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A material's conductivity, permittivity, and permeability all affect absorption and reflection losses, 

which are the primary determinants of EMI shielding. Using the features of nanofillers such as 

graphene and CuO, we have attempted to enhance the dielectric properties, focused shielding 

effectiveness, and EMI shielding of the silicon rubber polymer composite in the current work. In 

the automotive, aerospace, electronics, and many industrial industries, lightweight elastomer 

nanocomposites have numerous applications. Mechanical characteristics in items shouldn't be 

compromised in any way. CuO graphene silicone rubber, as a material for nanocomposite, is being 

developed with help from this study. The technique of blending and molding in order to prepare 

nanocomposites. A hot air oven was used for the final curing after the molding process, which was 

completed at 180 degrees Celsius. Filler with varying weight percentages of 0, 1, 2, 4, and 8% 

graphene and a constant 1% CuO are used for testing. Additionally, the samples' dielectric 

characteristics and electromagnetic wave shielding effectiveness (SE) values were examined at 

operating frequencies in the range of 1 GHz to 20 GHz. As frequency increases, shielding efficiency 

SE because to reflection increases. Maximum SE reflection of -33 dB for specimen nSR4 at 17 

GHz. Additionally, nSR6 and nSR5 specimens work well in the 4 GHz to 10 GHz range. 
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The manuscript explores [1] by P. Murugaiyan et al. the electromagnetic interference (EMI) 

shielding effectiveness (SE) of amorphous and nanocomposite soft magnetic ribbons. The 

paper is scientifically thorough, offering an in-depth analysis of the electromagnetic properties 

of these materials and their relevance in practical applications such as reducing 

electromagnetic pollution. The novelty lies in comparing amorphous and nanocomposite 

materials, which the authors have characterized through detailed experiments. Along with the 

paper [2] could further improve by exploring long-term stability under operational conditions, 

such as mechanical fatigue or environmental degradation, which would add to its practical 

applications. Additionally, it would be valuable to examine how these composites perform in 

large-scale production processes. Nevertheless, the manuscript presents a compelling case for 

the integration of HfC-carbon fiber composites in next-generation EMI shielding applications. 

Whereas H. Guan [3] compares the performance of carbon fibres with and without nickel 

coating to provide a thorough analysis of the impact of planar coil and linear layouts of 

continuous carbon fibre tow on EMI shielding efficacy. The work focusses on maximising 

EMI shielding through the arrangement and coating of fibres, offering a thorough knowledge 

of how structural changes might improve performance. With its emphasis on carbon fibre 

configurations and coating optimisation, this paper makes a significant addition to the subject 

of EMI shielding and has a great deal of promise for practical use. Clear data on the effects of 

foam density, MWCNT content, and microstructural features on shielding performance are 

provided in the methodologically sound work [4]. Nevertheless, more attention to the 

material's long-term resilience and thermal stability in actual settings should improve the 

research's usefulness. All things considered, the work makes a significant addition to the field 

of EMI shielding materials, especially for applications requiring materials that are lightweight 

and multipurpose. The novel part of [5] study is the production of a graphene/AgNWs 

composite, which overcomes a major obstacle in the area by striking a fine compromise 

between optical transparency and shielding efficacy. Superior electrical conductivity and EMI 

shielding capabilities are a result of the scientists' careful manufacturing technique, which 

ensures uniform dispersion and strong interfacial adhesion between graphene and AgNWs. 

All things considered, Myungjun Jung et al. and D. Micheli [6, 7] significantly advance the 

area of innovative building materials by showcasing the potential of CNT-reinforced UHPC 

as a multipurpose material that may solve structural and electromagnetic issues in 

contemporary building. Additionally, a clearer analysis of the economic feasibility of scaling 

this technology for large-scale construction projects could enhance the practical impact of this 

research. Overall, the paper contributes significantly to the development of multifunctional 

materials for modern building infrastructures. 

The usefulness of cenosphere composite films coated with polyaniline-nickel oxide (PANI-

NiO) for shielding electromagnetic interference is investigated by the researcher [8]. The work 

focusses on using the special qualities of cenospheres—lightweight, hollow particles—to 

produce EMI shielding materials that are both efficient and lightweight. High electrical 

conductivity and magnetic characteristics are added by including NiO, a metal oxide, and 

PANI, a conducting polymer. This research's unique material design, which strikes a 

compromise between high-performance shielding and lightweight design, is its main strength. 

The paper [9] offers a novel method for increasing the efficiency of electromagnetic 

interference shielding via spinnable multiwall carbon nanotubes (MWCNTs) patterned 

orthogonally. The work focusses on how MWCNT orientation and arrangement may greatly 
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affect the material's EMI shieldng capabilities, making it applicable to applications in 

telecommunication, aerospace, and wearable electronics. Bluma G. Soares et al.'s [10] study 

is strong because it takes a thorough approach to comprehending the function of ionic liquids 

as dispersants and functional additives. The electrical conductivity, rheological behaviour, and 

EMI shielding efficacy of the composite are all thoroughly reported by the authors. This work 

is pertinent to coatings and electronics applications because it emphasises the role that 

dispersion plays in getting optimal performance in MWCNT-based composites. The authors 

[11] successfully demonstrate that the integration of MWCNT coatings improves the electrical 

conductivity and EMI shielding effectiveness of the fabrics. Additionally, the study provides 

comprehensive data on the mechanical performance of the coated fabrics, including tensile 

strength and durability under different conditions. The fabrication of ultra-lightweight 3D 

reduced graphene oxide (rGO) aerogels embellished with zinc oxide and cobalt ferrite 

nanoparticles for EMI shielding applications is explored in the work [12]. Combining rGO 

with dielectric and magnetic nanoparticles is a unique way to increase these aerogels' shielding 

efficacy without sacrificing their low density, which makes the material ideal for electrical 

and aeronautical applications. The effect of silica fume additives on the electromagnetic 

interference shielding efficacy of multi-walled carbon nanotube (MWCNT)/cement 

composites is examined by researchers I.W. Nam et al. [13]. Research on the incorporation of 

MWCNTs into cement composites is expanding, especially for building materials that need to 

provide both EMI shielding and structural integrity, as those used in the construction of 

military installations or sensitive buildings. The goal of the paper [14] is to improve the 

efficiency of EMI shielding in polycarbonate/graphene nanocomposites made using a one-

step supercritical carbon dioxide foaming method. Although applying a supercritical foaming 

technique to improve electrical conductivity and EMI shielding is a well-established method, 

it brings something new to the material's growth. Graphene is a well-known substance. 

simultaneously the research article [15] compares (EMI) shielding effectiveness of carbon 

nanofiber (CNF) and nanofibrillated cellulose (NFC) composites. 

The authors [16] systematically evaluate different fiber configurations and demonstrate that 

the lay-up pattern has a considerable impact on the EMI shielding properties. The study 

provides thorough experimental data, illustrating that certain configurations enhance the 

alignment of carbon fibers, thus improving conductivity and shielding effectiveness. The 

electrical contact between the specimen and the testing fixture is a crucial but sometimes 

disregarded component in the assessment of EMI shielding efficacy, as discussed in the work 

[17]. The study concentrates on carbon-based materials and emphasises how crucial it is to 

maintain correct electrical contact throughout testing in order to prevent inaccurate 

measurements of shielding efficacy. The study [18] highlights the unique properties of carbon-

based materials, such as high electrical conductivity, light weight, and thermal stability, which 

make them suitable for EMI shielding applications in industries like telecommunications, 

aerospace, and military specifically focusing on their effectiveness in the X-band frequency 

range (8–12 GHz). The authors D.P. Schmitza et al. [19] assess the impact of carbon fillers, 

such as graphene and carbon nanotubes, on the electrical conductivity and shielding properties 

of the ABS matrix. The results indicate that the proper distribution of carbon materials within 

the polymer matrix can significantly enhance the EMI shielding performance, with higher 

concentrations of conductive fillers leading to increased effectiveness. By focusing on the 

alignment of MWCNTs, the paper [20] addresses a key challenge in the fabrication of carbon 
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nanotube-based composites—achieving uniform dispersion and directional alignment for 

optimal performance. The authors D.W. Lee et al. report that aligned nanotubes create a more 

continuous conductive network, which is critical for maximizing shielding effectiveness, 

particularly at higher frequencies. 

The authors, which include Revathy Ravindren [21], concentrate on developing materials that 

combine excellent shielding performance with flexibility by using conductive fillers like 

graphene and carbon nanotubes in flexible polymer blends. The study emphasises the 

significance of creating a twofold percolation network, in which conductive fillers are 

concentrated at the polymer blend interface to improve electrical conductivity and EMI 

shielding without materially sacrificing the material's flexibility. Even at very low filler 

concentrations, the experimental results demonstrate that this selective distribution of fillers 

may produce nanocomposites with outstanding shielding efficiency. The inclusion of copper 

nanowires into flexible polymer mix nanocomposites is explored in the study [22], which 

expands on the idea of double percolation. they create a model that can forecast the percolation 

threshold with enough accuracy to enable filler content to be optimised for maximal shielding 

while using the least amount of material. The research paper [23] explores the synergistic 

effect of hybrid fillers, specifically graphene and multiwalled carbon nanotubes (MWCNTs), 

on the mechanical, electrical, and shielding properties of polycarbonate (PC) and ethylene 

methyl acrylate (EMA) nanocomposites The findings highlight that the combination of these 

two conductive fillers results in a percolation network that promotes better charge transport, 

which is crucial for EMI shielding. The Research looks into [24] A silicone rubber matrix is 

mixed with synthetic nickel particles to create a conductive composite that can reduce 

electromagnetic radiation. Although the study effectively illustrates the potential of 

nickel/silicone composites for electromagnetic interference shielding, additional comparison 

information on other conductive filler types and matrix materials could have been included. 

Furthermore, additional research on these composites' ability to withstand harsh environments 

might increase their usefulness. All things considered, the work makes a major contribution 

to the creation of EMI shielding materials for industrial use. The dielectric behaviour and EMI 

shielding efficacy of styrene butadiene rubber (SBR) composites containing MWCNTs 

modified by ionic liquid are examined in the work [25]. The findings demonstrate that, in 

order to achieve high shielding efficiency, the modified MWCNTs must form a more 

continuous conductive network within the rubber matrix. The [26] study investigates how 

thermal-air ageing affects the EMI shielding efficacy and mechanical characteristics of 

nanostructured carbon-filled chlorinated polyethylene (CPE) composites. This shows that the 

carbon fillers' conductive network is resistant to thermal ageing, which qualifies these 

composites for extended usage in hot conditions. All things considered; our study shows that 

inexpensive nanostructured carbon-filled CPE composites can provide effective EMI 

shielding in industrial settings. 

The review article of Qingsen Gao et al. [27] provides a comprehensive overview of the use 

of polymer/MXene composites for electromagnetic interference (EMI) shielding applications. 

MXenes, two-dimensional materials with outstanding electrical conductivity and mechanical 

strength, are highlighted as highly promising fillers in polymer matrices. also discusses the 

role of MXenes in enhancing electrical conductivity and absorption-based EMI shielding, 

which is more efficient than traditional reflection-based methods. The research [28] highlights 

the advantages of using core-shell particles, which consist of a magnetic core coated with a 
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protective shell. This design not only enhances EMI absorption particularly in the GHz 

frequency range but also improves the compatibility between the reinforcement and the 

magnesium matrix, leading to superior mechanical properties. The possibility of 

biocomposites as greener substitutes for EMI shielding applications is investigated by the 

writers Vinoth Kumar et al. [29]. With an emphasis on their mechanical, electrical, and 

electromagnetic interference shielding qualities, the study contrasts many biocomposites, 

including natural fiber-reinforced polymers. These materials' potential to support 

environmental sustainability is highlighted by the utilisation of renewable resources in their 

development. According to the results [30], the nickel-filled composites have notable 

mechanical flexibility and robustness in addition to good EMI shielding performance across 

a broad frequency range. The investigation also looks at how the size and distribution of nickel 

particles affect overall shielding efficacy, coming to the conclusion that uniform dispersion is 

essential to getting the best outcomes. 

The review [31] presents a thorough analysis of various polymers and filler materials used to 

improve the performance of these composites. It methodically explores various synthesis 

approaches, the role of filler materials (e.g., carbon nanotubes, graphene, and metal 

nanoparticles), and how these affect the electrical conductivity and shielding effectiveness. In 

addition to discussing the promise of conducting polymers as flexible, lightweight, and 

efficient EMI shielding materials, the study highlights the special qualities of polyaniline 

(PANI), polypyrrole (PPy), and polythiophene. The notion of microbial-induced calcite 

precipitation (MICP) is presented in the study [32] as a sustainable way to improve the 

strength and longevity of concrete while lowering its carbon footprint. The authors give a 

thorough explanation of how microorganisms may strengthen concrete, extend the life of 

structures, and naturally fix cracks in it. The evaluation also covers the use of EMI methods, 

which provide an effective and non-destructive way to assess structural health, to monitor the 

state of concrete structures. This creative method shows how biological systems and cutting-

edge monitoring technology may be integrated in the building sector. The paper by Bijulin 

Greety DJ [33] addresses several EMI shielding strategies, such as the newly popular 

application of nanocomposites and more conventional metal-based approaches. The promise 

of electrospun nanocomposites—which are composed of a polymer matrix and conductive 

fillers like graphene or carbon nanotubes (CNTs)—to provide enhanced shielding qualities 

without sacrificing the flexibility and low weight that are essential for materials used in 

aircraft construction is emphasised. 

 

2. Experimental Section 
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Fig 1. Scheme of Graphene, CuO Silicon Rubber nanocomposites preparation via Melt 

blending Method 

 

2.1 Materials 

Using Graphene, Copper Oxide (CuO) nanofillers in the nanopowder forms mix with Silicon 

Rubber composites were prepared by in melt blending method shown in schematic dig. 1. 

Such silicon rubber composition adding nanofillers for nSR and its composites were made. 

These terms will be used to refer to the items throughout the paper for the sake of ease of 

understanding. Di-cup 40 (DCP), a curing agent, and silicon rubber (SR) of grade SH5060U 

are supplied by Pune, India-based Krupa Chemicals. Silicon Rubber (SR) properties of 

Specific Gravity 1.16 g/cc, ultimate tensile strength 5.5 MPa and hardness 50 (A). A purity 

level of >99% for graphene-D was provided by Adnano, Banglore, India. The graphene sheet 

has a length of 10 nm, a diameter of less than 20 μm, and five to ten layers. The graphene 

sheet is typically 5–10 nm thick. Graphene properties of Specific Gravity 1.6 g/cc, ultimate 

tensile strength 132 GPa and hardness 70 HRC. In addition, they simultaneously supplied 

Copper Oxide Nanoparticles (CuO) with a purity level of >99% and a particle size of about < 

100 nm. Copper oxide (CuO) properties of Specific Gravity 5.5 g/cc, ultimate tensile strength 

200 MPa and hardness 4 Mohs scale. 

 

2.2 Preparation of Polymer Nanocomposites 
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The graphene-based Silicon Rubber (SR) compounds nSR1 of pure silicon rubber, nSR2, 

nSR3, nSR4, nSR5, and nSR6 specimens have different graphene weight fractions of 0, 1, 2, 

4, and 8%, respectively. Additionally, each specimen receives a constant 1% of CuO and 2% 

of DCP (Dicup 40) as a curing agent compound. The names assigned to these graphene weight 

fractions for the nanocomposite specimens are nSR1, nSR2, nSR3, nSR4, nSR5, and nSR6. 

The manufacturing method is eventually shown in Figure 1, which also shows the material 

composition of Silicon Rubber SR nanocomposite. In a machine with two rollers, the first step 

of the process combines silicon rubber (SR) with graphene and copper oxide (CuO) as a 

nanofiller. The compound is then moulded of size 150 x 150 x 3 mm using a compression 

moulding machine set at 180°C for 300 seconds at a moulding pressure of 50 bars. The post-

curing process is carried out in a hot air oven at 200°C for four hours. 

 

2.3 Experimental particulars 

Six samples of each unique composition are used to test a number of dielectric and EMI SE 

reflections. Additionally, FESEM studies are carried out to verify graphene dispersion and 

comprehend the composite's development. The details of each previously discussed 

characterization will be covered in the parts that follow. Additionally, an XRD device (Rigaku 

Miniflex 600 XRD) was used to analyze the SR and hybrid composites. Using Cu K radiations 

(=0.154 nm) in X-rays and a dispersion theta ranging from 20o to 800. 

 

2.4 Dielectric and Shielding Effectiveness Reflection Analysis 

The Agilent PNA N522A Vector Network Analyzer's S parameters (S11) were used to 

calculate shielding efficiency. The coaxial cables, waveguide adaptors, and sample holders 

utilised in this experiment were compatible with frequencies between 1 GHz and 20 GHz. The 

waveguide's and the sample holder's inner cross sections measure 0.9 in by 0.4 in. The inner 

diameter of the coaxial cable is 7 mm. The observed scattering characteristics were used to 

compute the complex dielectric permittivity (ε). In particular, the Nicolson-Ross-Weir 

technique was applied. As advised by Agilent materials measurements, all samples had a 

thickness of 3 mm for the S parameter measurements. According to the Vector Network 

Analyser (VNA Agilent Technologies) instruction manual, a rectangular waveguide is advised 

for the 1 GHz to 20 GHz frequency spectrum. A coaxial measuring line is better ideal for these 

kinds of frequency testing. For silicon rubber (nSR) nanocomposites, Fig. 2 [34] displays the 

observed frequency-dependent complex permittivity real part (ε′), complex permittivity 

imaginary part (ε″), and dielectric loss tangent (tan δ). Decibels (dB) are used to express the 

shielding efficiency values. 
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Fig.2 Vector Network Analyzer (VNA) Schematic Diagram (reference [34]) 

 

3. Results and Discussion 

 

3.1 XRD 

One effective analytical method for determining a material's crystalline structure is X-ray 

diffraction, or XRD. The intensity of X-rays scattered by the crystalline material as a function 

of the angle of diffraction—typically designated 2θ, the angle between the incoming X-ray 

and the detected scattered X-ray—is shown by the XRD graph, also called a diffractogram. In 

order to validate the phase of nSR, X-ray diffraction (XRD) was performed on graphene and 

CuO nanoparticles, as shown in Figure 3. nSR1, nSR2, nSR3, nSR4, nSR5, and nSR6 are 

allocated to nanocomposites centred at 2θ = 28.7, 28.5, 26.51, 26.84, 26.468, and 26.559, 

respectively. The powder's nanocrystalline size is shown by the widening of the peaks. But 

when the data is evaluated using the nSR4, nSR5, and nSR6 compositions, the peak's strength 

is reduced, as seen by the peaks that appear at 26.84, 26.468, and 26.559, respectively. This 

indicates that graphene particles exist independently in the nSR4, nSR5, and nSR6 

compositions. The production of a polymer composite that is reinforced with graphene is the 

outcome of the imposition of nSR polymer molecules, which has no effect whatsoever on the 

crystalline structure of graphene. 
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Fig. 3 X-ray diffraction patterns of all 6 Specimen for SR nanocomposites 

 

3.2 Dielectric Parameters 

A shielding material's ability to reduce electromagnetic radiation is mostly based on one of its 

EM properties, such as complex permittivity. It is crucial that these characteristics are 

estimated. Complex dielectric permittivity is composed of both imaginary and real 

components. Permittivity theory states that an electric field exerted on a material will cause 

two different kinds of electrical currents to flow through it: displacement current and 
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Fig. 4 (a) complex permittivity real part (ε′); (b) complex permittivity imaginary part (ε″); 

(c) dielectric loss tangent (tan δ) vs frequency 1 GHz to 20 GHz 

 

conduction current. The former results in an imaginary fraction of permittivity (e’’) and 

emerges because free electrons are present for conduction. The latter results in a real portion 

of permittivity (e’) and is caused by bound charges, or polarisation. From the given result 

shown in figure 4 shows that real and imaginary part of permittivity performance for all 6 

specimens during broad frequency band of 1 GHz to 20 GHz. So, result of both complex 

permittivity real part (ε′) and complex permittivity imaginary part (ε″) has been observed that 

nSR6, nSR5 better perform comparing to all other nSR4, nSR3, nSR2 and pure silicon rubber 

(nSR1) nanocomposite in between 4 GHz to 10 GHz frequency band. simultaneously, in case 

of dielectric loss tangent (tan δ) nSR5 has little better improvement shows compare with nSR6 

and whereas nSR5, nSR6 comparatively more effective than other specimen of nSR4, nSR3, 

nSR2 in the frequency range of 5.2 GHz to 10.2 GHz. 
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3.3 EMI Shielding Reflection Effective (SER) 

The effectiveness of materials' electromagnetic shielding may be determined using a vector 

network analyser. It gauges the different signals' phases and intensities. It is possible to 

compute the reflection losses using the S parameters S11 or the scattering parameters. The 

calculation of shielding effectiveness of reflection is as follows: 

R = (S11)2 = (S22)2 

Where R is reflectance. 

Hence, The Reflection loss SER can be given as 

SER = -10 log(1 – R) 

The SE values for each specimen sample's reflection loss of nSR are displayed in Figure 5. 

Across the whole operating frequency range, the SE values for the reflection loss rise as the 

frequency of the given nSR specimen samples increases. Particularly for the specimen of 

nSR5, it has been noted that nSR6 SE values significantly increase in the frequency range of 

1 GHz to 8 GHz. Additionally, these two specimens perform better when compared to the 

other four nSR4, nSR3, nSR2, and pure SR samples. While nSR5 and nSR6 perform poorly 

between 8 and 12 GHz as compared to other specimens, nothing particularly changes between 

12 and 20 GHz. However, it has also been shown that nSR4 performs noticeably better than 

other samples between 16 and 18 GHz. The theory of EMI shielding states that a decrease of 

at least or close to 20 dB over the frequency range of interest is a common objective for EMI 

shielding efficacy. 

 

 
Fig. 5 EMI shielding Reflection component (SER) in the range of 1 GHz to 20 GHz 

 

4. Conclusion 

In this work, a two-roll mill and compression moulding were used to create the graphene CuO 

Silicon Rubber nanocomposites. However, the significant peak in the XRD interpretation does 

lead to the creation of a polymer composite reinforced with CuO and graphene. Results of real 

and imaginary complex permittivity, dielectric loss tangent is vary from various ranges 

frequencies. The EMI-SE of the nanocomposites, evaluated in the 1 GHz–20 GHz frequency 



                                                         Reflection EMI Shielding Effect On.... Vishal Deore et al. 530  
 

Nanotechnology Perceptions Vol. 20 No. 4 (2024)  

range, increased gradually as the nanoparticle content increased. However, for the 4 vol.% 

Graphene and 1% CuO nanocomposite in the nSR4 specimen, it climbed abruptly to a value 

of 32.5 dB at 18 GHz. Reflection EMI SE of sample nSR6, nSR5 got upto 20% increases than 

others. The frequency range of 1 GHz to 8 GHz is greatly increased by SE reflection values, 

however nSR5 and nSR6 perform badly in comparison between 8 and 12 GHz. Not many of 

the anticipated changes were seen afterwards. 
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