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The field of plant disease detection has significantly benefited from advancements in machine 

learning and deep learning techniques. However, the challenge of reducing long training times and 

managing the complexity of existing network models while maintaining high recognition accuracy 

persists. The objective of this study is to address these challenges by proposing a lightweight hybrid 

classification model that optimizes training efficiency and enhances recognition accuracy.  In this 

work, two hybrid models are developed: Lightweight Hybrid (DenseNet + SVM) and Lightweight 

Hybrid (DenseNet + XGB). DenseNet, a convolutional neural network, is used for feature extraction 

due to its efficient architecture, which promotes feature reuse and reduces the number of parameters. 

For classification, Support Vector Machine (SVM) and Extreme Gradient Boosting (XGB) are 

utilized. The models are tuned to achieve a balance between performance and computational 

efficiency. Experiments were conducted using the Plant Village image dataset, which includes 

various plant diseases across multiple species. The Lightweight Hybrid (DenseNet + SVM) model 

achieved a recognition accuracy of 96.4%, while the Lightweight Hybrid (DenseNet + XGB) model 

achieved an accuracy of 97.6%. These results demonstrate that the proposed models not only reduce 

training time but also enhance recognition accuracy compared to traditional models. This study 

contributes to the development of efficient plant disease detection systems, offering a solution that 

balances speed, complexity, and accuracy, making it suitable for real-world agricultural 

applications.. 

Keywords: Lightweight Hybrid Model, Image Classification, DenseNet, Support Vector Machine 

(SVM), Extreme Gradient Boosting (XGB). 
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Agriculture is the backbone of the global economy, and the health of crops directly impacts 

food security and sustainability. Plant diseases have been a long-standing challenge in this 

sector, with the potential to cause significant reductions in crop yields and losses amounting to 

billions of dollars annually. Early detection and accurate identification of plant diseases are 

essential to mitigating these losses and ensuring sustainable agricultural practices. 

Traditionally, plant disease detection has been reliant on manual inspection by trained 

professionals, which is labor-intensive, time-consuming, and prone to human error. In recent 

years, technological advancements, particularly in the fields of machine learning (ML) and 

deep learning (DL), have revolutionized the way plant diseases are detected and classified. 

These automated systems offer promising solutions for improving the accuracy, speed, and 

efficiency of disease detection[1], [2]. 

However, despite these advancements, there are still significant challenges to overcome. 

Existing deep learning models, while highly accurate, tend to be computationally expensive, 

requiring extensive resources for training and deployment. These models, such as 

convolutional neural networks (CNNs), often consist of millions of parameters, making them 

difficult to apply in resource-constrained environments like farms or agricultural facilities. 

Furthermore, the training process of these models is often time-consuming, which hampers 

their usability in real-time applications where timely intervention is critical. There is, therefore, 

a pressing need for developing models that not only maintain high accuracy but also reduce 

training time and computational complexity[3], [4]. 

To address these challenges, the primary objective of this study is to develop a lightweight 

hybrid classification model that optimizes the trade-off between accuracy and computational 

efficiency. This objective aligns with the increasing demand for practical and scalable solutions 

in the agricultural domain. The ultimate goal is to provide a model that can be deployed in real-

world agricultural environments, where resources are limited, and rapid disease detection is 

essential. The proposed models aim to fill the gap between high-performance yet resource-

intensive models and lightweight, efficient models that may sacrifice accuracy for speed. 

Machine learning and deep learning techniques have gained prominence in plant disease 

detection due to their ability to learn complex patterns from data, making them suitable for 

handling the variability and diversity of plant diseases. Convolutional Neural Networks 

(CNNs), in particular, have become the de facto standard for image-based classification tasks. 

CNNs can automatically extract hierarchical features from raw images, making them highly 

effective for tasks such as plant disease detection. However, as effective as CNNs are, they 

have certain limitations. The large number of parameters in traditional CNN models increases 

computational demands, resulting in longer training times and requiring high-end hardware for 

real-time deployment[5]–[7]. 

To overcome these limitations, DenseNet (Dense Convolutional Network) is used in this study 

as the backbone for feature extraction. DenseNet is a type of CNN architecture known for its 

efficiency in parameter usage and feature reuse. Unlike traditional CNNs, where layers have 

independent connections, DenseNet introduces direct connections between any two layers with 

the same feature-map size. This enables DenseNet to promote feature reuse, thereby reducing 

the number of parameters and improving training efficiency. DenseNet’s compact architecture 
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makes it ideal for applications where computational resources are limited, such as in 

agriculture, where mobile or edge devices may be used for real-time disease detection. 

While DenseNet provides an efficient mechanism for feature extraction, classification remains 

a critical part of the pipeline. In this study, two classification algorithms are used: Support 

Vector Machine (SVM) and Extreme Gradient Boosting (XGB). Both classifiers are known for 

their efficiency and ability to handle complex classification tasks. SVM is a widely used 

supervised learning algorithm that finds the optimal hyperplane to classify data points. Its 

strength lies in its ability to handle high-dimensional data and produce robust results with 

minimal overfitting. On the other hand, XGB is an ensemble learning method based on decision 

trees. It is highly regarded for its scalability and performance in classification tasks. XGB 

works by constructing a series of decision trees, where each tree corrects the errors made by 

the previous ones. This iterative process improves accuracy and minimizes errors in the 

classification task[8], [9]. 

The proposed hybrid models, Lightweight Hybrid (DenseNet + SVM) and Lightweight Hybrid 

(DenseNet + XGB), leverage the strengths of both DenseNet for feature extraction and SVM 

or XGB for classification. By combining the efficient feature extraction of DenseNet with the 

robust classification capabilities of SVM and XGB, the models aim to achieve high accuracy 

while reducing computational demands. This hybrid approach not only improves the 

recognition accuracy but also addresses the long training times and the large number of 

parameters that are characteristic of most existing deep learning models. 

To validate the performance of the proposed models, the Plant Village image dataset is used 

for experimentation. The Plant Village dataset is a publicly available dataset that contains over 

50,000 images of healthy and diseased plant leaves across various species. It is widely used in 

research related to plant disease detection and provides a comprehensive benchmark for 

evaluating the performance of image-based models. The dataset’s diversity, including images 

of plants affected by various diseases, allows for a thorough assessment of the proposed models 

in handling a wide range of classification tasks. 

The results of the experiments demonstrate that the proposed lightweight hybrid models 

outperform many existing models in terms of both accuracy and efficiency. The Lightweight 

Hybrid (DenseNet + SVM) model achieves an accuracy of 96.4%, while the Lightweight 

Hybrid (DenseNet + XGB) model achieves an even higher accuracy of 97.6%. These results 

confirm that the proposed models strike an effective balance between performance and 

computational efficiency. Additionally, the reduction in training time makes the models more 

suitable for deployment in real-time applications, where timely disease detection is crucial for 

preventing the spread of diseases and minimizing crop losses. 

In conclusion, this study introduces a novel approach to plant disease detection by proposing 

lightweight hybrid models that address the challenges of long training times and large model 

sizes while maintaining high accuracy. The combination of DenseNet for efficient feature 

extraction and SVM or XGB for classification provides a practical solution for real-world 

applications in agriculture, where resources are often limited, and rapid decision-making is 

required. The results from the Plant Village dataset demonstrate the effectiveness of the 
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proposed models in improving recognition accuracy and computational efficiency, making 

them a valuable tool for modern agriculture. 

2. Analysis of existing research 

Plant disease detection plays a crucial role in maintaining the health of crops and ensuring 

global food security. Traditional methods, such as manual inspections, are often time-

consuming, labor-intensive, and prone to inaccuracies. Recent advancements in machine 

learning (ML) and deep learning (DL) have opened new avenues for automated plant disease 

detection, offering higher accuracy and efficiency as shown in table-1. However, most existing 

models, such as convolutional neural networks (CNNs), face challenges such as long training 

times, high computational demands, and the complexity of large network architectures. These 

limitations make them less practical for real-time agricultural applications where rapid disease 

detection is necessary. This study aims to address these challenges by developing lightweight 

hybrid models that combine DenseNet for efficient feature extraction with Support Vector 

Machines (SVM) and Extreme Gradient Boosting (XGB) for classification. The focus is on 

creating models that maintain high recognition accuracy while reducing computational load 

and training times, making them more suitable for real-world agricultural environments.  

Table 1 Major existing work 

Author et al. Dataset Method Methodology Outcome 

M. A. Chandra et 

al.[10] 

N/A Support 

Vector 

Machine 

(SVM) 

Survey of SVM 

applications in 

image 

classification 

Discusses 

effectiveness 

of SVM in 

image 

classification 

M. Lech et al.[11] Real-time 

speech 

emotion 

dataset 

Pre-trained 

image 

classification 

network 

Evaluates the 

impact of 

bandwidth 

reduction and 

companding 

Real-time 

emotion 

recognition 

with significant 

accuracy under 

bandwidth 

constraints 

D. Stathakis et 

al.[12] 

Remotely 

sensed 

optical image 

dataset 

Computational 

intelligence-

based 

techniques 

Comparison of 

classification 

techniques 

Comparison 

shows 

strengths of 

different CI 

techniques 

W. Rawat et 

al.[13] 

Multiple 

image 

classification 

datasets 

Deep 

Convolutional 

Neural 

Networks 

(CNNs) 

Review of CNN 

architectures 

and applications 

Comprehensive 

analysis of 

CNN 

applications 
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F. Ratle et al.[14] Hyperspectral 

image dataset 

Semi-

supervised 

Neural 

Networks 

Proposes semi-

supervised 

learning for 

hyperspectral 

data 

Efficient 

hyperspectral 

image 

classification 

Y. Alqahtani et 

al.[15] 

Plant leaf 

disease 

dataset 

Improved 

deep learning 

approach 

Deep learning 

for plant leaf 

disease 

localization and 

recognition 

Improved 

localization 

and recognition 

accuracy for 

plant leaf 

diseases 

C. Sarkar et al.[16] Various plant 

disease 

datasets 

Machine 

learning and 

deep learning 

techniques 

Review of leaf 

disease 

detection using 

ML/DL 

Identifies 

challenges and 

gaps in current 

detection 

methods 

V. Sharma et 

al.[17] 

Plant leaf 

disease 

dataset 

Lightweight 

multi-class 

classification 

model 

Proposes a 

deeper 

lightweight 

model for plant 

disease 

classification 

High 

classification 

accuracy with 

reduced 

computational 

cost 

T. Daniya et 

al.[18] 

Rice plant 

disease 

dataset 

Rider Water 

Wave-enabled 

deep learning 

Rider Water 

Wave algorithm 

for rice plant 

disease 

detection 

Improved 

accuracy in 

rice disease 

detection using 

novel 

algorithm 

H. M. Abdullah et 

al.[19] 

Remote 

sensing data 

Remote 

sensing, AI, 

and image 

processing 

techniques 

Comprehensive 

review of P&D 

monitoring 

techniques 

Future scopes 

and challenges 

in AI-based 

P&D 

monitoring 

Ashwinkumar et 

al.[20] 

Plant leaf 

image dataset 

MobileNet-

based CNN 

MobileNet-

based approach 

for plant leaf 

disease 

detection 

Achieves high 

accuracy and 

low resource 

consumption 

Thaiyalnayaki et 

al.[21] 

Plant disease 

image dataset 

SVM and 

deep learning 

Combines SVM 

and deep 

learning for 

plant disease 

classification 

Combines ML 

and DL for 

improved plant 

disease 

classification 
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D. Barhate et 

al.[22] 

Plant species 

image dataset 

Hybrid deep 

learning 

Hybrid DL 

model with 

hyperparameter-

tuned SGD 

Achieves high 

accuracy in 

plant species 

identification 

 

The literature highlights significant advancements in the use of ML and DL for plant disease 

detection, with models achieving impressive accuracy. However, a key research gap persists: 

the trade-off between model complexity, computational efficiency, and real-time applicability. 

Many existing models, while accurate, are computationally expensive and unsuitable for real-

time deployment in resource-constrained environments like farms. This gap in the current 

research led to the development of our lightweight hybrid models—DenseNet combined with 

SVM and XGB. By addressing these limitations, our study aims to provide a more practical 

and efficient solution for real-time plant disease detection, contributing to improved 

agricultural practices. 

3. Methodology 

 

3.1. Dataset 

The Plant Village dataset is a publicly available collection of over 50,000 images of healthy 

and diseased plant leaves across various species. It was created to support research in the field 

of plant disease detection and classification. The dataset includes labeled images of leaves 

affected by a wide range of diseases, covering crops such as apples, potatoes, tomatoes, and 

more. The diversity of the dataset makes it an ideal resource for training machine learning 

models to accurately identify plant diseases as shown in figure-1 and dataset distribution is 

shown in figure-2. Its widespread use in research allows for the development and testing of 

innovative models aimed at improving agricultural diagnostics. 

 

 

Figure 1 Sample dataset 
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Figure 2 Dataset distribution 

3.2. Pre-Processing 

a. Resize: 

In the context of image data, resizing involves adjusting all the images to a uniform size 

(e.g., 224x224 pixels) before feeding them into a machine learning model. This step 

ensures that all input images have the same dimensions, which is necessary for consistent 

training and processing within neural networks. 

b. Convert Label to Number using to_categorical: For classification tasks, labels are often 

categorical (e.g., disease names). The to_categorical function converts these labels into 

numerical form by representing them as one-hot encoded vectors. Each class is assigned a 

unique number, and the label is transformed into a binary vector that the machine learning 

model can process more effectively. 

3.3. Image segmentation 

Step Description Purpose Key Function 

Load Image Load the input image that 

will be segmented. 

Prepare the image 

for processing. 

Image loading function  

Create HSV Convert the loaded image 

from RGB color space to 

HSV (Hue, Saturation, 

Value) color space for 

easier color-based 

segmentation. 

Facilitate color-

based segmentation 

by transforming the 

image into a 

suitable color 

space. 

HSV conversion 

function (e.g., 

cv2.cvtColor). 

Set Lower and 

Upper Color 

Limits 

Define the lower and 

upper bounds of the color 

to be segmented. In this 

case, low_val = (0,60,0) 

Define the color 

range that isolates 

the target object or 

region. 

Define color limits 

(e.g., numpy arrays for 

low and high values). 
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and high_val = 

(179,255,255). 

Threshold the 

HSV Image 

Apply thresholding on 

the HSV image to create 

a binary mask, separating 

the pixels within the 

defined color range. 

Segment the image 

by creating a binary 

mask for the 

specified color 

range. 

Thresholding function 

Remove Noise 

Using 

Morphology 

Use morphological 

operations, such as 

opening or closing, to 

eliminate small noise and 

refine the segmented 

regions. 

Improve the quality 

of the mask by 

removing noise and 

refining edges. 

Morphological 

functions  

Apply Mask to 

Original Image 

Apply the binary mask to 

the original image to 

extract the segmented 

object from the 

background. 

Obtain the final 

segmented image 

by masking the 

original image with 

the refined binary 

mask as shown in 

figure-3 

Masking function  

 

 

Figure 3 Segmented image generation 

3.4. Standard models used 

3.4.1. DenseNet121 

DenseNet121 is a type of convolutional neural network (CNN) designed to promote feature 

reuse and efficiency. Its lightweight version reduces complexity while maintaining accuracy. 

In DenseNet, each layer receives the feature maps from all preceding layers, leading to fewer 

parameters and reduced overfitting. 

1. Layer Connection: 



1149 Rasal Reshma J. et al. Enhancing Image Classification Accuracy....                                                                         

 

Nanotechnology Perceptions 20 No. S11 (2024)  

Each layer is connected to all previous layers, so the input to the lth layer is the concatenation 

of feature maps from the previous layers: 

xl = Hl([x0, x1… . . xl−1]) 

Where Hl is “transformation function”. 

2. Bottleneck Layer: 

DenseNet uses bottleneck layers to reduce the computational load by applying a 1x1 

convolution before the 3x3 convolution: 

 

Hb(x) = Wb. x 

 

Where Wb is “weight matrix for the 1x1 convolution”. 

 

3. Transition Layer: 

To further reduce the number of parameters, transition layers are introduced between dense 

blocks, consisting of 1x1 convolutions followed by 2x2 average pooling: 

 

y = Avgpool(Wt. x) 
Where Wt is “weight matrix for 1x1 conv.”, Avgpool is “average pooling operation”. 

 

 

3.4.2. Lightweight MobileNetV2 

MobileNetV2 is a CNN architecture designed for mobile and resource-constrained 

environments. It uses depthwise separable convolutions and inverted residuals to reduce 

computational costs. 

1. Depthwise Separable Convolution: 

MobileNetV2 replaces standard convolution with depthwise separable convolution to reduce 

computation. The depthwise convolution applies a filter to each input channel independently, 

followed by a pointwise 1x1 convolution: 

y = Wp. (Wd ∗ x) 

2. Inverted Residual Block: 

Inverted residuals in MobileNetV2 expand the input using a 1x1 convolution, apply depthwise 

convolution, then project back to a lower-dimensional space: 

 

y = Wp. (σ(Wd. (We. x))) 
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Where We is “expansion filter”, Wd is “depthwise filter”, Wp is “projection filter with σ  as 

non-linear activation”. 

 

3. Linear Bottleneck: 

The output of the inverted residual block is passed through a linear bottleneck to avoid non-

linear transformations that could degrade information: 

 

y = Wb. x 

 

4. Proposed Lightweight models 

4.1. Lightweight Hybrid (DenseNet + SVM) 

• Feature Extraction from Dense Layer (DenseNet): 

DenseNet's dense layers are responsible for learning and extracting important features from the 

input data. After passing through the convolutional layers, the feature vector is generated by 

combining information from each layer. The output from a dense layer represented as: 

Fdense = Wdense. x + b 

Where Wdense is “weight matrix”, x is “input from the previous layer”, b is “bias term”. 

 

• Applying Extracted Feature from Dense Layer to SVM: 

The extracted feature vector from DenseNet is then fed into the SVM classifier. SVM attempts 

to find a hyperplane that separates the classes in the feature space. The decision function of 

SVM is given by: 

f(Fdense) = sign(∑ αiyi
n

i=1
(Fdense, Fi) + b) 

Where αi is “support vector coefficients”, yi is “class labels” (Fdense, Fi) is “inner product 

between the extracted feature vector and support vectors” 

 

4.2. Lightweight Hybrid (DenseNet + XGB) 

• Feature Extraction from Dense Layer (DenseNet): 

Similar to the DenseNet + SVM model, the DenseNet + XGB model extracts features using 

the dense layers. The feature extraction is applies by: 

Fdense = Wdense. x + b 

Where Wdense is “weight matrix”, x is “input from the previous layer”, b is “bias term”. 
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• Applying Extracted Feature from Dense Layer to XGB: 

The feature vector from the dense layer is then used as input to the XGBoost (XGB) classifier, 

which is an ensemble of decision trees. The prediction from XGB can be formulated as: 

y = ∑ fk(F_dense)
K

k=1
 

5. Results and Outputs 

 

1. Standard model analysis 

 

a. Lightweight DenseNet121 

 

Figure 4 Model accuracy and model loss- Lightweight DenseNet121 

Figure-4 presents the accuracy and loss plots for the Lightweight DenseNet121 model over 15 

epochs. The training accuracy steadily improves, reaching above 0.8, while the test accuracy 

fluctuates, showing some instability. This could indicate overfitting, where the model performs 

well on training data but struggles to generalize to unseen data. The loss curve follows a similar 

trend, with training loss decreasing consistently, while the test loss experiences sharp spikes. 

This behavior suggests that while DenseNet121 captures features effectively, there is room for 

improvement in generalization. 

b. Lightweight MobileNetV2 
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Figure 5 Model accuracy and model loss- Lightweight MobileNetV2 

Figure 5 shows the model accuracy and loss for the Lightweight MobileNetV2 over the same 

15 epochs. Training accuracy improves progressively, reaching close to 0.9, while test accuracy 

shows more variance but generally remains higher than DenseNet121's. The training loss 

decreases steadily, demonstrating effective learning. Test loss, however, shows fluctuations, 

indicating some instability in model performance across different test samples. MobileNetV2 

appears to generalize better than DenseNet121 but still faces some challenges in handling 

unseen data. 

 

2. Parameter evaluations of standard methods and proposed methods 
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Figure 6 Parameter comparison of standard methods and proposed method 

Figure-6 presents a comparative analysis of accuracy and F1 scores for different models: 

Lightweight DenseNet121, Lightweight MobileNetV2, Lightweight Hybrid (DenseNet + 

SVM), and Lightweight Hybrid (DenseNet + XGBoost). Among the models, the hybrid 

approaches (DenseNet + SVM and DenseNet + XGBoost) achieve the highest performance, 

with the DenseNet + XGBoost model showing the best accuracy (97.6%) and F1 score (96.5%). 

In comparison, the Lightweight DenseNet121 and MobileNetV2 achieve lower accuracy, with 

DenseNet121 performing slightly better than MobileNetV2 in both accuracy (85.1% vs. 

82.5%) and F1 score (84.7% vs. 81.6%). This illustrates that combining DenseNet with 

classifiers like SVM and XGBoost significantly boosts performance. 

6. Conclusion and Future scope 

This study explored the development of a lightweight hybrid model combining DenseNet with 

machine learning classifiers (SVM and XGBoost) to enhance image classification accuracy, 

particularly for plant disease detection. The proposed approach aimed to address the challenges 

of long training times and high computational costs, which are common in deep learning 

models like DenseNet. By leveraging the feature extraction capabilities of DenseNet and the 

classification strength of SVM and XGBoost, the hybrid models achieved superior 

performance compared to standard lightweight architectures like DenseNet121 and 

MobileNetV2. The hybrid models demonstrated a significant improvement in accuracy, with 

DenseNet + SVM achieving 96.4% and DenseNet + XGBoost reaching 97.6%. These results 

confirm that the hybrid approach not only reduces training time and computational complexity 

but also significantly improves the classification performance, making it a suitable solution for 

real-world applications, such as agricultural diagnostics. 

Lightweight
DenseNet121

Lightweight
MobileNetV2

Lightweight Hybrid
(DenseNet + SVM)

Lightweight Hybrid
(DenseNet +

XGBoost)

Accuracy 85.1 82.5 96.4 97.6

F1 Score 84.7 81.6 94.2 96.5

70

75

80

85

90

95

100

%

Algorithms
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Despite these advancements, some limitations and areas for improvement remain. The 

DenseNet + SVM model, although highly accurate, exhibited some sensitivity to tuning 

parameters. Moreover, while the hybrid models outperformed their standard counterparts, 

further optimization could be explored to improve their adaptability to varying datasets and 

real-time applications. 

Future Scope 

o Model Optimization for Real-Time Applications: Further refinement of the model's 

architecture and training process can improve its ability to work in real-time, especially in 

resource-constrained environments such as mobile devices used in agriculture. 

o Expansion to Multi-Modal Data: Incorporating additional data types, such as sensor data 

or time-series information, alongside image data could enhance model robustness and 

classification accuracy across diverse datasets. 

o Transfer Learning and Domain Adaptation: Applying transfer learning techniques and 

domain adaptation can improve the model's generalization across different plant species or 

disease types, allowing for broader applicability in agriculture. 

The lightweight hybrid DenseNet models show great promise in improving image 

classification tasks, and future developments can further enhance their effectiveness and 

practicality in various fields. 
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