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As the use of wireless networks continues to expand, so does the need for bandwidth, putting a strain on an 

already limited supply of infrastructure. When applied to heterogeneous wireless networks, cognitive 

radio's changing and reactive spectrum sharing provides an efficient answer to bandwidth scarcity. Future 

wireless networks will require new technologies like 5G & Cognitive Radio (CR) to handle an increase of 

mobile data. In the future, 5G will be the standard for all forms of communication. As ultra-high-definition 

video with the Internet of Things become increasingly important in the next generation of mobile 

broadband, 5G plans to provide more capacity and a faster network speed of 10Gbps. Cost, battery life, and 

latency for 5G gear will all improve over that of 4G gear. The proliferation of sectors including the media, 

agriculture, information technology, and manufacturing could all benefit from 5G infrastructures. The 

primary goal of CR is to permit significantly increased spectrum efficiency by automatically adapting to 

supply the best possible communications channel. For decades, the Spectrum Sensing approach has been 

in need of energy detectors & matching filters. However, energy detectors struggle under fluctuating SNRs, 

cyclo-stationary detectors are overly complex, and main user (PU) signal expertise is required for matching 

filters. As a fresh approach to 5G Communications, we present a Cellular Automata-based cooperative 

Spectrum sensing methodology. Our simulation and evaluation using the NS-2 simulator of the proposed 

system's performance on 5G networks found it to be efficient regarding of energy consumption, false 

negatives, and coverage area. 

Keywords-Cognitive Networks, Cooperative Spectrum Sensing,5G Networks. 

1.Introduction. 

The lack of available spectrum presents the greatest difficulty and problem for future wireless 

communication applications. When coupled with rising demands for wireless traffic and vast 

machine-type communication, this difficulty becomes enormous [1]. Increased demands on 

complete reliability and user-experience have emerged alongside the emergence of mobile and 

wireless communication technologies, as well as have issues with high rates of data and highly 

dense crowds of users. Figure 1 depicts the emergence of new types of problems brought on 

by emerging application domains, such as extremely low latency, extremely low energy, 

extremely low cost, and an enormous number of devices. The mobile network has moved its 
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attention to 5G [2] because of the exponential surge in mobile data traffic. In order to take 

advantage of the spectrum above 6GHz, 5G networks employ millimeter wave access 

technologies. 

 Cognitive Radio is a technology used to improve the spectrum efficiency of a network as a 

whole and cut down on the time-domain spectrum waste. Spectrum efficiency is typically low 

in widely used networks [2, 3]. Primary users & secondary users make up the users inside a 

cognitive radio-based network. Users can be classified as either licensed or unlicensed. 

Cognitive users are not guaranteed exclusive use to the spectrum, but licensed users are free 

to transmit data in licensed spectrum at will. When the primary user is not present, the 

cognitive user is free to make use of the unoccupied licensed spectrum [4]. This improves the 

networks' ability to make efficient use of their spectrum resources. An efficient approach of 

spectrum sensing can improve resource utilization efficiency and lessen the burden on main 

users. Consequently, spectrum sensing is a crucial component of cognitive radio. The state of 

the channel during a certain sensing interval is not guaranteed to remain constant [5-9].Primary 

& secondary users of the Basic CRN are depicted in figure 1. 

Figure1. The Fundamental Cognitive Radio System [10] 

Cognitive radio systems rely on three key characteristics: the ability to learn and change, the 

ability to think and be aware, and the ability to react. By dynamically reusing the frequency 

bands, CR technology has been identified as a key solution to the spectrum crunch and 

minimum utilization issues [12], and it appears to be a foolproof way to meet the difficulties 

and demands of 5G communication [13]. There has been a lot of focus on the CR technology 

in the telecommunications and computer systems. Sun et al.'s [14] research examined and 
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compared a wide range of spectrum sensing techniques and weighed their relative merits and 

drawbacks. Tanabe et al. [15] conducted a comprehensive review of the literature on CR 

networks and addressed various algorithms for allocating network resources. Recent progress 

in radio allocation of resources in CR networks is summarized by Ahmad et al. [16], who also 

discuss the different resource allocation schemes with an eye towards optimizing energy 

efficiency, quality of service (QoS) assurance, throughput, disruption avoidance, as well as 

handoff minimization. Spectrum characteristics, spectrum hiring, and CR reconfiguration were 

the focus of another study [17] by Masonta et al. that shed light on the spectrum decisions 

made in CR networks. Overlapping game models of cooperation and competition in CR 

systems were studied [18], as well as the methods used to gain access to the spectrum over 

them. When discussing the dynamic the use of spectrum method, Tehrani et al. [19] looked at 

how diverse networking architectures, features, use cases, and obstacles were handled in 

previous spectrum sharing systems. 

The proportion of mobile data traffic generated by smart devices using at least 3G 

connectivity is projected to rise from 79% of all mobile data traffic in 2018 to 97.6% in 2023. 

This is much more than the percentage of smart devices plus connections (76.8% by 2022) 

since smart devices, on average, produce significantly more traffic than non-smart devices. 

Thus, 5th generation cellular networks are planned to satisfy increasing necessities for 

example high-speed wireless broadband, less latency, increased competence, little utilization 

of energy, as well as support for many different devices, all of which are beyond the scope of 

the present 4G/IMT-Advanced standards. IoE apps (sensors, metres, etc.) will be the primary 

force behind the development of 5G, in contrast to 4G, which has been driven by the 

proliferation of devices and dynamic information access.  

Fixed wireless broadband access for homes will be a primary use of 5G in urban and 

densely populated areas. [21] In other words, 5G is equipped to address societal issues because 

it provides a communication environment that is programmable, secure, privacy-preserving, 

ubiquitous, and adaptable. Power consumption is decreased together with per-bit expenses 

thanks to 5G technology [22]. To accommodate the ever-increasing volume of mobile data 

transfers, researchers are hard at work on next-generation 5G mobile networks. In order to 

enhance bandwidth, scientists are investigating the usage of underutilized frequencies between 

50 and 500 GHz [23], even if spectrum deficit might be dealt with by dynamic spectrum 

allocation. With 5G, channels will be assigned based on knowledge about the user's location, 

the services they need, the devices they're using, and their biometric authentication. Spectrum 

management & frequency licensing problems may finally be solvable with this technology. 

Major 5G rollouts are not anticipated until 2023 or later [20]. On the other hand, 5G cannot 

ensure constant network and service availability and functionality. It's possible that 4G and 

5G won't ever be as dependable as 2G or wired options. Although 5G does not represent a 

single technological advancement, when combined with cognitive radio, it may lead to a 

significant boost in performance. Figure 2 depicts the foundation of 5G capabilities. 



                                                   Energy Efficient Spectrum Sensing.... Dr. Resmi G Nair et al. 1022  

 

Nanotechnology Perceptions 20 No. S11 (2024)  

 

 

 

 

 

                                                 

 

 

 

Figure 2. Capabilities Associated with 5th Generation Mobile Networks in General 

Here is how the rest of the paper is laid out. The latest methods for implementing cooperative 

spectrum sensing, CRN, and 5G communications are discussed in detail in Section2's 

Literature Survey. The suggested cellular automata-based approach and its distributed 

implementation are discussed in Section 3.The simulation environment, parameters, and 

implementation are covered in Section 4, and the paper concludes up in Section 5. 

2. Literature Survey: 

Governments strictly monitor and license electromagnetic radio frequency spectrum. 

Spectrum underutilization is greatly exacerbated by the fixed allocation technique when a 

designated spectrum is not in use. [24]. As a result, today's most pressing issue is not a lack of 

spectrum, but rather insufficient use of the spectrum we do have. Some frequency bands are 

completely empty much of the time even in revenue-rich urban regions, and other bandwidth 

bands are only partly utilized. In order to provide universal wireless high-speed access, CR 

looks into this undiscovered radio spectrum to open it up to a previously unreachable user.  

To solve the issue of spectrum shortage facing future wireless networks, dynamic 

spectrum allocation is employed. Spectrum utilization is enhanced when a radio node is 

capable of full duplex operation, where it uses the same radio frequency for both reception and 

transmission. Improvements in spectrum utilization efficiency, end-to-end and feedback 

latency, connection ability, Security at the physical layer and wireless simulation are all 

benefits of full duplex functioning in wireless systems, which also permits simultaneous 

sensing and transmission. Three-dimensional (3D) beam formation, massive multiple-input 

multiple-output (MIMO), and millimeter wave communication are other methods to increase 

the ability of future wireless networks. Visible Light Communication will be used to improve 

the ability, effectiveness, & safety of 5G [22] because it can handle data transmission rates 

from low (like position tracking) to high (like video transfer). In CR, the concept of beam 
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shaping in smart antennas is crucial to maximizing spectral efficiency. Mobile broadband 

consumers are the primary emphasis of 4G and 3G networks technologies, which offer 

increased system capability & data transfer speed. Upcoming 5G technology will be propelled 

not only by applications like video, but also by the need for larger data speeds and more system 

capacity. 

Any future wireless network worth its weight will allow wireless connection to any and all 

nodes and entities that could profit from connectivity. Therefore, the 5G network is more than 

just an upgrade to "traditional" mobile broadband. Support for IoT-related "machine to 

machine communication" and "machine-centric communications" is a primary focus for 5G 

networks. According to data gathered across North America, their most valuable clients are 

now robots. Devices like digital billboards, in-car entertainment centers, and smart water 

meters are examples [25]. Some of the spectrum provided to a licensed user in a cellular 

network is generally underutilized, hence adopting CR can help alleviate spectrum congestion 

[26]. Secondary systems are able to use the primary system's allocated spectrum resources 

more flexibly and dynamically thanks to CR [27]. To avoid interfering with the primary user, 

the resultant user looks for "spectrum holes" or "spectrum white spaces" in time, frequency, 

and/or physical place. Spectrum sensing [28, 29] and geo location [30] plus access to a 

spectrum utilization database are both viable methods for discovering white spaces. Figure 3 

depicts CR's spectrum management system. Through CR methods, unlicensed systems can 

coexist alongside licensed ones, sharing spectrum bands in a way that minimizes or eliminates 

interference. 5G cellular networks are distinguished by active reuse of frequencies, extremely 

dense network bases and mobile device deployments, and the combination of many forms of 

communication to serve large volumes of data traffic. Various interference control and 

interference coordination methods are used to control network performance [26]. 

 

Figure 3. Bandwidth Management in the CRN 
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Figure 4. CRN Framework Design 
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Figure 5. Structure of the CRN and Its Major Components 

Figures 4 and 5 detail the several layers that make up the CR architecture. The physical 

layer manages the many algorithms used for sensing the spectrum. Radio environment 

description and power regulation fall under the purview of the link layer. The network layer is 

responsible for spectrum-aware routing, whereas the transport layer is in charge of spectrum 

handoff. Quality of service (QoS) and user utility are topics addressed at the application layer. 

Surendra and coworkers developed a new detection approach using DNN for spectral sensing. 

In this paper, we present "DLSenseNet," a deep learning (DL)-based example of spectrum 

sensing that makes use of the structure data from modulated signals received in the field.  

In order to reduce the mistake rate and improve false alarm detection for CR 

customers, An enhanced convolution neural network (CNN) performance has been achieved. 

The proposed DNN- based spectral analyzer [31] has a major drawback in that it necessitates 

substantial training.Wang and Using SVM, CNN, and reinforcement learning algorithms, Liu 

[32] compared and contrasted the two types of learning methodologies for cooperative 

spectrum sensing. The challenges of real-time implementation of machine learning algorithms 

for spectrum sensing applications were also studied by Sundous and Halawani [34]. Multiple 

supervised and unsupervised reinforcing models were compared in this study for feature 

extraction using energy detection, cyclostationary, and signal processing [35]. 

"KNN learning models," "decision trees," and "artificial neural networks" are all 

employed in the identification of signals, as stated by Sabre et al. (2020). According to [36], 

the effectiveness of the classifiers was measured to determine which of the three methods for 

detecting spectrum was optimal. Cheng et al. [37] developed a stacked automatic encoder-

based spectrum detection technique (SAE-SS) to address these serious problems. When it 

comes to sorting through incoming signals, its architecture excels at isolating the most 

important details while ignoring the more superficial ones. Furthermore, it is more resistant to 

time-delay noise than previous sensing systems. The proposed approach will never necessitate 

prior information or unique features of current users [38]. In addition, it does not rely on any 

external feature extraction methods. 

Raw signal samples were prepared with a stacked auto encoder (SAE) in the time 

domains by Cheng et al. (2019), and then the PU transmission status was determined with a 

logistic regression classifier. With its exceptional capacity to learn crucial elements of signals, 

the SAE surpasses existing DL spectrum detection algorithms [39]. Using the K-nearest 

neighbor machine learning technique, Saha and Kun [40] detail a dependable spectrum 

intelligence scheme that can identify interference. During the training phase, the fusion centre 

takes into account the varying needs of CR users around the world and delivers a single, 

universally accepted answer. Each CR user in the classification phase does a similarity check 

between their current sensing statement and preexisting sensing classes, from which distance 

vectors are derived [41]. The K-nearest neighbor method is used to find the set of quantitative 

factors that will be used to calculate the posterior probability. A new selection combining 

approach, which factors in the trustworthiness of each CR user, is used to this pool of local 
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decisions at the fusion centre. The proposed KNN classifier suffers from a flaw that renders it 

ineffective for many users [32]. 

3. Proposed System: 

3.1 System Model  

We take into account a situation when the spectrum hole data is being provided to Secondary 

Users (SUs) via a third party. This data is collected by the outside organization via wireless 

field sensors. We assume that low-cost, low-power sensors have been installed in the ground, 

and that the appropriate networks & protocols were in place to bring all of the collected 

information to a centralized hub. Once the information is processed, CN knows the exact 

coverage area and channel occupancy status for each Primary User (PU). We also assume 

that the output of these sensors is not guaranteed to be accurate due to fading and random 

shadowing. To model and test the system's efficacy, an NS-2 simulation environment was 

developed. It is assumed that the sensors cover an area of 500 square kilometres, laid out in 

a two-dimensional grid. And in the middle is the transmitter. Power levels are adjusted so 

that receivers can be placed both inside and outside the transmitter's range. The network 

relays the sensor data to a centralized location. The proposed technique processes this data 

at the CN, allowing for the determination of spectrum use status & coverage area. This can 

now be made available via broadcast or on-demand. 

 

The path loss model, which we have used in our practical link budget design, forms the 

basis of our estimates. The predicted percentage of places inside a cell where the power that 

is received is above a certain minimum defines the cell area of coverage in a cellular system. 

The average obtained authority Pr at the cell boundary is used to calibrate the base station’s 

transmitting power. Some parts of the cell will have an received energy below Pr min and 

some will have a received power above Pr min due to multi-path and shadowing [43]. See 

Fig. 4.1 for an illustration of this. Using the transmit power Pt (in dBm), we can calculate the 

received power Pr(in dec) at a receiver 'd' metres away use eqtn 2. from [44], which defines 

the propagation path loss as a function of distance from the transmitter.                                                                                

PLdB = 10nlog10
d +  20log10 

4π

λ
+ XdB ------[1] 

 

Pr(dBW) =  Pt(dBW)1
−  PL(dB) +  Gr(dBi )

 ------[2] 

The route loss exponent values 'r' and ‘λ’ are assumed to be 5.8 and 14, respectively [44], 

to account for the dense urban environment that has been taken into account. Because only in 

a highly populated environment will it be possible to clearly see how different methods 

perform As a result of their low placement, sensors in this urban environment are frequently 

obscured by passing automobiles and other obstacles. The fast Fourier transform (FFT) bins 

are averaged to achieve this, it is also possible to compute it in the frequency domain. Here, 

the computational gain is directly related to both the FFT range 'N' and the average instance 

'T'. Increasing the FFT's size enhances its frequency resolution, making it better suited for 

identifying signals with a narrow bandwidth. Similarly, less average time results in a higher 

SNR since the noise power is diminished. It makes an approximation of the signal's presence 

by comparing the received energy to a threshold calculated from the noise statistics. 
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Figure 6. Experimental Range of Cellular Service 

3.2 Brief Introduction to Cellular Automata (CA): 

The building blocks of a cellular automaton are cells arranged in a grid. Each cell can take 

one of 'k' values and is updated at regular intervals in accordance with a rule ('f') that takes 

into account the values of neighboring cells. Two-dimensional cellular automata can have a 

variety of lattices and neighborhood configurations [45]. In a multi cellular automaton in 

which the only governing principle is the distance between cells, the value of a cell at location 

(i, j) therefore evolves in accordance with equation 3. 

 

 

ai,j
t+1 = f[ai,j

t + ai,j+1
t + ai,j−1

t + ai+1,j
t +  ai−1,j

t ] -----[3] 

 The rule for cell 'ai,j' is denoted by the function 'fi,j'. If and only if both of the 

'fi,j' are linear, then so is the transition function 'f' [46]. Typically, a rule table is used to provide 

the identical rule present in each cell; this table has an entry for each feasible neighborhood 

configuration of states. Each field-deployed sensor in this system is analogized to a single cell 

within cellular space, and the data from each sensor's single node is represented by a collection 

of cellular states. Each node's sensing result at a given moment is sent to the CN, where it is 

processed to determine the PU's presence and coverage area. The 2-dimensional grid formed 

by the CN's single-node results will be updated according to the cell rule, such that each cell's 

state is always correct in relation to its neighbors. Applying this rule frequently will result in 

stable cellular states. It can also be used again, up to a predetermined limit. It's also possible 

to apply multiple rules on it in sequence. Two common examples of 2-D CA neighborhoods 

are the Moore neighborhood and the Von Neumann neighborhood. The following are the rules 

that have been established for these communities. 

           

3.3 New Decision Fusion Guidelines Based on CA Theory 
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State '1' is used to indicate that the nodes have sensed the spectrum, while state '0' indicates that 

they have not. State '1' is represented by white, while state '0' is represented by black. The 

Moore neighborhood takes into account eight neighbors, while the Von Neumann 

neighborhood takes into account only four. The state of a node can transition to any of the others 

depending on the states of its neighbors. This pattern of white &  black cells represents the rule. 

The state of the main cell will transition to the state described by the rule if and only if the cell's 

and its neighbors’ states fit the template. Having eight neighbors means 38 possible 

permutations. According to the rule's application, the rule's core node can change colours from 

black to white and back again. 

With CRN's external sensing component, a 3-dimensional grid of sensors is set up in 

the field, with data from each sensor being sent back to the server. A 3-D CA with two states 

will result from representing this information relative to their location in the field. The transition 

rule determines whether a certain cell in the CA will transition from the sensed to the unsensed 

state. It was discovered that CA is effective at processing images. Because of this, we've come 

up with the two guidelines for external sensing that are presented below. 

Rule set 1 : CA1 [based on Moore-

Neighborhood][51] 

The following are some guidelines (patterns) that can be used in making decisions. If the 

central pixel and its surrounding cells match the mask, it will switch to the 1 state. Here, white 

denotes the detected state of '1' and black denotes the un sensed state of '0'. This process can 

be repeated an unlimited number of times, or until no further changes occur in the cellular 

space. Moore's guidelines for a specific neighborhood are depicted in Fig. 7. In this case, the 

eight surrounding cells will determine the fate of the core cell. 

 

 

 

 

 

 

 

 

 

    

Figure 7: Rule set 1 
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Another way to express this rule is as follows:-R1 A detected (live) cell will continue to be 

such if at least three of its neighbors are also sensed (live), else it will transition to a different 

state. A dead (not felt) cell will become active if four or more of its neighbors are active, or it 

will remain in its current condition otherwise. 

Rule set 2 : CA2 [based on Von-neighborhood][51] 

Four surrounding neighbors are taken into account for the core cell's transition according to 

the Fig. 8 presentation is based on the Von Neumann neighbor principles. All these patterns 

have one thing in common: the main pixel will either keep its current state or switch to 

another. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Rule set 2 

 

Another way to express this rule is as follows: A detected live cell will maintain its status 

only if more than one of its neighbors also remain alive (-R2). A dead (not detected) cell will 

become active if at least two of its neighbors are also active. 

      

3.4 Fuzzy based Information Combining 

In [47], the author proposes a fuzzy-based technique to distributed sensing. By assigning a 

language term (such as "low," "medium," "high," etc.) to each input in fuzzy logic, the input 

is transformed into a linguistic variable. The set of labels for the possible linguistic 

interpretations of a given variable (here, x) is called the term set T(x). Fuzzy sets characterise 

the elements of T(x). Membership function F of a fuzzy set F in the universe of discourse U 

has elements in the interval [0,1]: µF :U →[0,1].The CN receives a two-bit decision in order 

to make a call, as described in [47]. There are indicators for how "low," "medium," and "high" 

the linguistic variable is. A fuzzy controller receives these fuzzy inputs and makes a choice 

using the central node's fuzzy rule base. For the sake of clarity, we will refer to this technique 
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as Fuzzy2. In [47], it is used for a two-input case with an eight-rule base.   To put it another 

way, when making a choice, a node will take into account the inputs of two of its neighbors. 

We've expanded it to include our 95-rule-base's additional four neighbors. We test its efficacy 

by applying it to the external sensing situation. The nodes in [48] send the collected energy to 

a central node, which then makes a call based on the data. For ease of reference, we will call 

to this procedure as Fuzzy1. Power received varies depending on how far a node is from the 

transmitter, how strong the fading is, and how much power is being transmitted. Within this 

interval, membership functions are shaped relative to the detection threshold. We have built 

this using a 95-rule basis and a 4-neighbor case. The scope of the rule base will grow 

proportionally to the number of neighbors. 

 

3.5 Algorithm for Distributed Detection 

The References [44][51] offer a distributed detection technique (DDA) to integrate the results 

of neighboring nodes to make a cooperative judgment. Equation 4.2 represents this choice 

mechanism. It does a weighted merging of the neighbor's results here. The weight is 

determined by the distance of the neighbor from the core node. In addition, the node performs 

a backwards analysis of the outcomes from the preceding time steps and emphasizes its own 

result. In this exterior sensing context, the rule mentioned earlier is applied with a single time 

step, and its effectiveness is compared to that of the suggested CA-based merging alternatives. 

For the execution of this approach, we considered 8 neighbors. 

 

                             Q= [A1….AN][B1…BN]J + [C1….CM][D1….DM]j+ EF   ------[4] 

 

where 'AN' is the sensing result from the neighboring node, 'BN' is the weight based on distance, 

CM' is the consequence of 'M' instance steps, 'DM' is the load  based on prior time steps, 'E' is 

the internal load, and 'F' represents the node's original outcome. 

 

4. Results and Simulation: 

In this part, we compare the results of the proposed CA-based technique to the Efficient co-

operative spectrum sensing technique[ECSSA][49] & collaborative Spectral Sensing[CSS] 

[50] in a simulation experiment with various network sceneries. The effectiveness of the 

proposed CA technique is assessed using Network Simulator NS-2 dynamically simulations.  

It first describes the simulation configuration, then defines the resultant parameters, and lastly 

displays the simulation results. 

                                         

Table 1. Description of Simulation Elements 

S.No. Parameter Description 

1.  Network Area 1000 x 1000 m2 

2.  Cognitive Radio Nodes 500 

3.  Data Packet size 2500 bytes 

4.  Channels Bandwidth 2 Mbps 

5.  Bandwidth of Available Spectrum 54MHz-72 MHz 

6.  Standard IEEE      802.15.6 
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7.  Total number of  Cycle Simulations 10 

8.  Type of the Traffic Constant bit rate flow 

9.  Time for simulation 1000 seconds 

10.  Data Carrier Production 1  Packet/sec 

11.  Distribution  of Nodes             Uniform Random Distribution 

12.  Filter Gradient Filter 

13.  Transmitting Power 2w 

14.  Antenna Omni Antenna 

15.  Simulation Duration 500 ms 

4.1 Performance Metrics 

Three separate performance measures are provided in this section for examination. They are 

• Energy consumption  

• Coverage Area 

• False Negative 

(i) Energy consumption: The most significant component for the cognitive radio node 

contributing to the network is energy. Sensing tasks consume a certain amount of energy. The 

overall energy is computed as follows: 

E =  
1

Qs
∑ e[Q]Qs

1   (5) 

From the above equation (5), the energy ‘E’ is determined based on the sampled energy vectors 

generated ‘e[Q], where (n = 1,2,3, … , Qs)’. 

 

(ii)Coverage Area: The area of coverage is the region where the PU's received power is 

sufficient to overcome background noise. Wireless network service area is often defined as the 

area where the signal intensity around an antenna is higher than the edge field's capacity and 

is measured in metres. This is also known as the area across which wireless signals are sent 

and received. This is computed using Equation 2.  

 

(iii)False Negative: Negative sensing results from sensors placed within the average service 

region are considered false negatives in this analysis. The percentage inaccuracy is derived as 

the ratio of the number of sensors situated within the average cover region to the overall 

number of sensors. 

 

4.2 SIMULATION RESULTS 

This section presents the simulation results for three distinct parameters. Table 1 simulation 

elements are used in simulations. Using simultaneously the table and the graph, a comparative 

examination of three different approaches, CA, ECSSA [49], and CSS [50], is accomplished. 

4.2.1 Energy Consumption 
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First, the energy used during the sensing phase is given, which creates the important 

parameters for CRN attack protection. Because sensing is a preliminary and fundamental 

component of any network architecture, energy expenditure is the first measure examined. 

Table 2 shows the energy usage for three different ways. 

Table 2 Energy Consumption Simulation Results 

Number of CRN 

nodes 

Energy consumption (kJ) 

CA ECSSA CSS 

50 2.8 3.7 4.9 

100 5.2 6.9 8.3 

150 8 10 12.6 

200 9.2 12.6 15.2 

250 10 14.5 19 

300 11.2 15 20.8 

350 12 16.5 22.8 

400 13.4 18.9 24.8 

450 15.2 21.6 27.5 

500 16 22.4 31.6 

 

 

Figure 9. Energy Consumption Simulation Results 

CA, ECSSA [49], and CSS [50] are graphically represented above in Figure 9. During 

spectrum sensing, the secondary user consumes a lot of power, yet the unlicensed user gets the 

spectrum that isn't being used. Quantity of CRN, including primary as well as secondary users, 
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is plotted along the X-axis. As the number of nodes in a CRN grows, so does its energy bill, 

as seen in the diagram. Energy consumption does not increase proportionally due to the 

inclusion of secondary users in the CRN. But the total number has grown dramatically. CA 

was found to reduce energy usage in spectrum sensing when compared to two other approaches 

([49] and [50]). 

4.2.2 Coverage Area: 

Second, the CR's service area is summarized. The coverage area is the most crucial aspect of 

the sensing technique to analyze, beside the energy consumption. The mean coverage area for 

each of the three schemes is shown in Table 3.  

Table 3 Average Coverage Area Simulation Results 

Number of CRN 

nodes 

Average Coverage Area (m) 

CA ECSSA CSS 

50 12.6 10.5 8.4 

100 13.7 11.3 9.5 

150 14.8 12.4 10.2 

200 15.9 13.4 11.4 

250 17.4 15.6 12.6 

300 18.3 16.5 13.8 

350 22.4 17.4 14.9 

400 27.9 18.4 15.4 

450 32.4 20 16.7 

500 38.5 21 18 

 

 

Figure 10. Coverage Area Simulation Results 

For ten primary and tertiary consumer simulation runs, Figure 10 shows the mean coverage 

area for 500 CRN nodes. Coverage expands proportionally with the quantity of CRN nodes, 
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hence the latter is a necessary condition for the former. When compared with the other 

methods, the nodes in our suggested CA strategy cover greater ground. 

4.2.3 False Negative: 

Finally, the effect of false negatives is assessed here. The mistake is expressed as a percentage. 

Ten measurements at each sensor density were averaged for the evaluation. It is also observed 

that the false negative rate is relatively unaffected by the number of sensors used. However, a 

greater density will always result in sharper images and a more defined coverage zone. The 

numbers from the false-negative tests are presented in table 4. 

Table 4 False Negatives Simulation Results 

Number of CRN 

nodes 

False Negatives (%) 

CA ECSSA CSS 

50 1.6 1.1 0.4 

100 1.8 1.6 1.2 

150 2.6 2.1 1.6 

200 2.9 2.3 1.9 

250 3.1 2.8 2.1 

300 3.6 3.1 2.4 

350 4.2 3.4 2.8 

400 4.6 3.9 3.4 

450 5.1 4.1 3.5 

500 5.3 4.9 3.8 

 

 

Figure 11. False Negatives Simulation Results 

Figure 11 displays the estimated number of false negatives for 500 CRN nodes taken into 

account across multiple simulated time intervals. The resolution of the covered area will 
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always improve as the concentration increases. It's possible that the neighborhood's small size 

is contributing to CA's high rate of false negatives. False negative rates for others are below 

5%. 

5. Conclusion: 

This Work considers and implements a Cellular Automata scenario for 5G networks, an 

external sensing scenario that makes use of wireless sensor networks for cognitive radio. Since 

the total number of deployed SUs is not capped, it makes sense to free them from the burden 

of tasks like spectrum sensing, data consolidation, and PU availability decision making. As a 

result, significant energy savings will be generated on the SU side. This means that the battery 

life of cellular SUs in 5G networks may improve. We propose two rules inside a CA-based 

approach, and we compare their performance to that of other, existing distributed sensing 

algorithms like ECSSA and CSS. Three metrics are used to assess the efficiency of each 

algorithm. When a CN is responsible for monitoring a greater area, the transmitter's coverage 

is crucial. The coverage area provided by CA-based methods is practical. Coverage areas are 

uniquely well-formed by CA. Our CA algorithm outperforms the competition in terms of both 

energy efficiency and false negative rates. It is also demonstrated that, of the three algorithms, 

the CA-based technique is extremely computationally effective and, thus, the most energy-

efficient. Cognitive networks in 5G communications can benefit from our work being 

expanded to include a larger set of parameters and more advanced distributed sensing 

techniques. 
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