through 

preprocessing, which includes data cleaning, selection, and normalization. This refined data is 

divided into training and testing sets to feed into the learning model. The system employs LSTM 

and TabNet DL models which are trained on the processed data to identify patterns that 

differentiate normal network behavior from potential attacks. To optimize the performance of 

these models, the pipeline incorporates OPTUNA, a hyperparameter optimization framework. 

This step fine-tunes the model parameters to achieve the best possible performance. Once trained 

and optimized, the model produces outcomes that are then classified into two categories: normal 

traffic or attack. The performance of this classification is calculated through various metrics. This 

evaluation feeds back into the optimization process, allowing for iterative improvement of the 

model. The different phases of the proposed framework is represented in Figure 1. 

 

 

Figure 1. The Proposed Framework 

 

3.2 Long Short-Term Memory (LSTM) 



                                                       Tabnet And Optuna-Driven Optimization.... Nitu Dash et al. 750  
 

Nanotechnology Perceptions 20 No. S11 (2024)  

LSTM addresses the vanishing gradient issue commonly encountered in training traditional 

RNNs. It introduces a memory cell with key components, including input, forget, and output 

gates, along with a cell state [32]. The cell state acts as the network's memory, enabling 

information to be retained and transmitted across long sequences. Each gate (input, forget, and 

output) is implemented using sigmoid layers, which control the flow of information into and 

out of the memory cell.  

 Forget Gate: It examines the input data and the information from the previously hidden 

layer. LSTM then determines which information to forget from the cell state using a sigmoid 

function. It is calculated below in Equation 1. 

  𝑓a = 𝜎(𝑊𝑓g . [ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑓g )       (1) 

Input/Update Gate:  The LSTM decides which information to retain in the cell state. 

Initially, the input gate layer determines which information to update using a sigmoid function. 

Subsequently, a Tanh layer suggests a new vector to incorporate into the cell state. The LSTM 

then updates the cell state by discarding the information marked as forget and incorporating 

the new vector values. It is calculated below in Equation 2 and 3. 

𝑖𝑡 = 𝜎(𝑊𝑖g [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑖g)   (2) 

𝑐𝑡 = tanh(𝑊𝑐s[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐s)  (3) 

Output Gate: Determines the output by employing a sigmoid function to specify the segment 

of the LSTM cell to output. The outcome undergoes a Tanh layer transformation (with values 

ranging between -1 and 1) to transmit solely the chosen information to the succeeding neuron. 

It is calculated below in Equation 4 and 5.  

𝑜𝑡 = 𝜎(𝑊𝑜g [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜g)  (4)     

ℎ𝑡 = 𝑜𝑡l * tanh(𝑐𝑡l)    (5)  

 

3.3 Attentive Interpretable Tabular Learning (TabNet) 

TabNet is an advanced DL architecture explicitly designed for tabular data, making it highly 

suitable for tasks like network intrusion detection. It combines the strength of neural networks 

with the interpretability of decision trees, offering a unique approach to handling structured 

data [33]  

At its core, TabNet employs a sequential attention mechanism that processes data 

through multiple decision steps. Each step focuses on different features, allowing to capture 

intricate relationships within the data. The key innovation lies in its feature selection process, 

governed by the equation given in Equation 6.  

 M[a] = sparsemax(P[a] ⊙ M[a-1])  (6) 
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Here, M[a] signifies the feature mask at step i, P[a] denotes the feature selection 

parameters, and ⊙ signifies element-wise multiplication. The sparsemax function ensures 

sparse feature selection, promoting interpretability and efficiency. 

Figure 2. Architecture of TabNet 

 

TabNet's architecture as shown in Figure 2 [34] consists of several components: 

• Feature Transformer: Applies learnable transformations to input features. 

• Attentive Transformer: Uses the mask M[a] to select relevant features. 

• Feature Selection Network: Determines which features to focus on in each step. 

The model iterates through these components for a predefined number of steps, refining its 

feature selection and decision-making process. For classification tasks, the final output is 

typically processed through a softmax layer as given in Equation 7. 

y_pred = softmax(W * h + b)   (7) 

 where W is the weight matrix, h is the final hidden representation and b is the bias. 

TabNet excels in classification tasks for several reasons: 

• Adaptive Feature Selection: It can identify and emphasize on the relevant features for 

each specific instance, enhancing its ability to capture nuanced patterns. 

• Interpretability: The feature selection process provides insights into which features are 

most important for each decision, making the model's reasoning more transparent. 

• Handling Mixed Data Types: TabNet efficiently processes both numerical and 

categorical data without extensive preprocessing. 

• Balancing Complexity and Performance: Its architecture allows for deep learning 

capabilities while maintaining computational efficiency. 
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• Regularization: TabNet incorporates built-in regularization techniques, reducing 

overfitting and improving generalization. 

TabNet can effectively learn complex patterns in network traffic data. It can distinguish 

between normal and malicious activities with high accuracy while providing valuable insights 

into which network characteristics are most indicative of potential threats. This makes TabNet 

particularly powerful for creating robust, explainable intrusion detection systems that can adapt 

to evolving cyber threats. Its interpretability feature also aids security analysts in understanding 

and validating the model's decisions, which is essential in critical security applications. 

 

3.4 OPTUNA 

Optuna is a powerful open-source framework for hyperparameter optimization specially 

designed for DL models [35]. Optuna offers several key advantages: firstly, a user-friendly 

define-by-run style API; secondly, an effective pruning and sampling mechanism; and thirdly, 

simple setup procedures. Optuna's define-by-run API permits users to dynamically build 

hyperparameter search spaces through an objective function during runtime, thus offering 

flexible, real-time optimization without pre-defining all elements. The cost-effectiveness of 

hyperparameter optimization relies on efficient searching and performance estimation 

strategies to select and evaluate parameters effectively. Optuna offers both independent 

sampling and relational sampling methods for hyperparameter optimization [36]. While 

independent sampling, like tree-structured Parzen estimator (TPE), can perform well without 

using parameter correlations, the effectiveness of each method varies based on the environment 

and task. Optuna can handle various independent sampling methods and relational sampling 

methods like covariance matrix adaptation evolution strategy (CMA-ES). Relational sampling 

in define-by-run frameworks implementation can be challenging, but Optuna can identify trial 

results indicative of parameter correlations, enabling the use of relational sampling algorithms 

like CMA-ES and GP-BO as optimization progresses. Specifically, Optuna permits customized 

sampling procedures.  

Pruning involves monitoring intermediate objective values and terminating trials that 

do not meet criteria. Optuna uses the Asynchronous Successive Halving (ASHA) algorithm, 

which allows for independent early stopping in a distributed environment, leading to efficient 

parallel processing and linear scalability. The pruning process is governed by the 'report API' 

for monitoring and 'should_prune API' for premature termination, ensuring optimal resource 

utilization. Optuna’s last design feature is a simple setup process that handles tasks from heavy 

experiments to lightweight computations. It offers flexible storage options, excels in 

lightweight tasks, supports in-depth analysis, and includes a web dashboard for real-time 

visualization. Optuna simplifies storage deployment, integrates seamlessly with container-

orchestration systems, and is easy to install. It's open-source and scales linearly for distributed 

computations. Optuna workflow for hyperparameter optimization is given below. 

• Design the objective function: Create a function that takes hyperparameters as 

input and returns a performance metric for your model.Specify the hyperparameter 

search space: Determine the types and ranges of hyperparameters you want to 

optimize. 
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• Initialize an Optuna study: Set up a new study object for your specific optimization 

task. 

• Execute the optimization process: Use the study's optimization method, providing 

your objective function and the desired number of trials. 

• Retrieve optimization results: Extract the best-performing hyperparameter set and 

its corresponding performance metric. 

• Finalize model training: Use the optimal hyperparameters to train your model for 

deployment or further evaluation. 

 

4. Dataset Description 

In this study, NSL-KDD and BoTNeTIoT-L01 datasets are taken into consideration.   

 

4.1 NSL KDD Dataset 

The NSL-KDD dataset [37] is an refined version of the original KDD Cup 1999 dataset, which 

is extensively used for NIDS research. It addresses the redundancy and imbalance issues found 

in the KDD dataset by eliminating duplicate records and providing a balanced representation 

of normal and attack types. Each instance in the dataset represents a network connection, 

described by 41 features that include basic attributes like protocol type, service, and flags, as 

well as derived attributes such as counts of packets and connections. The dataset is identified 

as either normal or one of four main attack types: Denial of Service (DoS), Remote to Local 

(R2L), User to Root (U2R) and Probe. This dataset is often used for benchmarking IDS because 

of its cleaner and more representative structure. The attack traffic distribution is outlined in 

Table 2. 

Table 2.  Attack types of NSL KDD  

Category Attack Type  

DoS Apache2, Teardrop, Land, Back, Pod, Mailbomb Neptune, 

Edstrom, Process table, Smurf, Worm 

R2L Snmpgetattack, Multihop Guess_password, Phf, Named, imap, 

Xlock, Sendmail, Ftp_write, Httptunnel, Snmpguess, 

Waremaster, Xsnoop. 

U2R Rootkit, Buffer_overflow, Perl, Ps, Xterm, Loadmodule, 

Sqiattack,  

Probe Nmap, Satan, IPsweep, Saint, Portsweep, Mscan 

 

4.2  BoTNeTIoT-L01 dataset 

The BoTNeTIoT-L01 dataset is a recent and comprehensive collection of IoT network traffic 

designed for intrusion detection research, particularly focusing on botnet attacks. Captured in 

a smart home testbed at the University of New South Wales Cyber Range Lab, the dataset 
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includes network traffic from nine IoT devices such as cameras, door locks, bulbs, switches, 

and remotes, all connected via a central switch [38]. The traffic was recorded using Wireshark 

and contains two well-known botnet attacks i.e. Mirai and Gafgyt, along with their subdivisions 

as described in Table 3. A key feature of BoTNeTIoT-L01 is its inclusion of 23 statistically 

engineered features, derived from .pcap files. Seven statistical measurements were used to 

produce these features: the mean, variance, covariance, count, magnitude, radius, and 

correlation coefficient. The calculations were performed accross a 10-second time window, 

employing a decay factor of 0.1 (referred to as L0.1 in related research). The dataset contains 

2,426,574 instances with a binary target label indicating normal traffic (0) or attack traffic (1). 

The processed data is divided into  80% training 80% and 20% testing sets for subsequent 

analysis and model development. 

Table 3. Attack types of BoTNeTIoT-L01 

Category Attack Types 

Mirai UDP flooding,  Ack flooding, UDP plain, Scan, Syn flooding 

Gafgyt Junk, Como, TCP, UDP flooding 

 

4.3 Data Preprocessing 

Data preprocessing is a key procedure that converts raw data into a refined, uniform, and 

significant format suitable for analysis. This process is crucial for ensuring data reliability and 

suitability for classification models, especially in IoT IDS security [39].  

Step-1 Data Cleaning: The dataset contains both duplicate records, which have been 

eliminated, and missing values, which have been addressed through either imputation or the 

removal of incomplete records. This process ensures data integrity and improves the quality of 

the dataset for analysis purposes. 

Step-2 Data Selection:  The dataset contains a mix of character and numeric attributes. 

To ensure consistency, label encoding is used for multi-class labels while one-hot encoding is 

applied to categorical columns. Additionally, LabelBinarizer is utilized for one-hot encoding 

of categorical labels, converting them into binary arrays suitable for deep learning algorithms. 

Step-3 Data Normalization: It is employed to prevent bias towards features with larger 

values by maintaining their scale. In this study normalization is opted, specifically min-max 

scaling, to standardize features. The dataset is  normalized between 0 and 1 using Equation 8 

fnormalized =
f−min

max −min
                               (8) 

where   f = feature value, max = maximum value, min = minimum value of the feature. 

 

5. Experiments and Result Analysis 

The constructed models are thoroughly examined and juxtaposed using the below key 

evaluation criteria as outlined in Equations 9 through 12 correspondingly. 

Accuracy =  
(TP+TN)

(TP+TN+FP+FN)
   (9) 
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Precision =  
TP

(TP+FP)
         (10) 

Recall =  
TP

(TP+FN)
        (11) 

F-score =  2 ∗
(Precision ∗ Recall)

(Precision + Recall)
    (12) 

 Here the experiments are divided into two fundamental design models. The LSTMIDS 

model and Optuna based LSTMIDS model are built  and analyzed  in phase 1. Further 

TabNetIDS and Optuna based TabNetIDS  models are developed and analyzed in phase 2.   

Experiments are carried out using Jupyter Notebook, an interactive development 

environment for Python, which is part of the Anaconda distribution. This platform is chosen 

for its effectiveness in implementing and assessing the proposed methodology. For the deep 

learning aspects of the study, TensorFlow 2 and Keras 3.3 are employed [40]. These Python-

based frameworks are instrumental in building and training the models. The computational 

work is performed on a high-performance laptop with the following specifications: Intel Core 

i9-10900K Processor, 128 GB of RAM, NVIDIA RTX 3060 Ti GPU (with cuDNN support) 

Graphics and 64-bit Windows 11 Operating System. The programming language used 

throughout the study is Python 3.11. For comprehensive data analysis, pandas-profiling version 

3.6.6 is utilized, an open-source Python module known for its robust data exploration 

capabilities. 

5.1  Phase 1: Result Analysis using  LSTM  

5.1.1 LSTM Model for NIDS 

This section presents an experimental analysis of  LSTM model for NIDS, applying the 

benchmark and widely used NSL-KDD dataset.  
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.Figure 3. Confusion Matrix Heatmap for NSL-KDD Dataset 

 The above Figure 3 displays a confusion matrix heatmap for the NSL-KDD dataset. It 

envisages the performance of a classification model by comparing predicted labels against 

actual labels. The matrix includes several network attack types. The diagonal elements of the 

matrix have higher values, indicating that the model performs well in correctly classifying 

many instances. For example: 'normal' class has 9711 correct predictions, 'neptune' has 4657 

correct predictions, 'satan' has 3633 correct predictions. There are some off-diagonal elements 

showing misclassifications. For instance:Some 'back' attacks (197) are misclassified as 

'neptune', a few 'buffer_overflow' instances were misclassified as 'normal'. Some attack types 

appear to be very rare or not well-predicted, with mostly zeros in their rows and columns (e.g., 

spy, perl, multihop). The 'normal' class seems to be the most frequent, followed by 'neptune' 

and 'satan', while many other attack types have much lower frequencies. The heatmap uses a 

blue color gradient, with darker blue indicating higher numbers of instances. 

Table 4. Hyperparameter of LSTM approach. 

S.L. No. LSTM Model Hyperparameters 

1 LSTM Unit = 50 

2 Dropout_rate = 0.2 

3 Return_sequence = True 

4 Dense layer = 1 

5 Activation function =softmax 

6 Optimizer = adam 

The hyperparameters employed in the LSTM model is outlined in Table 4. The model 

utilizes a single LSTM layer with 50 hidden units, which are responsible for capturing complex 

temporal patterns in the network data. To thwart overfitting, a dropout rate of 0.2 is 

implemented, randomly deactivating 20% of neurons while training. The 'Return_sequence = 

True' setting allows the model to analyze the entire sequence of hidden states at each time step, 

crucial for understanding long-term dependencies in network traffic. A single dense layer 

including activation function as softmax is applied to map the learned features from the LSTM 

layer to the final output, which is a probability distribution over the different attack categories. 

Model  tuning is done by  Adam optimizer, an adaptive learning rate algorithm that helps 

accelerate training and improve model performance. 

 

Table 5. Performance of LSTM model on NSL-KDD 

Loss Accuracy Precision Recall 

0.049453739076     0.984210908412 0.985450983047 0.982796907424 

The efficacy of the trained LSTM model for NSL-KDD dataset is presented below in Table 5. 

The model achieves a low loss value of 0.0494, indicating that it has effectively minimized 

errors during training. It demonstrates high accuracy (0.9842), correctly classifying 98.42% of 

the instances, emphasizing the model's outstanding efficiency in classifying between normal 

and malicious traffic.  The precision of 0.9854 suggests a low false-positive rate, meaning it 
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rarely misclassifies normal traffic as an attack. Similarly, the recall of 0.9828 indicates a low 

false-negative rate, effectively identifying most actual attacks. 

Figure. 4: Plot of accuracy vs epoch for LSTM train and test dataset 

The accuracy of LSTM model over successive epochs for training and testing datasets is given 

in  Figure 4. Initially, the training accuracy (depicted by the blue line) rises steeply, indicating 

that the quick learning patterns of the model are from the training data. Parallel to this, the 

validation accuracy (shown by the orange line) also rises sharply, closely following the training 

accuracy. This close alignment signifies that the model's outcomes on unknown data is 

improving in tandem with its training performance, which is a positive indication of 

generalization. 

As epochs progress from 0 to 30, both lines begin to plateau, reaching a point where 

increases in accuracy are marginal. Overall, the alignment and convergence of these two 
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metrics over the epochs demonstrate that the LSTM model is successfully capturing the data's 

underlying patterns achieving a balance between bias and variance. 

Figure 5.  Plot of loss vs epoch for LSTM training and test dataset 

 

Figure 5 depicts the loss of an LSTM model over successive epochs for both training and 

validation datasets. Initially, the training loss (blue line) and validation loss (orange line) 

decreased sharply. This rapid decline suggests that the model quickly learns to reduce the 

discrepancy among its predictions and the actual outcomes, fitting the training data effectively. 

As the epochs progress, the rate of reduction in both training and validation losses slows down, 

forming an asymptotic curve that gradually levels off. This slowdown indicates that the model 

is approaching its optimal performance, having captured the essential patterns in the data while 

reaching its learning capacity. The close alignment between the training and validation loss 

implies that the model is generalizing well to unseen data. 

Figure 6.  ROC curve for classification accuracy of LSTM model 

The ROC (Receiver Operating Characteristic) curve illustrates the trade-off between 

the true positive rate (sensitivity) on the y-axis and the false positive rate on the x-axis at 

various threshold settings as given in Figure 6. The model's AUC of 0.98, with a curve close 

to the top left corner, indicates excellent classification performance with a high true positive 

rate and low false positive rate. 

5.1.2 Optuna Hyperparameters Tuning Method for LSTM 

Optuna is a framework for automated hyperparameter optimization. It significantly simplifies 

the process of finding optimal hyperparameters for LSTM models by automatically exploring 

a wide range of values. This approach reduces the number of trials needed, lowers 

computational costs, and improves model performance, allowing faster development with 

minimal manual effort. 
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Algorithm:  

 Step 1. Define the Objective Function for Optuna 

Step 1.1: Create an objective function that Optuna will use to optimize the 

hyperparameters. 

     Step 2.  Suggest Hyperparameters 

Step 2.1:`units`: Number of LSTM units, suggested as an integer between 50 and 200. 

Step 2.2: `dropout_rate`: Dropout rate, suggested as a uniform float between 0.1 and 

0.5. 

Step 2.3: `learning_rate`: Learning rate, suggested as a logarithmic uniform float 

between 1e-5 and 1e-1. 

    Step 3.   Build the LSTM Model  

Step 3.1: Add an LSTM layer with the suggested number of units and 

`return_sequences=True`. 

Step 3.2:  Add a dropout layer with the suggested dropout rate. 

Step 3.3: Add another LSTM layer with the same number of units. 

Step 3.4: Add another dropout layer. 

Step 3.5: Add a dense layer using sigmoid activation function. 

     Step 4. Compile the Model 

 Step 4.1: Use the Adam optimizer with the suggested learning rate. 

Step 4.2: Use `binary_crossentropy` as loss function and `accuracy` as metric. 

     Step 5. Train the Model 

Step 5.1: Train the model with a batch size of 64 for 10 epochs on the training data. 

Step 5.2: Utilize 20% of the training data for validation. 

     Step 6. Evaluate the Model 

Step 6.1: Evaluate the model on the test data and return the accuracy. 

     Step 7.  Create and Optimize the Optuna Study 

Step 7.1: Create an Optuna study to maximize the objective function. 

Step 7.2: Run the optimization process for 50 trials. 

      Step 8. Output the Best Hyperparameters and Accuracy 

Step 8.1 Print the best hyperparameters learned by the Optuna. 

Step 8.2 Print the best accuracy achieved by the model during the study. 

      Step 9. Exit 
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Optuna Model Hyper Parameters:  

Best hyperparameters: {'units': 145, 'dropout_rate': 0.19983772432277946, 'learning_rate': 

0.014379399241973167} 

Here Optuna has explored 201 combinations of hyperparameter values i.e. trials to 

discover the excellent set for the LSTM model. This large number of trials indicates a thorough 

search for the optimal configuration.  For this LSTM implementation, the best hyperparameters 

identified are 145 units, a dropout rate of approximately 0.20, and a learning rate of 0.014. The 

“units” parameter refers to the neuron numbers in the LSTM layers, which influence the 

model's ability to capture temporal dependencies in sequential data. The dropout rate prevents 

overfitting by randomly setting fraction of input units to zero during training, enhancing the 

model’s ability to generalize to new data. 0.014 of learning rate signifies a modest step size 

during optimization, which balances the speed and stability of convergence to an optimal 

solution. Achieving a best accuracy of 0.98 indicates that the model accurately classifies 

instances in the dataset, reflecting the success of the hyperparameter tuning process in 

enhancing model robustness and performance. This optimized setup underscores the 

importance of tuning for leveraging the full potential of the LSTM model, showcasing Optuna’s 

role in streamlining and improving the development process. 
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Figure 7.  Optuna History plot hyperparameters for LSTM using NSL KDD 

The Optuna Optimization History Plot visualizes the progression of the hyperparameter 

optimization process across multiple trials. The x-axis represents the trial number, indicating 

each step in the tuning process, while the y-axis displays the objective value being optimized, 

such as validation accuracy or loss as illustrated in Figure 7. 

Blue dots depict the objective values for each trial, showcasing the diverse 

performance outcomes from different hyperparameter settings. The scattered nature signifies 

Optuna's exploration of the search space. A red line traces the best value achieved over time, 

indicating performance improvements as Optuna identifies superior hyperparameter 

combinations. The plot highlights how Optuna effectively navigates and exploits the search 

space, steadily enhancing model performance through 201 trails. 
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Figure 8.  Objective value of hyper parameter during optimization for LSTM using optuna 

The Slice Plot as depicted in Figure 8 visualizes the impact of three hyperparameters: 

max depth, min child weight, and number of estimators on the objective value across trials. 

Each subplot illustrates how changes in these parameters affect performance, with dots 

representing individual trials colored by trial number. This plot helps identify trends and 

optimal ranges for each hyperparameter, revealing which settings may achieve better results 

during optimization. 

Figure 9.  Optuna Parallel Coordinate plot hyperparameters for LSTM using NSL KDD 
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The Parallel Coordinate Plot illustrates the interplay between various hyperparameters 

and their collective impact on the objective value as shown in Figure 9. Each line in the plot 

correspond to a single trial, connecting specific parameter settings across multiple axes, which 

include colsample_bytree, subsample, gamma, and others. The color intensity of these lines, 

ranging from light to dark blue, reflects the associated objective value, with darker lines 

indicating better performance. This visualization enables a clear comparison of how different 

combinations of hyperparameters influence model efficacy, revealing complex 

interdependencies that can guide the selection of optimal settings for improved overall 

performance. It effectively highlights which parameter configurations tend to yield the highest 

objective values, offering insights into potential paths for further optimization. 

 
Figure 10.  Hyperparameter importance for NSL-KDD dataset using Optuna-LSTM model 

 

Figure 10 shows a hyperparameter importance plot generated by the Optuna optimization 

framework. This plot displays the hyperparameters on the y-axis and their corresponding 

importance scores on the x-axis. The horizontal bars are organized in descending order of 

importance. "subsample" is the most important hyperparameter with a score of 0.20”, 

"n_estimators" follows closely with 0.19, "learning_rate" is the third most important at 0.15, 

"max_depth" and "reg_alpha" are in the middle range of importance, the least important 

parameters are "gamma", "reg_lambda", and "min_child_weight". 

This visualization helps to focus on tuning the most influential hyperparameters, 

potentially streamlining the optimization process. It suggests that adjusting the subsample rate, 

number of estimators, and learning rate could yield the most significant improvements in model 

performance. 

Table 6. Performance of Optuna-LSTM Model for NSL-KDD dataset 



                                                       Tabnet And Optuna-Driven Optimization.... Nitu Dash et al. 764  
 

Nanotechnology Perceptions 20 No. S11 (2024)  

Loss Accuracy Precision Recall F-score 

0.02941378907

6     

0.98648900002

1 

0.98147554102

1 

0.9801356108

1 

0.9811376139

1 

Table 6 summarizes the Optuna-LSTM model's performance on the NSL-KDD dataset. 

The model recorded a loss of 0.0294, indicating minimal error in its predictions. Its accuracy 

is 98.65%, showing that the model correctly classified a large majority of the instances. The 

precision, recall, F-Score are 98.15%, 98.01%, and 98.11% reflecting a balanced performance 

between precision and recall. 

Table 7. Accuracy comparison of LSTM and OPTUNA based LSTM for NSL-KDD Data 

 

Table 7 compares the accuracy of two models, an LSTM and an OPTUNA-optimized LSTM, 

using the NSL-KDD dataset. The standard LSTM achieves an accuracy of approximately 

98.42%. In contrast, when the LSTM model's hyperparameters are fine-tuned using OPTUNA, 

the accuracy improves to 99.00%. This indicates that hyperparameter optimization with 

OPTUNA improves the LSTM model's efficiency on the dataset, achieving a notable increase 

in accuracy of 0.58 percentage points. 

Table 8.  Error metrics analysis of LSTM and OPTUNA with LSTM for NSL-KDD data 

Error Metrics  LSTM Error 

Value  

OPUNA with LSTM Error 

value 

Mean Absolute Error (MAE) 0.5 0.2951642467785 

Mean Square Logarithmic Error 

( MSLE ) 

0.07242365465 0.0572574259124 

Mean Squared Error (MSE)  0.375 0.1077083011482 

Root Mean Squared Error (RMSE) 0.61237243569 0.3281894287576 

Neural Network Square Error 

(NNSE) 

1.1898 1.4079162954399 

R-squared (R2 Score) 0.95860813704 0.9779162954399 

 

 An analysis of error metrics for two models based on LSTM: a standard LSTM and an 

LSTM optimized with OPTUNA is presented in Table 8. For the MAE, the OPTUNA with 

LSTM model shows a lower error value of approximately 0.295 compared to 0.5 for the 

standard LSTM, indicating improved average predictive accuracy. Similarly, the MSLE is 

lower in the OPTUNA-optimized model at about 0.057 compared to 0.072 for the LSTM. The 

MSE and RMSE are also reduced to 0.108 and 0.328 values in the OPTUNA model, compared 

DL Models Accuracy using NSL-KDD Dataset 

LSTM 0.9842109084129333 

OPTUNA with LSTM 0.9864890000214576 
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to 0.375 and 0.612 for the standard LSTM, reflecting better predictive performance and error 

minimization. The NNSE is slightly higher for the OPTUNA model, at 1.408 compared to 

1.1898, suggesting some trade-offs in model characteristics. Lastly, the R2 Score is slightly 

lower at approximately 0.958 for the OPTUNA LSTM compared to 0.9779 for the standard 

LSTM, indicating a minor decrease in the proportion of variance. Overall, the error metrics 

suggest that OPTUNA's hyperparameter optimization generally enhances the LSTM's 

prediction accuracy and error handling, despite a slight variation in NNSE and R2 Score. 

 

5.2 Phase 2: Result Analysis using  TabNet  

This section presents an experimental analysis of  TabNet model [41] for IoT NIDS using the 

NSL-KDD and BoTNeTIoT-L01 dataset.  

 

Table 9.   Performance of the TabNet on BoTNeTIoT-L01 and NSL-KDD datasets 

Dataset Accuracy  Precision  Recall  F-Score 

BoTNeTIoT-L01 0.9891 0.9740 0.9821 0.9949 

NSL-KDD 0.9853 0.9734 0.9821 0.9789 

This Table 9 compares the TabNet model performance on BoTNeTIoT-L01 and NSL-KDD 

datasets. For the BOTNETIOT-L01 dataset, TabNet achieved an accuracy of 0.9891, precision 

of 0.9720, recall of 0.9821 and F-Score of 0.9949. On the NSL-KDD dataset, the model 

performed similarly well, with an accuracy of 0.9853, precision of 0.9734, recall of 0.9821 and 

F-Score of 0.9789.  

Algorithm for optuna TabNet model :  

Input: Trained data, Set no. of trails = 100, No. of hyperparameters for tuned 

Output: Optimal best hyperparameters  

Step  1: Define the Objective Function 

Step  2: Configure Optuna Study 

Step  3: Define Hyperparameter Search Space 

Step  4 : Train the TabNet-IDS Model 

Step  5: Execute the Optimization Process 

Step  6: Retrieve the Best Hyperparameters 

Step  7:  Evaluate the Model with the Best Hyperparameters 

Step  8: Exit 
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The feature importance of NSL-KDD for Optuna based TabNet model is displayed in Figure 

11. The chart shows a wide range of features on the vertical axis, with their corresponding 

importance scores represented by horizontal bars extending to the right. The importance scores 

range from 0 to approximately 0.25 on the horizontal axis.  

 
Figure 11.  Feature importance of NSL-KDD for Optuna based TabNet model 
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Figure 12.  Hyperparameter importance for NSL-KDD dataset using Optuna-Tabnet model 

The hyperparameter importance for the NSL-KDD dataset using an Optuna-optimized 

TabNet model is presented in Figure 12. The chart displays various hyperparameters on the 

vertical axis and their respective importance scores on the horizontal axis, ranging from 0 to 

0.35. The hyperparameters are ranked in descending order of importance. The top three 

parameters (lambda_sparse, n_a, and gamma) are crucial for fine-tuning the model, while 

parameters like learning_rate has less influence on the overall performance. This visualization 
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helps in understanding which hyperparameters has significant influence on the model's 

performance when trained on the NSL-KDD dataset. 

Figure 13.  Feature importance of BoTNeTIoT-L01 dataset for Optuna-Tabnet model 

The feature importance ranking for various metrics in the OPTUNA-TabNet model is 

shown in Figure 13 using BoTNeTIoT-L01 dataset. The features are listed on the y-axis, while 

their respective importance scores are denoted by horizontal bars on the x-axis. The most 

important feature is "MI_dir_L0.1_mean", followed by "MI_dir_L0.1_variance" and 

"HH_L0.1_mean". The importance scores range from about 0 to 0.16. 

Table 10. TabNet hyperparameters description with Optuna-based optimized search result 

value 

TabNet 

Hyper 

Parameters 

Parameter Description Search 

Space 

Optimized 

Search 

Result Value 

n_d Width of the decision prediction layer [8,64] 62 

n_a Embedding size for attention mask [8,64] 62 

n_steps Number of sequential steps in the 

architecture 

[3, 10] 3 

n_independe

nt 

Number of independent Gated Linear 

Unit layers in each step 

[1, 5] 2 

gamma Feature re-use coefficient, where 

values near 1 reduce correlation 

between layers 

[1.0, 2.0] 1.5 

n_shared Number of shared Gated Linear Unit 

layers at each step 

[1, 5] 2 

epsilon A constant value, not tuned 1e-15 - 

momentum Momentum applied in batch 

normalization 

[0.01, 0.4] 0.02 

lambda_spar

se 

Sparsity penalty coefficient; higher 

values encourage more sparse feature 

selection 

[1e-3, 1e-5] 1e-3 

optimizer_fn PyTorch optimizer function to 

decrease complexity and achieve 

minima, default = torch. optim.Adam. 

- - 

scheduler_fn Function to adjust learning rate during 

training 

- - 

scheduler_pa

rams 

Parameters applied to the learning rate 

scheduler 

{"gamma": 

0.95, 

"step_size": 

10} 

{"gamma": 

0.95, 

"step_size": 

10} 
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mask_type Masking function for feature selection ["sparsemax

", "entmax"] 

"sparsemax" 

patience Number of epochs to wait before 

early stopping if no improvement 

[15, 30] 25 

 

 The hyperparameters of the TabNet model and their optimized values using Optuna 

are described in Table 10. It lists 13 hyperparameters, their descriptions, search spaces, and the 

optimized values found. Key optimized results include n_d and n_a both set to 62 and 

lambda_sparse at 1e-3. This table provides insights into the model's architecture and training 

process, showing how Optuna helped fine-tune these parameters for optimal performance.  

Table 11. Performance of the Optuna-TabNet on BoTNeTIoT-L01 and NSL-KDD datasets 

Dataset Accuracy  Precision  Recall  F-Score  

BoTNeTIoT-L01 0.9981 0.9972 0.9945 0.9939 

NSL-KDD 0.9941 0.9952 0.9919 0.9928 

The performance metrics of the TabNet model optimized using Optuna on 

BoTNeTIoT-L01 and NSL-KDD dataset are given in Table 11. For the BoTNeTIoT-L01 

dataset, the model accomplished remarkable results with an accuracy of 0.9981, precision of 

0.9972, recall of 0.9945 and F-Score of 0.9939. Similarly, for the NSL-KDD dataset, the model 

performed exceptionally well, with an accuracy of 0.9941, precision of 0.9952, recall of 0.9919 

and F-Score of 0.9928. The results indicate excellent performance across all metrics for both 

datasets. 

Comparing this to the previous table 9, it is observed that the Optuna-optimized TabNet 

model surpassed the original TabNet model. For the BoTNeTIoT-L01 dataset, all metrics 

improved, with notable increases in Precision (from 0.9720 to 0.9972) and Accuracy (from 

0.9891 to 0.9981). The improvements were even more pronounced for the NSL-KDD dataset, 

where Precision increased from 0.9734 to 0.9952, and Accuracy from 0.9853 to 0.9941. The 

F-Score and Recall also saw improvements across both datasets. This comparison suggests that 

the use of Optuna for hyperparameter optimization significantly heightened the performance 

of the TabNet model, resulting in increased accurate and reliable predictions for both 

cybersecurity datasets. 

 

Table 12. Proposed model performance comparison with other models 

Reference

s 

Method used Accurac

y (%) 

Preci

sion 

(%) 

Recall 

(%

) 

F-Score 

(%

) 

Hyper 

Paramet

er 

Optimiz

ation 

Parra et. 

al. [12] 
LSTM 97.84 

97.

81 
95 

96.

2 
No 
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6. Conclusion 

Liu et al 

[17] 
TabNet - - - 

99.

89 
    No 

Nguyen et 

al [18] 

TabNet (BoT-

IoT) 

  

98.53 

98.

65 

98.

53 

98.

57 
No 

TabNet 

(UNSW-

NB15) 

97.95 
97.

84 

97.

95 

97.

67 
No 

Asaduzza

man et. al. 

[19] 

CNN-LSTM 93.53 
57.

45 

31.

87 
41 No 

Zegarra et. 

al. [22]  

TabNet 

(CIC-

IDS2017) 

97.03 
97.

03 

97.

02 

96.

97 
No 

TabNet 

(CSE-

CICIDS2018

) 

95.58 
95.

69 

95.

59 

95.

55 
No 

TabNet 

(CIC-

DDoS2019) 

98.51 
98.

50 

98.

40 

98.

44 
No 

Alazab et. 

al. [23] 
LSTM 98.73 

97.

07 

97.

11 

97.

05 
No 

 

Proposed 

Model -A  

(NSL-

KDD) 

 

LSTM  98.42 
98.

54 

98.

27 

98.

16 
No 

OPTUNA -

LSTM 
98.64 

98.

14 

98.

01 

98.

11 
Yes 

 

Proposed 

Model-B  

(NSL-

KDD) 

TabNet 98.53       
97.

34       

97.

89       

98.

21      
No 

TabNet -

Optuna 
99.41 

99.

52 

99.

19 

99.

28 
Yes 

 

Proposed 

Model- D 

(BoTNeTI

oT-L01) 

TabNet 98.91       
97.

20     

99.

49     

98.

21      
No 

TabNet - 

Optuna 
99.81 

99.

72 

99.

45 

99.

39 
Yes 
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The extensive investigation into advanced deep learning methodologies for IoT network 

intrusion detection has yielded compelling results, underscoring the efficacy of the Optuna-

optimized TabNet NIDS model in enhancing cybersecurity measures. This study's findings 

demonstrate a marked improvement in intrusion detection capabilities when leveraging the 

synergy between TabNet's interpretable learning approach and Optuna's hyperparameter 

optimization framework. The superior performance of the optimized TabNet NIDS model, 

evidenced by its heightened accuracy, precision, and computational efficiency, surpasses that 

of traditional LSTM and non-optimized TabNet implementations. Notably, the model's robust 

feature interpretation capabilities provide invaluable insights into the critical factors governing 

intrusion detection in IoT networks, thereby facilitating more informed security strategies. The 

model's capability to generate rapid responses to potential security breaches, coupled with its 

interpretability makes it a powerful tool in combating cyber threats within the growing IoT 

ecosystem. These outcomes not only validate the effectiveness of our proposed approach but 

also open doors for future innovations in adaptive, intelligent IDS. As IoT networks continue 

to proliferate, the integration of such sophisticated, optimized deep learning models becomes 

increasingly crucial in fortifying digital infrastructures against evolving cybersecurity 

challenges. 
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