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The inefficiencies in the logistics of the supply chain in the construction 

industry often result in project delays, increased expenses, and resource 

wastage. Traditional management methods are inappropriate for the dynamic 

and complex environment in which construction projects are undertaken. This 

research delves into the potential of leveraging neuromorphic computing, 

inspired by the human brain's neural architecture, to optimize supply chain 

operations. The primary objective is to scrutinize how neuromorphic systems 

can elevate inventory management, logistics optimization, demand forecasting, 

and supplier relationship management within supply chain operations. In pursuit 

of this goal, A structured questionnaire survey was administered to 182 

respondents from Saudi Arabia to conduct data analysis via Principal 

Component Analysis (PCA). PCA exposed that the AVE values at 0.554, 0.607, 

0.709, and 0.655 for Inventory Management Optimization, Logistics 

Optimization, Demand Forecasting, and Supplier Management, respectively, 

established the validity and reliability of the constructs. The established path 

coefficients were 0.43, 0.337, 0.477, and 0.135, at p < 0.05. Policymakers in the 

field of construction logistics are encouraged to promote the adoption of 

neuromorphic computing in order to enhance operational efficiency, reduce 

costs, and achieve improved outcomes. Future research endeavours should 

prioritize investigating challenges associated with integration and the assurance 

of data security.  

Keywords: Demand Forecasting; Inventory Management; Supplier 

Management; Logistics. 

 

 

1. Introduction 

Construction serves as the cornerstone of economic development, driving infrastructure 
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growth and making a substantial contribution to the GDP of most countries. However, this 

diligent sector is often plagued by inefficiencies in its supply chain logistics, leading to 

project delays, cost overruns, and wastage of resources[1]Traditional supply chain 

management methods, which rely on manual procedures and linear algorithms, are 

insufficient to operate effectively within a construction project's dynamic and complex 

environment.[2]. Integrating advanced technologies is imperative to enhance supply chain 

efficiency and dependability within the construction industry. [3]. 

A satisfactory approach to address these would be through neuromorphic computing, which 

is part of an emerging area inspired by the neural architecture of the human brain. 

Neuromorphic systems are based on specialized hardware and algorithms developed to 

mimic the ability of brains to process information and learn from it [4]. This way, such 

systems enable real-time data processing, dynamic learning, and efficient decision-making, 

for which neuromorphic computing is best suited for undertaking complex, highly data-

intensive tasks [5]. If applied to construction supply chain logistics, it may provide ways for 

the sector to eliminate inefficiencies and achieve higher levels of performance and 

sustainability[6]. 

As construction technology continues to advance daily, supply chain logistics is the most 

crucial bottleneck in construction, which often causes delays, higher costs, and 

mismanagement of resources [7]. The conventional mechanisms to manage supply chains 

have just not been enough for handling real-time processing and adaptive decision-making in 

the fast-paced construction environment today [8]This is a critical area in which much 

innovation is needed to enhance the responsiveness and efficiency of supply chain logistics 

in the construction industry. 

Though neuromorphic computing has been demonstrated in multiple areas, such as robotics, 

healthcare, and finance. Despite all the great potential of neuromorphic systems, they have 

not been substantially applied to construction supply chain management, and few empirical 

studies are available. This research aims to enhance comprehension of the roles and 

advantages of neuromorphic optimization in construction supply chain logistics. 

The general objective of this research is to determine how neuromorphic computing could 

optimize construction supply chain logistics. This will be achieved by: 

• Optimization in Inventory Management: Real-time observation and adaptive 

learning are used to maintain the right stock levels and reduce waste. 

• Logistics & transportation optimization: Planning cost-effective routes that ensure 

timely materials delivery at a site. 

• Real-Time Demand Forecasting: Improved forecast accuracy through using 

neuromorphic algorithms for demand estimation of material and resource requirements. 

• Supplier Selection & Relationship Management: Supplier selection optimization and 

management will be ensured in relation to material quality and on-time delivery. 

This research has significant value as it addresses one critical source of inefficiency in the 

construction sector. Neuromorphic computing will be used to improve supply chain logistics, 

resulting in significant cost savings, reduced project timelines, and better resource 
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utilization. The contribution made in this research could pave the foundation for the wide 

application of neuromorphic systems in construction practice and, with that, revolutionize 

the current practices in the construction industry. 

The novelty of this research lies in applying neuromorphic computing to logistic activities in 

the construction supply chain, an area that has not been extensively researched. The study's 

implications are far-reaching, as it introduces a new paradigm for managing supply chains in 

construction, leading to a radical increase in efficiency and adaptability. Demonstrating 

practical benefits in neuromorphic optimization will likely pave the way for future 

innovation and technological advancement within the construction industry. 

 

2. Literature Review 

Due to its dynamic and complex nature, the challenge of getting the best supply chain 

logistics has been common in construction for a long time. Traditional methods fall short of 

dealing with the intricacies of inventory management, demand forecasting, logistics, and 

relationships with suppliers. The literature review focuses on the role of neuromorphic 

computing in addressing such challenges. It provides insight into current research, 

applications, and potential advantages of including neuromorphic systems in construction 

supply chain logistics. 

Neuromorphic Computing 

Neuromorphic computing is an emerging paradigm in artificial intelligence and computation 

that bases itself on the structure and functionality of the human brain. On the other hand, 

neuromorphic systems host specialized hardware and algorithms to mimic the brain's neural 

networks, which is different from conventional computing systems that carry out linear 

processing [9]. This way, real-time data processing, learning, and adaptive decision-making 

are allowed within neuromorphic computing, especially for solving complex data-intensive 

tasks. Endless efforts have been invested in trying to invent the best solutions for such tasks 

[10]. 

Inventory Management Optimization 

Efficient inventory management is crucial for minimizing costs and ensuring the timely 

availability of materials in construction projects [11]. Traditional inventory management 

systems often rely on static models and historical data, which can lead to inefficiencies and 

stockouts [12]. Neuromorphic computing offers a dynamic solution by enabling real-time 

monitoring and adaptive learning dynamically [13]. 

Real-Time Monitoring 

The systems of neuromorphic sensors and processors built within the inventory management 

process are structured to keep an eye on the stock levels and their use patterns on a real-time 

basis [14]. These systems have algorithms built with the capability to detect and analyze 

changes taking place in the inventory in real-time so as to bring accuracy to the information 

at hand [15]This provides much more accurate inventory control, which can be practiced 

without the risks of overstocking and stockouts. 



329 Abdulrahman S. Bageis Neuromorphic Optimization in Construction....                                                                           
 

Nanotechnology Perceptions Vol. 20 No.5 (2024) 

Adaptive Learning 

Neuromorphic systems can learn through historical data and ongoing operations, thereby 

perpetually tweaking their inventory management strategies [16]. In the pattern and trend 

analysis, these systems forecast future inventory needs while adjusting the reorder points as 

per identified adjustments [17]. learning capability guarantees optimized inventory levels, 

which fully meet construction projects' needs and reduce waste and storage costs. 

Optimization of Logistics and Transportation 

Transporting materials and equipment is one major part of supply chain logistics that is 

required in any construction project [18]. Complexity in routing, scheduling, and managing 

transport resources in traditional logistic systems makes such areas vulnerable. Logistic and 

transportation planning can therefore be optimized, with real-time processing and adaptive 

decision-making for logistic and transportation planning, through neuromorphic computing 

[19]. It helps in the routing and scheduling of enormous data from diversified sources, 

including traffic patterns, weather conditions, and project schedules [20]. These algorithms 

can be used to dynamically change routes and schedules, resulting in possible time savings 

and cost reduction in transportation. When neuromorphic systems are integrated into logistic 

management, construction companies are guaranteed timely and efficient delivery of all 

materials [21]. 

Resource Management 

Proper management of transportation resources, such as vehicles and drivers, is critical for 

proper logistics. Neuromorphic systems can be used to analyze the availability of resources 

against the demand for the same; this can help optimize the allocation of transportation 

resources [22]. Dynamic resource management ensures that the right resources are availed at 

the right time, hence increasing the general efficiency of logistics [23]. 

Real-Time Demand Forecasting 

Effective supply chain management within construction projects requires an excellent 

approach to demand forecasting, where traditional techniques used in forecasting rely on 

historical data and static models and, therefore, give rise to errors and inefficiencies [24]This 

is when neuromorphic computing for demand forecasting proves efficient. It adds an element 

of dynamism and, hence, sharpness to prediction. 

Predictive Analytics 

It can chew up vast amounts of information from sources like market trends, project 

timelines, and environmental conditions. Through analysis of given data, therefore, 

neuromorphic algorithms can provide the most accurate forecasts for future demand for 

materials and resources [25]. This predictive analytics capability permits construction 

companies to conduct further and more in-depth planning, which might reduce the likelihood 

of possible delays and cost overruns. 

Real-Time Adjustments 

Perhaps one of the critical advantages that neuromorphic computing has to offer is its 

capability or real-time adaptability feature. As it is, neuromorphic systems will be capable of 
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monitoring the patterns of demand continuously and adjusting the forecasts given for such 

changes in real-time [26]. This being the case, it now becomes an enabling capacity that 

demand forecasts are accurate and updated in real-time, which in turn enables supply chain 

management to be more responsive and flexible. 

Supplier Selection and Relationship Management 

Supplier choice and supplier relationship management is a critical portion of supply chain 

logistics within the construction industry [27]. This adds to the fact that most traditional 

methods are static in the criteria they are based on and depend on historical performance data 

in such a way that it limits the effectiveness of supplier management. Neuromorphic 

computing provides a more dynamic and data-driven method for supplier selection and 

relationship management [13]. 

Supplier Performance Analysis 

Algorithms developed can analyze various supplier performance data, such as quality, 

delivery time, and cost. Neuromorphic systems can then facilitate the real-time processing of 

such information and provide a full and up-to-date performance evaluation of the suppliers. 

Because of the dynamic appraisal of performance, construction companies can now make an 

informed choice on which suppliers to select [10]. 

Adaptive Relationship Management 

Supplier relations require continual review and alignment with the performance and changes 

of needs projects. These can be learned from past data and ongoing interactions in adaptive 

relationship management strategies with the supplier for optimum supplier performance. 

Indiveri and Liu (2015) claim that this adaptive relationship management capability will 

guarantee suppliers who are consistently on par in fulfilling the project needs, improving the 

overall supply chain efficiency [10]. 

Potential Challenges and Future Research 

Several challenges remain in realizing the full potential benefits of neuromorphic computing 

in the logistic systems of construction supply chains, and areas of future research need to be 

explored. These encompass integrating neuromorphic systems into available infrastructure, 

developing effective neuromorphic algorithms, and addressing issues of data privacy and 

security. 

Integration into Available Infrastructure 

As has been said, such an integration of neuromorphic systems into the existing supply chain 

infrastructure can be cumbersome and require significant human and capital resources. The 

construction firm must ensure compatibility of neuromorphic systems with existing 

technologies and systems of operation [28]. Future research has to develop a framework of 

standards for integration, and from there, the process of tools may make the adoption of 

neuromorphic computing in construction supply chain logistics much easier [29]. 

Development of Robust Algorithms 

It is imperative to develop robust neuromorphic algorithms capable of addressing the 

complexity associated with construction supply chain logistics. Such algorithms should be 
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real-time and adaptable to dynamic conditions, providing insights with a high level of 

precision. Further work on neuromorphic algorithm development is expected, along with 

future testing of those developed algorithms within construction supply chains [21]. 

Data Privacy and Security 

A challenge that emerges following the application of neuromorphic systems within 

construction supply chain logistics relates to data privacy and security shown in Table 1. 

This indicates that neuromorphic systems are centered on processing proprietary and 

sensitive information, meaning data protection should be among the major concerns in 

research toward future secure ways of managing data and assuring that neuromorphic 

systems also adhere to regulations relating to relevant data privacy [30]. 

Table 1 Related studies with benefits and challenges. 
Aspect Description Traditional 

Approach 

Neuromorphic 

Approach 

Benefits Challenges Future 

Research 

Reference 

Inventory 

Management 

Monitoring 

and 

controlling 

stock levels 

Static models 

based on 

historical data  

Real-time 

monitoring 

with adaptive 

learning  

Reduced 

overstock and 

stockouts 

Integration 

with existing 

systems 

Development 

of robust 

adaptive 

algorithms  

[31] 

 

Logistics & 

Transportation 

Planning and 

managing 

transportation 

Manual 

routing and 

scheduling  

Dynamic 

routing and 

scheduling 

with real-time 

data  

Reduced 

delays and 

costs 

Data privacy 

and security 

Secure data 

management 

practices  

[32] [13] 

[10] 

Real-Time 

Demand 

Forecasting 

Predicting 

future 

material 

needs 

Historical 

data and static 

models (Chen 

et al., 2016) 

Predictive 

analytics with 

real-time 

adjustments 

(Seo et al., 

2011) 

Increased 

forecasting 

accuracy 

Complexity of 

real-time data 

processing 

Advanced 

neuromorphic 

algorithms 

(Merolla et al., 

2014) 

[30] 

Supplier 

Selection & 

Relationship 

Management 

Evaluating 

and 

managing 

suppliers 

Static criteria 

and past 

performance  

Dynamic 

performance 

analysis and 

adaptive 

strategies  

Improved 

supplier 

performance 

and 

relationships 

Ensuring 

compatibility 

with suppliers' 

systems 

Standardized 

integration 

frameworks  

[28] [29] 

Resource 

Management 

Allocation of 

transportation 

resources 

Manual 

allocation  

Optimized 

allocation 

with 

neuromorphic 

systems  

Enhanced 

resource 

utilization 

Training and 

adaptation 

Real-world 

testing and 

validation  

[33] [16]  

Risk 

Management 

Identifying 

and 

mitigating 

risks 

Periodic 

assessments  

Continuous 

monitoring 

and real-time 

response  

Reduced 

disruptions and 

improved 

resilience 

Handling large 

volumes of 

data 

Scalable 

neuromorphic 

solutions  

[34] 

Data 

Integration 

Combining 

data from 

various 

sources 

Separate data 

silos  

Integrated 

neuromorphic 

systems  

Comprehensive 

and up-to-date 

information 

Data 

compatibility 

issues 

Integration 

tools and 

frameworks  

[35]  

Real-Time 

Monitoring 

Ongoing 

tracking of 

supply chain 

status 

Periodic 

manual 

checks  

Continuous 

real-time 

monitoring  

Immediate 

issue detection 

and response 

High 

computational 

demands 

Efficient 

neuromorphic 

hardware  

[36] 
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Adaptive 

Learning 

Improving 

system 

performance 

over time 

Manual 

updates and 

adjustments  

Self-learning 

and adapting 

systems  

Continuous 

improvement 

in efficiency 

Complexity of 

adaptive 

systems 

Development 

of adaptive 

learning 

models  

[37] [38] 

Cost 

Reduction 

Minimizing 

supply chain 

costs 

Reactive cost 

management  

Proactive 

optimization 

and efficiency 

(Seo et al., 

2011) 

Lower overall 

costs 

Initial 

implementation 

costs 

Cost-benefit 

analysis (Pfeil 

et al., 2012) 

[39] 

Efficiency 

Improvement 

Enhancing 

overall 

supply chain 

performance 

Incremental 

improvements  

Significant 

gains with 

neuromorphic 

optimization  

Higher 

efficiency and 

productivity 

Overcoming 

resistance to 

change 

Demonstrating 

ROI and 

benefits  

[37] 

Sustainability 

Promoting 

sustainable 

practices 

Limited focus 

on 

sustainability 

(Dubey et al., 

2017) 

Optimized 

resource use 

and waste 

reduction 

(Seo et al., 

2011) 

Improved 

sustainability 

and 

compliance 

Balancing 

efficiency with 

sustainability 

Sustainable 

neuromorphic 

solutions 

(Indiveri et al., 

2011) 

[40] 

Table 2 below sets a comprehensive comparison of innovative technologies in construction 

project management based on their functions in real-time monitoring, predictive analytics, 

cost efficiency, resource optimization, risk management, sustainability, scalability, 

interoperability, user-friendliness, implementation cost, and innovation potential. Building 

Information Modeling (BIM), the Internet of Things (IoT), Artificial Intelligence (AI), 

Drones, 3D Printing, Virtual Reality (VR) / Augmented Reality (AR), and Neuromorphic 

Computing are assessed. All these technologies have a wide range of advantages in most 

categories, with extensive benefits in real-time data processing, predictive analytics, and 

resource optimization. Drones and 3D Printing assure substantive cost efficiency and 

resource optimization but score down significantly on risk management and scalability. 

VR/AR might enhance project visualization and collaboration, yet it is not strong regarding 

sustainability issues. Neuromorphic Computing forms a comprehensive technology subject 

that is well-known by virtue of being capable of real-time monitoring, adaptive learning, and 

sustainability, representing its capabilities to revolutionize project management in 

construction. 

Table 2 Comparison of Neuromorphic Computing with other Advanced Technologies in 

Construction Project Management. 

  

Building 

Information 

Modeling 

(BIM) 

Internet 

of Things 

(IoT) 

Artificial 

Intelligence 

(AI) 

Drones 3D 

Printing 

Virtual 

Reality (VR) 

/ Augmented 

Reality (AR) 

Neuromorphic 

Computing 

Real-Time Monitoring ✓ ✓ ✓ ✓ ✗ ✓ ✓ 

Predictive Analytics ✓ ✓ ✓ ✗ ✗ ✗ ✓ 

Cost Efficiency ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Resource Optimization ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Risk Management ✓ ✓ ✓ ✗ ✗ ✗ ✓ 

Sustainability ✓ ✓ ✓ ✓ ✓ ✗ ✓ 

Scalability ✓ ✓ ✓ ✗ ✓ ✓ ✓ 

Interoperability ✓ ✓ ✓ ✗ ✓ ✓ ✓ 
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User-Friendliness ✓ ✗ ✓ ✓ ✓ ✓ ✓ 

Implementation Cost ✗ ✗ ✓ ✓ ✓ ✓ ✓ 

Innovation Potential ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Neuromorphic computing demonstrates a prime contribution to the enhancement of 

optimization in supply chain logistics within construction. Inventory management, logistics, 

transportation planning, demand forecasting, and management of supplier relationships 

would all benefit from the brain-like processing capabilities of neuromorphic systems. The 

application of neuromorphic computing in the logistics of a construction supply chain will 

make improvements in efficiency, reduce costs, and lead to better project outcomes. There 

are, however, several challenges in realizing the potential of neuromorphic computing into 

complete competency in the logistics of construction supply chains. Future work in the 

development of standard integration frameworks, advancement of neuromorphic algorithm 

development, and data privacy and security will foster the construction industry to make full 

use of the power of neuromorphic computing for logistic optimization of supply chains and 

move towards optimized performance and sustainability. 

 

3. Methodology 

Questionnaire Design and Data Collection 

The sample size for this research was made up of 182 respondents from Saudi Arabia. This 

section presents a structured questionnaire with a Likert scale to rank the level of agreement 

and disagreement by the respondents on different statements, from 1 (Strongly Disagree) to 5 

(Strongly Agree) [41]. A deep understanding of the factors affecting the research subject is 

what the questionnaire tried to delve into. 

Convenience sampling was employed due to its ease and accessibility. In exploratory 

studies, this non-probability sampling technique is crucial for capturing a diverse range of 

perceptions and viewpoints. Multiple statistical analyses were conducted to strengthen the 

reliability of the data. This involved PCA, tests of the convergent and discriminant validity, 

cross-loadings, analysis of VIF, IPA, empirical correlation analysis, and bootstrapping 

analysis. 

Principal Component Analysis 

The application of principal component analysis in this research was, in the end, finding 

underlying patterns in a set of data to reduce its dimensionality and increase interpretability 

and usability as a consequence. PCA is particularly useful in transforming the original 

variables into a new set of variables, called principal components, which are made to be 

orthogonal to each other and absorb most of the variance existing in the original dataset. 

Prior to performing PCA, the adequacy of data for factor analysis was done by using the 

KMO and Bartlett's Test of Sphericity. The sampling adequacy was appropriate for the 

variables, with a KMO measure greater than or equal to 0.6; that is, it shows that the 

proportion of variance in the variables which might be caused by underlying factors would 

be satisfyingly high. Bartlett's Test of Sphericity measures the suitability of the data being 

subjected to factor analysis [42]. If the p-value is less than 0.05, the test would indicate it to 
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be significant, signifying enough correlation between the variables to perform factor 

analysis. 

Principal component extraction was the first step in the PCA process. The criterion for 

retaining the components was kept as those principal components having eigenvalues greater 

than 1, ensuring that every retained component explains a reasonable amount of variance. A 

varimax rotation was performed on these components to render them interpretable. In simple 

terms, this is an orthogonal rotation, which tries to simplify the loading structure so that the 

output is more understandable and easier to interpret. 

Component loadings were considered to check that variables loaded strongly onto their 

respective components, with loadings greater than 0.5 being significant [43]. This is an 

important step in the process of factor analysis as it validates that variables grouped under 

the same principal component are meaningfully related. The results from PCA gave many 

insights into the most critical factors and how the complexity reduction of the dataset could 

be achieved by maintaining the relevant information within the dataset. 

By applying PCA, the study identified major constructs that explained most of the variance 

in the data. Because of this, it was analyzed much more directly and effectively. This not 

only simplified the dataset but also gave a more accurate subsequent analysis, which adds to 

a more robust and reliable finding. 

 

4. Findings and Analysis 

Demographic Details 

This research was conducted in Saudi Arabia. A total of 182 respondents have participated in 

this research, as shown in Table 3. The gender distribution was very dominantly male, with 

120 (65.9%) of them being male respondents and 62 (34.1%) female respondents. In terms of 

age categorization, participants fell into five categories: 35 (19.2%) were aged 18-25 years, 

70 (38.5%) were aged 26-35 years, 50 (27.5%) were aged 36-45 years, 20 (11.0%) were 

aged 46-55 years, and 7 (3.8%) were aged 56 years and above. On educational background, 

20 (11.0%) respondents had a high school certificate, 80 (44.0%) were holders of a 

bachelor's degree, 50 (27.5%) had a master's degree, 25 (13.7%) were doctorate holders, and 

7 (3.8%) held other educational qualifications. 

Table 3 Demographics of the respondents. 
Category Subcategory Number of Respondents Percentage 

Gender Male 120 65.9% 

Gender Female 62 34.1% 

Age 18-25 years 35 19.2% 

Age 26-35 years 70 38.5% 

Age 36-45 years 50 27.5% 

Age 46-55 years 20 11.0% 

Age 56 years and above 7 3.8% 

Educational Background High School 20 11.0% 

Educational Background Bachelor's Degree 80 44.0% 

Educational Background Master's Degree 50 27.5% 

Educational Background Doctorate 25 13.7% 
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Educational Background Other 7 3.8% 

Principal Component Analysis 

Table 4 reflects the analysis of convergent validity and reliability for the four constructs: 

Inventory Management Optimization (IMOP), Logistics & Transportation Optimization 

(LTOP), Real-Time Demand Forecasting (RTDF), and Supplier Selection & Relationship 

Management (SSRM). The indicators measure the construct; factor loadings by each 

indicator represent the respective indicators. The measurement reliability of each construct is 

assessed using the value of Cronbach's Alpha (CA) and Composite Reliability (CR), and the 

convergent validity is tested through Average Variance Extracted (AVE). An IMOP 

construct with five indicators, IMOP-1 to IMOP-5, have their respective strong loadings: CA 

reaches 0.798, CR reaches 0.861, and AVE reaches 0.554. The LTOP construct has four 

indicators (LTOP-1 to LTOP-4) that have high loadings with a CA of 0.777, CR of 0.858, 

and AVE of 0.607. The RTDF construct has four high-loading indicators (RTDF-1 to RTDF-

5) with a CA of 0.863, CR of 0.907, and AVE of 0.709. The SSRM construct comprises 

three high-loading indicators (SSRM-3 to SSRM-5) with a CA of 0.736, CR of 0.85, and 

AVE of 0.655. These values suggest that good convergent validity and reliability are 

possessed by the constructs [44]. 

Table 4 Path loadings with Reliability and Validity analysis. 

Variables 

Inventory 

Management 

Optimization 

Logistics & 

Transportation 

Optimization 

Real-Time 

Demand 

Forecasting 

Supplier 

Selection & 

Relationship 

Management 

 

CA 

 

CR 

 

AVE 

IMOP-1 0.728 - - - 0.798 0.861 0.554 

IMOP-2 0.767 - - - - - - 

IMOP-3 0.751 - - - - - - 

IMOP-4 0.766 - - - - - - 

IMOP-5 0.706 - - - - - - 

LTOP-1 - 0.845 - - 0.777 0.858 0.607 

LTOP-2 - 0.836 - - - - - 

LTOP-3 - 0.598 - - - - - 

LTOP-4 - 0.81 - - - - - 

RTDF-1 - - 0.873 - 0.863 0.907 0.709 

RTDF-2 - - 0.824 - - - - 

RTDF-3 - - 0.817 - - - - 

RTDF-5 - - 0.852 - - - - 

SSRM-3 - - - 0.79 0.736 0.85 0.655 

SSRM-4 - - - 0.853 - - - 

SSRM-5 - - - 0.783 - - - 

The Heterotrait-Monotrait (HTMT) ratio is an evaluation of discriminant validity, which 

examines the ratio of the between-trait correlations to the within-trait correlations is shown 

in Table 5. In the case of this research, the HTMT values between constructs for Inventory 

Management Optimization, Logistics & Transportation Optimization, Real-Time Demand 

Forecasting, and Supplier Selection & Relationship Management lie below the 0.90 

threshold, representing good discriminant validity. For this, the HTMT values need to be 

found for each pair of constructs. The HTMT value between Inventory Management 

Optimization and Logistics & Transportation Optimization is 0.319, between Inventory 
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Management Optimization and Real-Time Demand Forecasting is 0.509, and between 

Inventory Management Optimization and Supplier Selection & Relationship Management is 

0.254. These values reveal that the constructs are differing and not the same concept. 

The Fornell-Larcker criterion is the second approach to estimating discriminant validity. It 

assumes that the square root of the AVE for all constructs should be greater than the highest 

correlation with another construct shown in Table 5. In this research, the square root of AVE 

is 0.744 for Inventory Management Optimization, 0.779 for Logistics & Transportation 

Optimization, 0.842 for Real-Time Demand Forecasting, and 0.809 for Supplier Selection & 

Relationship Management. The square roots of the AVEs for all constructs are higher than 

the respective correlations between the constructs, which indicates that there is sufficient 

discriminant validity among the constructs. For example, the correlation between Inventory 

Management Optimization and Logistics & Transportation Optimization is 0.244, which is 

less than its AVE square root of 0.744. 

The cross-loadings are tested to check that each indicator loads more to its intended 

construct than to any other constructs, thus confirming the discriminant validity shown in 

Table 5. As evidenced in this research, the indicators under each one of the constructs show 

higher loadings on their constructs relative to the other constructs. For instance, IMOP-1 has 

a loading of 0.728 on Inventory Management Optimization versus its loadings on Logistics 

& Transportation Optimization, which are 0.163; Real-Time Demand Forecasting, which is 

0.21, and Supplier Selection & Relationship Management at 0.109. Similarly, the loading of 

LTOP-1 on Logistics and Transportation Optimization is very high at 0.845 compared to 

0.133 of Inventory Management Optimization, 0.28 of Real-Time Demand Forecasting, and 

0.171 of Supplier Selection & Relationship Management. This result fulfills the stipulation 

that every indicator should have a higher association with its own construct than with others 

for the model to exhibit discriminant validity. 

Table 5 Discriminant validity analysis. 

 Constructs 

Inventory 

Management 

Optimization 

Logistics & 

Transportation 

Optimization 

Real-Time 

Demand 

Forecasting 

Supplier Selection & 

Relationship 

Management 

Inventory Management 

Optimization 

- - - - 

Logistics & Transportation 

Optimization 0.319 

- - - 

Real-Time Demand 

Forecasting 0.509 0.499 - 

- 

Supplier Selection & 

Relationship Management 0.254 0.257 0.216 

- 

 Constructs 

Inventory 

Management 

Optimization 

Logistics & 

Transportation 

Optimization 

Real-Time 

Demand 

Forecasting 

Supplier Selection & 

Relationship 

Management 

Inventory Management 

Optimization 0.744 

- - - 

Logistics & Transportation 

Optimization 0.244 0.779 - 

- 

Real-Time Demand 

Forecasting 0.424 0.403 0.842 

- 

Supplier Selection & 0.133 0.195 0.172 0.809 
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Relationship Management 

 Variables 

Inventory 

Management 

Optimization 

Logistics & 

Transportation 

Optimization 

Real-Time 

Demand 

Forecasting 

Supplier Selection & 

Relationship 

Management 

IMOP-1 0.728 0.163 0.21 0.109 

IMOP-2 0.767 0.272 0.325 0.097 

IMOP-3 0.751 0.173 0.271 0.105 

IMOP-4 0.766 0.103 0.445 0.064 

IMOP-5 0.706 0.195 0.322 0.121 

LTOP-1 0.133 0.845 0.28 0.171 

LTOP-2 0.175 0.836 0.295 0.109 

LTOP-3 0.229 0.598 0.315 0.133 

LTOP-4 0.242 0.81 0.379 0.195 

RTDF-1 0.407 0.369 0.873 0.261 

RTDF-2 0.306 0.318 0.824 0.084 

RTDF-3 0.35 0.271 0.817 0.076 

RTDF-5 0.363 0.395 0.852 0.151 

SSRM-3 -0.076 0.09 0.172 0.79 

SSRM-4 0.167 0.217 0.073 0.853 

SSRM-5 0.227 0.162 0.179 0.783 

The figure 1 illustrates the factor loadings and path coefficients for the different constructs of 

Neuromorphic Optimization in Construction Supply Chain Logistics: Real-Time Demand 

Forecasting, Inventory Management Optimization, Logistics & Transportation Optimization, 

and Supplier Selection & Relationship Management. Each respective construct has a 

representation in terms of its indicators: RTDF-1 to RTDF-5, IMOP-1 to IMOP-5, LTOP-1 

to LTOP-4, and SSRM-3 to SSRM-5. The loadings of these indicators are shown by values 

over 0.7, which means a very high association with the construct. In addition, the diagram 

shows the path coefficients between constructs as well: for example, 0.477 (from Inventory 

Management Optimization to Neuromorphic Optimization) and 0.430 (from Logistics & 

Transportation Optimization to Neuromorphic Optimization), at p < 0.05 [45]. Strong, 

significant relationships are shown among constructs in the validation of models' ability to 

explain how these elements result in optimal logistics of the construction supply chain using 

neuromorphic approaches. 
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Figure 1 Structural Model with path loadings and P value. 

The empirical correlation analysis presented in the heatmap shows the relationships between 

various indicators within the constructs of Inventory Management Optimization (IMOP), 

Logistics & Transportation Optimization (LTOP), Real-Time Demand Forecasting (RTDF), 

and Supplier Selection & Relationship Management (SSRM) shown in Figure 2. The 

heatmap displays correlation coefficients, with values ranging from -1 to 1, indicating the 

strength and direction of the relationships. Darker red signifies high positive correlations, 

while shades of blue stand for lower correlations. For instance, the indicators of each 

construct, such as those from IMOP-1 up to IMOP-5, have highly correlated positive 

indicators, showing internal consistency. The same case applies to the indicators for RTDF, 

which have a very high inter-correlation in this construct. Weaker correlations among 

different constructs, such as those of IMOP and SSRM, on the other hand, indicate that these 

constructs are quite distinct from each other. The presented CFA analysis showed good 

internal coherence of the constructs and confirmed the validity of the measurement model. 
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Figure 2 Emprical correlation analysis. 

Table 6 summarizes the Variance Inflation Factor, total effects, and performance scores for 

the indicators in four constructs: Inventory Management Optimization, Logistics & 

Transportation Optimization, Real-Time Demand Forecasting, and Supplier Selection & 

Relationship Management. All the VIF values are less than 5, providing assurance against 

problems of multicollinearity and suggesting that the predictors are unrelated to each other. 

For Inventory Management Optimization, the VIF of IMOP-1 and IMOP-2 are 1.463 and 

1.62, respectively; the total effect is 0.43, with a performance score of 53.209. Logistics & 

Transportation Optimization has LTOP-1 at a VIF value of 2.143, with a total effect value of 

0.337 and a performance score of 56.063. Real-Time Demand Forecasting includes RTDF-1 

(VIF = 2.367) having an overall effect of 0.477 and a performance score of 45.035. Supplier 

Selection & Relationship Management has SSRM-3 (VIF = 1.429) with an overall effect of 

0.135 and top in performance with a score of 62.425. The results aligned with previous study 

[46]. 

These values indicate the relative importance and effectiveness of each indicator within their 

respective constructs, which underlie the constructs' strong performance in the context of 

neuromorphic optimization in construction supply chain logistics. 
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Table 6 VIF indications along with Impact Performance analysis. 
Constructs Variables VIF Total Effects Performances 

Inventory Management 

Optimization 

IMOP-1 1.463 0.43 53.209 

IMOP-2 1.62  

IMOP-3 1.603  

IMOP-4 1.611  

IMOP-5 1.465  

Logistics & Transportation 

Optimization 

LTOP-1 2.143 0.337 56.063 

LTOP-2 2.126  

LTOP-3 1.252  

LTOP-4 1.676  

Real-Time Demand 

Forecasting 

RTDF-1 2.367 0.477 45.035 

RTDF-2 1.908  

RTDF-3 1.848  

RTDF-5 2.143  

Supplier Selection & 

Relationship Management 

SSRM-3 1.429 0.135 62.425 

SSRM-4 1.645  

SSRM-5 1.407  

Table Hypothesis Testing Results: Hypothesized Impacts of 4 Constructs – Inventory 

Management Optimization, Logistics & Transportation Optimization, Real-Time Demand 

Forecasting, and Supplier Selection & Relationship Management – on Neuromorphic 

Optimization in Construction Supply Chain Logistics. Each of the below hypotheses has 

been tested by evaluating the path coefficient (O), Mean (M), Standard Deviation (SD), t-

statistics (T stats), and p-values [47]. 

With a t-statistic for Inventory Management Optimization of 10.17, the p-value is equal to 0, 

and the path coefficient is equal to 0.43, showing a positive impact on neuromorphic 

optimization. Similarly, Logistics & Transportation Optimization has a significant positive 

impact, with a path coefficient of 0.337 and a t-statistic of 8.857, and a p-value of 0. Real-

Time Demand Forecasting has the highest path coefficient, 0.477, a t-statistic of 12.511, and 

a p-value of 0, being quite statistically significant and positively strong. Finally, Supplier 

Selection & Relationship Management has a path coefficient of 0.135, a t-statistic of 3.041, 

and a p-value of 0.002, signalling significance but with less of a positive impact in 

proportion. These findings pointed to the critical importance of all four constructs in 

enhancing neuromorphic optimization within the supply chain logistics for construction, of 

which the most influential factor was real-time demand forecasting. 

Table 7 Hypothesis testing of neuromorphic computing factors. 

 Hypothesis  (O)  (M) SD T stats P values 

Inventory Management Optimization -> Neuromorphic 

Optimization in Construction Supply Chain Logistics 0.43 0.428 0.042 10.17 0 

Logistics & Transportation Optimization -> Neuromorphic 

Optimization in Construction Supply Chain Logistics 0.337 0.332 0.038 8.857 0 

Real-Time Demand Forecasting -> Neuromorphic Optimization 

in Construction Supply Chain Logistics 0.477 0.478 0.038 12.511 0 

Supplier Selection & Relationship Management -> Neuromorphic 

Optimization in Construction Supply Chain Logistics 0.135 0.133 0.044 3.041 0.002 
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5. Discussion 

The findings of this research demonstrated the important role that neuromorphic computing 

can play in optimizing supply chain logistics within the construction industry. The empirical 

results show that each of the four constructs, namely Inventory Management Optimization, 

Logistics & Transportation Optimization, Real-time Demand Forecasting, and Supplier 

Selection & Relationship Management, is a significant driver of neuromorphic optimization, 

though to varying extents. 

Regarding inventory management, neuromorphic optimization had a strong impact, with a 

high path coefficient of 0.43 and a t-statistic of 10.17. This highlights the importance of real-

time data processing and the adaptive learning capacity of neuromorphic systems in 

maintaining optimal inventory levels, minimizing overstock and stock-out situations, and 

thereby reducing waste and storage costs. The substantial loadings of the indicators within 

this construct further confirm the robustness of neuromorphic systems in inventory 

management and also align with previous research [13]. 

Logistics & Transportation Optimization also showed a significant positive effect, with a 

path coefficient value of 0.337 and a t-statistic of 8.857. Neuromorphic systems can 

dynamically route and schedule logistics based on real-time data from various sources, such 

as traffic patterns and weather conditions, thus saving time and lowering transportation costs. 

The high VIF values for indicators within this construct confirm the importance of managing 

multicollinearity, ensuring the reliability of the findings [48]. 

The most significant construct turned out to be Real-Time Demand Forecasting, with the 

highest path coefficient of 0.477 and a t-statistic of 12.511. This indicates that predictive 

analytic capabilities driven by neuromorphic computing are key to accurately forecasting 

material and resource needs, enabling construction companies to better plan and avoid delays 

and cost overruns. Real-time adaptation scored high performance in efficiency, with very 

significant indicator loadings in forecasting the demand of a supply chain [39]. 

Supplier Selection & Relationship Management had a lower but statistically significant 

impact, yielding a path coefficient value of 0.135 with a t-statistic of 3.041. The adaptive 

learning features of neuromorphic systems allow for an ongoing assessment of performance 

and optimization of supplier relationships to ensure qualitative and timely supply chain 

material fulfilment. Despite having a lower impact compared to the other constructs, it still 

emphasizes its importance in the overall functioning of the supply chain [49]. 

The entire model fitted the empirical data satisfactorily for the hypothesized relationships: all 

p-values were highly significant (p < 0.05), affirming the strength and validity of using 

neuromorphic computing in construction supply chain logistics. However, this research also 

identified potential challenges such as integrating neuromorphic systems into existing 

infrastructure, developing robust algorithms, and ensuring data privacy and security [50]. 

These challenges can be best addressed through further research and practical 

implementations, maximizing the benefits of neuromorphic optimization in the construction 

industry. 

In summary, adopting neuromorphic computing in construction supply chain logistics will 

significantly improve efficiency, cost reduction, and project outcomes. Proven benefits in 
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inventory management, logistics optimization, improved demand forecasting, and supplier 

relationship management highlight the transformative potential of neuromorphic systems in 

addressing the construction industry's complex and dynamic challenges. 

Empirical and Managerial Implications 

The results of this research demonstrate the potential for neuromorphic computing as a 

transformative technology in the logistics of the construction supply chain. Neuromorphic 

systems significantly enhance inventory management, logistics optimization, transportation 

optimization, demand forecasting, and supplier relationship management. These capabilities 

lead to increased efficiency, cost reduction, and overall project performance improvement. 

For managers, practical applications of neuromorphic computing offer a robust framework 

for addressing traditional inefficiencies and complexities in supply chain logistics. 

Construction firms can use neuromorphic technologies to achieve better control over 

inventories, optimize logistics operations, and dynamically manage suppliers, resulting in 

significant cost savings, timely project completion, and improved resource utilization. This 

research provides a strong justification for integrating neuromorphic systems into 

construction supply chain practices and urges construction managers to adopt these advanced 

technologies to stay competitive and enhance operational performance. 

Limitations and Future Directions 

Although this research presents promising insights into the application of neuromorphic 

computing in construction supply chain logistics, it has several limitations. Integrating 

neuromorphic systems into existing infrastructure is resource-intensive, requiring significant 

investment in technology and training. Additionally, the development of robust and 

adaptable neuromorphic algorithms tailored to specific construction logistics needs remains 

an ongoing challenge. Data privacy and security issues are also significant concerns, given 

the sensitive nature of construction project data. 

Future research should focus on developing standardized integration frameworks, advancing 

neuromorphic algorithm capabilities, and ensuring robust data security measures. Moreover, 

empirical studies involving larger sample sizes and diverse geographical locations would 

provide more comprehensive insights into the global applicability of neuromorphic 

computing in construction supply chain logistics. Addressing these limitations is crucial for 

fully harnessing the potential of neuromorphic technologies and driving innovation in the 

construction industry. 

 

6. Conclusion 

In essence, this research reveals the tremendous benefits of using neuromorphic computing 

to optimize supply chain logistics in construction. Optimization of inventory management, 

logistics and transportation, real-time demand forecasting, supplier selection and relationship 

management is done through neuromorphic systems, mimicking human brain neural 

architecture. There is concrete evidence that they bring many efficiency improvements and 

reduce costs, enhancing project outcomes. The most impactful was the Real-Time Demand 

Forecasting, which stresses dynamic and accurate forecasting concerning supply chain 
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operations. Despite difficulties like integration issues with current infrastructures, algorithm 

designing, and data security, this research has drawn attention to the tremendous power of 

neuromorphic computing. Addressing these challenges through ongoing research and 

practical applications is very important for realising neuromorphic optimization in 

construction supply chain logistics, which will pave the way to a more responsive and 

efficient industry. 
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