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Despite considerable advancements in aviation technology and systemic improvements in aviation 

safety management, accidents caused by spatial disorientation in helicopters continue to occur. A 

flight illusion refers to a phenomenon wherein a pilot misjudges the aircraft attitude. Most spatial 

disorientations fall under Type I, wherein the pilot is unaware of the illusion. This has been a 

significant challenge for spatial-disorientation detection through physiological responses in past 

studies. Therefore, this study developed a new machine-learned-based tool for detecting spatial 

disorientation in helicopters by collecting flight data from a simulator mimicking real flight 

conditions. The collected data were subjected to feature selection and labeling during 

preprocessing, which were then used for training four machine learning models capable of 

classifying spatial-disorientation occurrences. The results indicated that the random forest model 

demonstrated the best performance. The tool developed in this study has considerable potential for 

application in real operational settings and can be integrated into automated flight safety 

monitoring systems in the future. 

Keywords: spatial disorientation; spatial-disorientation detection; rotary-wing aircraft; helicopter; 

machine learning; flight simulation; accidents  

 

1. Introduction 

Recent advancements in aviation technology have gradually decreased aircraft-accident rates. 

However, accidents caused due to spatial disorientation (SD) have increased in recent years 

http://www.nano-ntp.com/
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(Newman and Rupert, 2020). SD is defined as "the failure of a pilot to accurately perceive 

their own or the aircraft's precise position, motion, and attitude relative to the ground" 

(Navathe and Singh, 1994). The Federal Aviation Administration (FAA) defines SD as "a 

state in which a pilot perceives the flight situation differently from reality due to errors arising 

from physical sensations in the visual, vestibular, and proprioceptive systems" (Federal 

Aviation Administration, 2009). The International Civil Aviation Organization (ICAO) 

defines the term as "Illusion in Flight" and describes it as "a situation where a pilot 

misinterprets information received from the visual, vestibular, and proprioceptive senses as 

being different from the actual situation due to environmental conditions or circumstances" 

(ICAO, 2009). Although the definitions of SD vary, they generally refer to the phenomenon 

in which a pilot incorrectly perceives the aircraft's attitude, direction, and speed. This concept 

has evolved from the past notion of simply making incorrect judgments regarding stimuli 

during flight to encompassing impairments in judging one's own or the aircraft's relative 

position, movement, and attitude with respect to the ground. 

Accidents caused by SD in rotary-wing aircraft continue to occur, primarily at night and 

under low-visibility conditions, with 90% of them resulting in fatalities (Vreeken, 2013). The 

high SD-related accident rate in rotary-wing aircraft can be attributed to the unique 

characteristics of their missions. Rotary-wing aircrafts are often operated at low altitudes and 

maneuvered manually. Therefore, they require a high level of pilot attention, which can 

increase pilot fatigue during flights of the same duration. Consequently, higher fatigue can 

affect situational awareness and decision making capabilities of pilots, potentially increasing 

the likelihood of human error. Over 80% of pilots have reported that they have experienced 

SD at least once (Tu et al., 2021). Additionally, it is most likely to occur during night flights 

or under instrument meteorological conditions (IMCs), which involve significant visual 

constraints (Gu, 1994). 

Research in this field has focused on comprehending the causes, mechanisms, and 

measurement methods, and developing countermeasures for SD. In particular, the use of flight 

simulators to expose pilots to SD situations and train them to respond to abnormal aircraft 

attitudes has been effective (Gibb, Ercoline and Scharff, 2011). However, despite such 

extensive research, SD-related accidents continue to occur. The fundamental reason for this 

is the lack of an objective SD-detection method. Most studies have focused on Type-II SD 

(perceived SD), whereas research on Type-I SD (unrecognized SD), which is the primary 

cause of fatal accidents, is relatively rare. If pilots are made aware of the SD situation, the 

problem-solving process becomes relatively straightforward. They can remove their hands 

from aircraft controls, switch to automatic flight mode, or hand control over to a fellow pilot 

(US Helicopter Safety Team, 2020). Although these response-training methods are 

emphasized in SD-recovery education, their limitations become apparent during solo flights 

or situations in which both pilots experience SD or fail to monitor each other. 

Therefore, this study aimed to develop a tool capable of detecting SD occurrences in 

rotary-wing aircraft. The integration of the SD detection and response methods developed in 

this study into actual flight environments is expected to considerably improve rotary-wing 

aircraft safety. Furthermore, the risk of fatal aviation accidents can be reduced by effectively 

detecting and responding to SD situations that pilots are unaware of.  

2. Related Work 
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SD in pilots can lead to instability in the attitude of the aircraft and potentially exceeding its 

performance limits, which can result in a total loss of control that often leads to crashes and 

fatal accidents. Owing to the unique characteristics of their missions, rotary-wing aircraft 

pilots frequently encounter IMCs. Therefore, the SD problem is more prevalent in rotary-wing 

aircraft and poses a serious threat to their flight safety. Various factors that affect SD have 

been identified, including human sensory (vision, vestibular system, etc.), environmental 

(clouds, fog, etc.), and cognitive (fatigue, experience, stress, etc.) factors. However, well-

established methods or solutions that can effectively prevent SD are lacking (US Helicopter 

Safety Team, 2020). 

Previous research has primarily focused on human factors related to SD such as fatigue, 

stress, and situational awareness. Despite gaining a deeper understanding of the various causes 

of SD and the development of better response methods, accidents caused by SD continue to 

increase, which may also be related to the introduction of advanced technologies, such as 

night vision goggles. While advanced technologies, such as autopilot systems, are helpful in 

low-visibility and SD situations, studies have shown that the inappropriate use of autopilot 

can increase the risk of SD in IMC situations as it may overwhelm the pilots (Johnson and 

Wiegmann, 2011). These technologies allow pilots to fly under challenging or previously 

impossible environmental conditions; however, they have also introduced new types of risks. 

Over the past 20 years, researchers have focused on studying human cognitive processes and 

behavioral responses to identify the causes of SD and found that SD involves the interpretation 

and response to information through the human visual, vestibular, and proprioceptive systems 

(Newman et al., 2014). Additionally, extensive research has been conducted on the interplay 

between human factors, such as fatigue, stress, sleep, and various environmental factors, 

which are employed in aeromedical training of pilots (Headquarters Department of the Army, 

2000; Ayiei, Murray and Wild, 2020). 

Most SD-related research has focused on reviewing various databases using qualitative or 

mixed methodologies to identify causes, such as pilot cognitive characteristics, weather 

conditions, aircraft type, and accident time. However, qualitative studies that incorporate pilot 

experiences are scarce. A phenomenological approach was used to explore the SD experiences 

of general aviation pilots and yielded themes of "weather and expectations," "thoughts and 

actions," and "post-flight experiences" (Gallo et al., 2015). Although this study made 

important contributions to exploring the root causes of SD using qualitative methods, its 

conclusion focused solely on the widely known importance of training, which limited its 

ability to provide more innovative or specific solutions. However, given that SD reflects the 

complex interaction between human and technical factors, conducting in-depth research on 

specific cases or experiences through qualitative studies is a valid approach. Moreover, as 

generalizing SD is difficult, it is necessary to focus on specific cases or aircraft types. 

Any pilot can experience SD with varying degrees of individual susceptibility. Sleep 

deprivation has been found to significantly affect the occurrence of SD (Previc et al., 2007). 

Additionally, SD can negatively impact pilots' cognitive processing (Gresty and Golding, 

2009) and increase their workload during flights (Webb et al., 2010). Although these research 

findings can be considered important for SD detection, no specific measures exist to 

effectively detect SD. A more concrete approach for detecting SD has been studied using 

human physiological responses. Li et al. (2015) demonstrated that electroencephalogram 

(EEG) signals of pilots are related to SD, and subsequently, Williams et al. (2018) proposed 
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a noninvasive EEG monitoring helmet to detect SD. However, these studies focused on the 

technical complexities of EEG monitoring and prediction algorithms, as well as their 

limitations in fully understanding the complex cognitive functions of the human brain. 

Additionally, test methods have been developed to assess pilots' physiological data, such as 

electrocardiogram (ECG), heart rate (HR), blood pressure (BP), and eye movement activity, 

revealing that their gaze processing can offer an important clue for detecting SD (Lewkowicz 

et al., 2015). However, if the pilots are unaware that they are experiencing SD, they may not 

feel any discomfort or identify the abnormal state of the aircraft. Therefore, behavioral 

responses and physiological data may have limitations in clearly detecting SD situations 

below a certain threshold. 

A crucial aspect of SD is whether pilots can identify that they are experiencing it. SD can 

be classified into three types based on pilot awareness (Heinle and Ercoline, 2003; Hao et al., 

2020). In Type I, the pilots do not identify that they are experiencing SD and continue flying 

without realizing that they are unaware of the exact position or state of the aircraft. This is the 

most dangerous type of SD and can easily result in accidents. Type II is a state in which pilots 

recognize that they are experiencing SD and have difficulty maintaining stable aircraft control. 

Although pilots realize that their perception is incorrect and they attempt corrective actions, 

they are not performed as intended. Type III is a state in which pilots are overwhelmed by SD, 

experiencing extreme confusion regarding their position or orientation, which can lead to 

severe confusion, stress, performance degradation, and even incapacitation, similar to the 

"Giant Hand" phenomenon. In such cases, pilots generally identify the difficulties they are 

facing but find it challenging to take appropriate actions due to extreme stress. 

Currently, the use of simulators to train pilots to recognize and recover from SD is 

considered the most definitive method for preventing SD-related accidents (Gibb, Ercoline 

and Scharff, 2011). However, most SD accidents occur when pilots are unaware of their SD 

state. In fact, approximately 80–85% of SD-related accidents occur in situations wherein 

pilots do not identify their SD state (Holmes et al., 2003). Therefore, the ability to recognize 

SD or an effective method for identifying them is critical. 

As humans interact with an aircraft, their responses are transferred as inputs to control 

devices, and the changes are reflected in the attitude, performance, or specifications of the 

aircraft. It is already known that pilot performance can be evaluated through flight-data 

analysis (Tu et al., 2021). In an SD state, pilot performance can drastically deteriorate, whether 

intentionally or unintentionally, which can be identified through flight data. Crognale and 

Krebs (2011) used pilot-error occurrence indicators to confirm that pilot performance 

deteriorates under low-visibility conditions. Although error-occurrence rate is the most 

accurate indicator for measuring pilot performance, the reference values differ for each 

aircraft type, necessitating clear definitions of error criteria. Another study used quick access 

recorder flight data and analysis of variance and discovered that the flare operation of fixed-

wing aircraft affects their landing distance and vertical acceleration. During SD, specifically 

in the Black Hole Illusion condition, an analysis of 14 flight parameters in a simulator revealed 

a tendency for higher descent rates during the initial approach phase (Huang et al., 2023). 

Additionally, research has been conducted to develop SD-detection algorithms using 

flight data. A study proposed an algorithm that employs parameters such as aircraft heading, 

glide-path deviation, and aircraft tilt by analyzing flight data recorded in flight experiments 

(Frantis and Petru, 2018). However, its application is limited because the algorithm was 
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developed considering deviations in the roll and course deviation indicator without including 

pilot response data (control input values). Moreover, such analysis methods rely on strict 

assumptions and may not fully analyze the complex relationships between each parameter, 

potentially reducing the accuracy of their results. In the past, the complexity and 

multidimensionality of data were not sufficiently considered and the detection of hidden 

patterns and correlations was limited. However, recent advancements in artificial intelligence 

technology and computing power have enabled the learning of complex nonlinear patterns 

from large-scale flight datasets, thereby enabling precise anomaly detection and prediction. 

In aviation, research using machine learning (ML) or deep-learning methods has been 

conducted in various areas such as aircraft delay rates and landing anomaly detection 

(Fernández et al., 2019; Timothy, Peng and Jung, 2019; Chahine, Hasan and Iddin, 2023; e 

Silva and Murça, 2023). These techniques are useful for accurately analyzing correlations in 

complex and vast flight datasets. Foucher et al. (2022) developed ML and deep-learning 

models that can detect SD caused by vestibular stimulation, suggesting the potential utility of 

these techniques for SD detection. However, they acquired data using a virtual device rather 

than an actual flight simulator, thereby lacking validation in a real flight environment. 

Additionally, they labeled SD based on the pilots' response speed (changes in control 

displacement values) for feature classification, which may have reduced their detection 

accuracy for Type-I SD. 

3. Proposed Method 

Acquiring high-quality flight data is the most critical challenge for developing SD-detection 

tools based on flight-data analysis. The following characteristics were considered to obtain 

high-quality flight data for this study: 

First, to ensure the accuracy and reliability of the data, scenarios for the SD simulator 

experiments were designed using phenomenological analysis. Phenomenological research 

focuses on understanding the essence of human experiences and allows for their in-depth 

exploration from the participants' perspectives (Patton, 2002; Johnson and Christensen, 2012). 

Because vulnerability to SD varies depending on the aircraft type and individual pilot 

conditions, one-on-one in-depth interviews were conducted with 26 experienced pilots, and 

scenarios were designed considering the characteristics of rotary-wing aircraft. 

Second, we employed a 6-axis motion flight training simulator located in a university 

certified as a professional training institution. It employed Prepar3D, a simulation program 

developed by Lockheed Martin for educational purposes, and the data were saved in real time 

in a CSV file on the instructor's computer. As shown in Fig. 1, severe turbulence conditions 

were applied when clouds were encountered during flight to induce anxiety, pressure, and 

stress in the pilots and increase their workload. Turbulence makes it difficult for pilots to 

control the aircraft, and severe shaking increases their stress and anxiety levels. Additionally, 

the instructor assigned them with a mission that involved finding a target object during a low-

altitude flight. While the pilot focused on this task, low-visibility conditions were suddenly 

introduces to observe how they would overcome the situation, and the flight data were 

recorded. 
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Figure 1. Simulator design diagram 

3.1. Simulator scenario  

The experiment included 65 pilots: 22 student, 13 private, and 28 commercial. The pilot 

qualifications, flight phases, and visibility conditions, which are the important factors that 

influence the occurrence of SD, are listed in Table 1. 

Category Flight Conditions 

Pilot Qualification Student Pilot, Private Pilot, Commercial Pilot 

Flight Phase Climbing Flight, Level Flight, Descending Flight 

Visibility Conditions 10km or more (Good), 3sm (Normal), Obscured (Bad) 

Table 1. Flight Conditions 

 

Additionally, we employed Bell-206 as the rotary-wing aircraft, and before the actual flight 

simulation, each pilot underwent familiarization training for at least 9 min to adapt to the 

simulator. The instructor observed the participants' reactions to determine whether they were 

fully familiarized with the controls. The flight scenario began at Incheon Airport, which is 

adjacent to the coast. This airport was selected because most environments that induce SD 

have been identified as those involving flights from land to sea. While the pilot maintained a 

normal flight, the instructor introduced deteriorating weather conditions that were not 

anticipated by the pilot. Rotary-wing aircraft have high accident rates while transitioning from 

visual flight rules (VFR) to instrument flight rules (IFR) during visual flights (Ayiei, Murray 

and Wild, 2020). Rotary-wing aircraft pilots often enter IMCs unintentionally or unexpectedly 
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during visual flights (Gallo et al., 2015), a situation defined as inadvertent entry into IMCs. 

Initially, favorable visibility of over 10 km was maintained, which was gradually deteriorated 

to simulate worsening weather conditions. Finally, the flight characteristics and tendencies of 

the pilot were observed under obscured visibility conditions. To extract standardized data, the 

accurate times of flight phase and visibility changes were recorded and stored. After the flight, 

interviews were conducted to distinguish pilots who experienced SD from those who did not. 

3.2. Data acquisition and preprocessing 

The pilot boarded the flight simulator and conducted a flight in a rotary-wing aircraft-based 

SD scenario. The data were collected every 0.25 s, resulting in 175,500 data points for the 65 

participants. The flight parameters; pilot input values, which refer to the displacement values 

of the aircraft-control devices, such as the cyclic, collective, and pedal devices; aircraft 

attitude values, indicating aircraft movements; and aircraft performance values are listed in 

Table 2. Aircraft control began with the pilot's control input, which changed the aircraft's 

attitude values and ultimately its performance values. 

The flight data were preprocessed as follows: First, to reflect the characteristics of each 

flight phase accurately, the flight phases were distinguished by coding them into three stages: 

climb (0), level (1), and descent (2). Next, to reflect the influence of environmental conditions 

on the model, visibility was categorized into "very good (0)," "average (1)," and "very poor 

(2)," and corresponding coding was applied. Finally, pilot qualifications were classified as 

"student pilot (0),” private pilot (1),” and “commercial pilot (2)." 

After the flight experiment, interviews were conducted with the participants and the 

instructor pilot to determine whether they had experienced SD, and the data of the pilots who 

experienced SD were separated from those of who did not and labeled. The SD labeling 

method is discussed in detail in Section 3.3. 

Finally, each data point was assigned labels for the aircraft attitude (pitch, bank), aircraft 

specifications (heading, speed, vertical speed, altitude), and pilot input (slider, x, y, rx). All 

data were stored in CSV files, and rows and columns with missing values were removed. 

The dataset comprised 175,500 data points, of which 91,800 were from pilots who 

experienced SD, whereas the remaining 83,700 were from those who did not. To address the 

class imbalance, an oversampling technique was applied to increase the number of data points 

in the minority class. This prevented performance degradation owing to class imbalance 

during model learning and validation and balanced the two classes. 

 

Category Parameters 

Time · Time(T) : Hour, Minute, Second 

Pilot Input Values 

· Power(Slider) : Collective Displacement  

· Lateral cyclic movement(x) : Cyclic Left-Right 

Displacement 

· Fore/aft cyclic movement(y) : Cyclic Up-Down 

Displacement 

· Pedal movement(rx) : Pedal Displacement 

Aircraft Attitude Values · Pitch : Aircraft Pitch Attitude  



                                                       Machine Learning-Based Spatial.... Yim Sehoon et al. 1330  

 

Nanotechnology Perceptions 20 No. S11 (2024)  

· Bank : Aircraft Roll Attitude 

Aircraft Specification 

Values 

· Heading : Aircraft Heading 

· Speed : Aircraft Indicated Airspeed  

· VS(Vertical speed) : Rate of Climb, Rate of Descent 

Table 2. Flight Parameters 

3.3. ML analysis 

The SD dataset was analyzed using an ML-based supervised learning classification 

methodology. Python was used as the analysis tool and feature selection was conducted by 

setting an error threshold to maximize the efficiency and accuracy of the model. This process 

focused on determining the optimal value that minimized the error rate of the model while 

maintaining important information by setting an error threshold. The error criteria varied 

based on the aircraft category (airplanes, helicopters, etc.) and operating conditions (normal 

operations, qualification training, and abnormal attitudes) (ICAO, 2014). Abnormal attitudes 

include turbulence, instrument failure, and poor piloting skills, encompassing all 

unintentionally induced attitudes. Therefore, it is not desirable to apply these to rotary-wing 

aircraft. Consequently, as listed in Table 3, the operationally defined characteristic values of 

rotary-wing aircraft based on consultations with helicopter safety experts from the FAA were 

used as the criteria (Crognale and Krebs, 2011). 

 

Parameters Error Threshold 

Pitch 0 ± 5° 

Bank 0 ± 18° 

Heading 340° ± 10° 

Speed 80knots ± 10knots 

VS(vertical speed) 

Climb : +500FPM ± 1,000FPM 

Level : 0FPM ± 1,000FPM 

Descent : -500FPM ± 1,000FPM 

 

Table 3. Error Threshold 

Data labeling involves assigning labels that identify the category to which a particular data 

point belongs during the training of an ML model. The aim was to accurately classify the 

presence or absence of SD and generate a training dataset that detects and predicts the 

corresponding state. To identify SD situations that may occur during flight, errors related to 

the pilot’s spatial perception and recognition or judgment of aircraft controls were included. 

The classification criteria were established based on flight data, pilot behavioral responses, 

and aircraft performance indicators. Based on these, an SD detection and classification 

algorithm was designed, as shown in Fig. 2. Additionally, the professional judgment of the 

instructor pilot was essential to distinguish between SD-induced errors and those caused by 

the poor manipulation skills of the pilot. The instructor observed the pilots’ responses, aircraft 
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specifications, and consistencies of the three control inputs (pedal, cyclic, and collective) 

during the flight experiment. The coordination of the three control inputs refers to the 

synchronization of the operation of the three control sticks (pedal, cyclic, and collective) used 

to control the aircraft attitude. As stated previously, SD can be broadly classified into Type I, 

wherein the pilot is unaware that they are experiencing SD, and Types II and II, wherein they 

are aware but unable to take appropriate actions owing to a conflict with the illusion. To 

accurately classify these SD states, additional interviews were conducted with the participants 

and instructor pilot after the experiment. They included in-depth discussions regarding the 

abnormal flight situation at a particular time, and the presence or absence of SD was 

determined based on the results. The collected data points were manually labeled by 

classifying them into SD and non-SD situations. The labeled data were then separated into 

training and validation datasets for use in subsequent analyses and modeling processes. 

 
Figure 2. SD classification algorithm 
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4. Results  

4.1 Analysis of pilot errors  

The results of analyzing the differences in pilot-error rates based on the presence or absence 

of SD are presented in Table 4. Heading and Vs were not statistically significant (p > 0.05), 

indicating that there was no significant difference in the median between the two conditions. 

However, significant differences were observed in the p-values for the pitch, bank, and speed 

data. These results imply that when visibility decreased, the pilot switched to IFR and focused 

primarily on the aircraft pitch and bank to maintain a stable attitude. This is because all pilots 

are trained to prioritize the stabilization of pitch and bank as controlling the basic attitude of 

an aircraft is the most crucial factor for ensuring safety. Therefore, only after securing basic 

stability can the pilot control the aircraft to maintain its path or altitude, enabling them to 

respond effectively to emergencies. However, the situation is different in SD cases, wherein 

even if the pilot wants to control the basic flight attitude, they are unable to take appropriate 

actions owing to a conflict with their sensory organs. Therefore, the possibility of pitch, bank, 

and speed errors increases, and their inability to secure basic stability of the aircraft can lead 

to a crash. 

 

Category n Mann-Whitney U p-value 

Pitch 65 1542.0 0.003 

Bank 65 1982.5 0.043 

Heading 65 1768.0 0.080 

Speed 65 1666.5 0.010 

Vs 65 1830.5 0.075 

Table 4. Mann-Whitney U Test Results by SD 

 

The results of the error-rate analysis based on the pilots’ qualification level (student (Certi = 

1), private (Certi = 2), and commercial (Certi = 3)) are presented in Table 5. Under the SD 

condition, the error-occurrence rate differed significantly based on pilots’ qualifications (p-

value <.001). The regression coefficient of student pilots (Certi = 1) was 0.426 and their 

Exp(B) value was estimated to be 1.530, which indicates an increase of approximately 53% 

in the error-occurrence rate compared with commercial pilots. The regression coefficient and 

Exp(B) value of private pilots (Certi = 2) were 0.382 and 1.465, respectively, indicating and 

approximately 46.5% increase in the error-occurrence rate compared with commercial pilots. 

Therefore, a pilot's qualification level is related to the occurrence rate of errors, and student 

and private pilots tend to exhibit higher error-occurrence rates than commercial pilots. Thus, 

as expected, the more experienced the pilot, the fewer the errors, verifying the reliability and 

validity of the simulation flight data employed in this study. 

 

Parameter Estimates 
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Wald 

Chi-

Square 
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es 

of 
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om 
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r 
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pt) 

6.0

55 

.00

92 

6.03

7 

6.07

3 

437430.

651 
1 <.001 

426.1

43 

418.5

65 

433.8

58 

[Certi=

1] 

.42

6 

.01

22 
.402 .449 

1225.96

2 
1 <.001 1.530 1.494 1.567 

[Certi=

2] 

.38

2 

.01

44 
.353 .410 703.377 1 <.001 1.465 1.424 1.507 

[Certi=

3] 
0a . . . . . . 1 . . 

(Scale) 1b          

Dependent Variable : total error 

Model : (Intercept), Certi 

Table 5. Poisson regression analysis by Certification 

 

4.2. Performance evaluation of the SD-detection tool  

After conducting an initial performance evaluation through five-fold cross-validation, the 

performances of the ML models were further evaluated using the area under the receiver 

operating characteristic curve (AUROC) metric and compared with the results obtained in 

previous studies. The AUROC is an important metric for evaluating the performance of binary 

classification models. Additionally, true positive rate (TPR) indicates the ratio of actual 

positive samples predicted as positive, whereas the false positive rate (FPR) indicates the ratio 

of actual negative samples incorrectly predicted as positive. An AUROC value close to 1 

indicates excellent performance and good class discrimination, whereas that close to 0.5 

indicates a performance akin to random guessing. 

The tool developed in this study exhibited AUROC scores of 0.944 for decision tree, 

0.953 for random forest, 0.949 for extra trees, and 0.951 for gradient boosting models, as 

shown in Table 6 and Fig. 3. Thus, random forest exhibited the best performance, indicating 

that it can effectively handle complex SD situations. Additionally, these results demonstrated 

a performance improvement of approximately 13.3% compared to recently employed random 

forest (AUROC = 0.82) and long short-term memory (AUROC = 0.84) models \[45\]. 

Furthermore, the flight data in this study were generated using a flight simulator featuring an 

environment identical to that of an actual flight, and by employing a labeling algorithm that 

additionally considered the error threshold and three-way consistency, a tool that can 

effectively detect SD was developed. 
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Decision Tree (DT) Random Forest (RF) Extra Trees (ET) 
Gradient Boosting 

(GBC) 

0.944 0.953 0.949 0.951 

Table 6. ROC-AUC comparison 

 

 
Figure 3. ROC-AUC Curve(Left DT, Right RF) 

 

4.3. Importance of flight characteristics 

The influence of each flight parameter on inducing SD was analyzed by extracting the 

importance of flight characteristics using the trained SD-detection tool. The results indicated 

that the aircraft heading was the most important parameter across all models. Additionally, 

although the order of the top four important characteristics differed among the models, aircraft 

heading, pilot pedal input (rx), power (slider), and aircraft speed were consistently selected as 

important parameters. 

The results of this study indicate that pitch and bank, which have been considered crucial 

for detecting SD occurrences, may not be reliable indicators of SD because pilots make every 

effort to maintain the aircraft's attitude, even in SD situations. 
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Fig. 4. Random Forest(left) & Extra Trees(right) feature importance 

5. Discussion 

This study did not to develop a generalized SD-detection tool but one based on optimized 

scenarios that are compatible with the mission environments and flight characteristics of 

rotary-wing aircraft. Unlike previous studies that mainly focused on identifying the causes of 

SD from a human behavioral or cognitive perspective, this study developed an SD-detection 

tool using various ML algorithms. However, the accuracy and reliability of the model may be 

affected if high-quality data are not guaranteed. Therefore, high-quality data collected from 

various mission environments and conditions are required to ensure its scalability. Moreover, 

ML models excel at recognizing patterns in complex flight data and can reveal relationships 

that traditional statistical methods may not. In this study, the prediction of SD occurrence and 

its characteristic importance were analyzed using a simulator. However, broader insights can 

be obtained by employing actual flight data in the future. However, realistically reproducing 

SD situations during an actual flight is a dangerous and challenging endeavor. Therefore, a 

certified simulator of the same type can be useful for reproducing SD situations without the 

additional complexities and risks involved in actual flight situations. Thus, the proposed 

simulator-based approach can increase the practical applicability of ML-based SD detection 

tools and contribute significantly to aviation safety research and development. 
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6. Conclusion  

This study collected high-quality data from flight scenarios specifically designed to induce 

and detect SD occurrences in rotary-wing aircraft and developed a new ML-based SD 

detection tool using these data. Considering that the performance of ML models depends 

heavily on the data quality, this study succeeded in improving the detection accuracy in three 

key aspects. 

First, unlike previous studies that did not consider various flight conditions to detect 

general SD occurrences, this study generated a more realistic flight dataset using scenarios 

designed to reflect actual flight situations. This approach allowed the ML model to detect and 

predict SD occurrences in real flight situations more accurately by precisely capturing the 

flight data and situational responses of a rotary-wing aircraft. 

Second, in the flight-data selection process, the control input values were directly related 

to the pilot's response and the aircraft's attitude values, and the specification values provided 

more accurate criteria reflecting the pilot's control state and SD situation. In particular, the 

aircraft heading was found to be crucial for identifying the pilot's intended control state and 

SD situation, and the feature selection process through the error-rate threshold setting 

contributed to improving the accuracy of the data for SD detection. 

Third, data labeling was performed using an SD detection and classification algorithm, 

enabling the distinction between SD and poor manipulation by pilots. The classification 

criteria for this were set as the control response, specification correction, and three-way 

consistency, which allowed identifying and classifying the pilot’s SD state more accurately. 

Thus, we developed a unique ML-based method for detecting SD occurrences. The 

random forest algorithm exhibited the best performance, demonstrating a performance 

improvement of approximately 13.3% compared to other recently proposed models. In 

addition, important new parameters were discovered to detect SD. Pitch and bank, which are 

traditionally considered to be closely related to SD, were identified as major indicators of loss 

of control, and it was confirmed that heading, pedal input (rx), power (slider), and speed were 

important factors for SD detection. 

 

Acknowledgments This study was supported by a Hanseo University Research Grant in 2023. 

 

References 

[1] Administration, F.A. (2009) Pilot’s handbook of aeronautical knowledge. Skyhorse Publishing 

Inc. 

[2] Ayiei, A., Murray, J. and Wild, G. (2020) ‘Visual flight into instrument meteorological condition: 

A post accident analysis’, Safety, 6(2), p. 19. 

[3] Chahine, M.H.A.A., Hasan, R. and Iddin, W.A. (2023) ‘Flight Delays Prediction by using 

Machine Learning’, GSJ, 11(6). 

[4] Crognale, M.A. and Krebs, W.K. (2011) ‘Performance of Helicopter Pilots During Inadvertent 

Flight Into Instrument Meteorological Conditions’, The International Journal of Aviation 

Psychology, 21(3), pp. 235–253. Available at: https://doi.org/10.1080/10508414.2011.582443. 

[5] Fernández, A. et al. (2019) ‘Flight data monitoring (FDM) unknown hazards detection during 

approach phase using clustering techniques and AutoEncoders’, Proceedings of the Ninth SESAR 

Innovation Days, Athens, Greece, pp. 2–5. 



1337 Yim Sehoon et al. Machine Learning-Based Spatial....                                                                                                      

 

Nanotechnology Perceptions 20 No. S11 (2024)  

[6] Foucher, J. et al. (2022) ‘Simulation and Classification of Spatial Disorientation in a Flight Use-

Case Using Vestibular Stimulation’, IEEE Access, 10, pp. 104242–104269. Available at: 

https://doi.org/10.1109/ACCESS.2022.3210526. 

[7] Frantis, P. and Petru, A. (2018) ‘Automatic Evaluation of Spatial Disorientation’, Advances in 

Military Technology, 13(2), pp. 185–192. 

[8] Gallo, M.A. et al. (2015) ‘Inadvertent VFR-into-IMC flights: A qualitative approach to describing 

GA pilots’ first-hand experiences’, The Collegiate Aviation Review International, 33(2). 

[9] Gibb, R., Ercoline, B. and Scharff, L. (2011) ‘Spatial disorientation: decades of pilot fatalities’, 

Aviation, space, and environmental medicine, 82(7), pp. 717–724. 

[10] Gresty, M.A. and Golding, J.F. (2009) ‘Impact of Vertigo and Spatial Disorientation on 

Concurrent Cognitive Tasks’, Annals of the New York Academy of Sciences, 1164(1), pp. 263–

267. Available at: https://doi.org/10.1111/j.1749-6632.2008.03744.x. 

[11] Gu, B.-S. (1994) ‘A Search on the Spatial Orientation in Flight’, Journal of the Korean Society 

for Aviation and Aeronautics, 2, pp. 139–182. 

[12] Hao, C. et al. (2020) ‘A classification method for unrecognized spatial disorientation based on 

perceptual process’, Ieee Access, 8, pp. 140654–140660. 

[13] Headquarters Department of the Army (2000) ‘Aeromedical Training for Flight Personnel’. 

Washington DC. 

[14] Heinle, T.E. And Ercoline, W.R. (2003) ‘Spatial Disorientation: Causes, Consequences And 

Countermeasures For The Usaf’, In The Rto Hfm Symposium, Air Force Research Lab Wright-

Patterson Afb Oh Human Effectiveness Directorate, La Coruña, Spain. 

[15] Holmes, S.R. et al. (2003) ‘Survey of spatial disorientation in military pilots and navigators’, 

Aviation, space, and environmental medicine, 74(9), pp. 957–965. 

[16] Huang, L. et al. (2023) ‘How the black hole illusion environment affects operational performance 

at different flight phases in aviation’, Applied Ergonomics, 113, p. 104048. 

[17] ICAO (2009) ‘Manual of criteria for the qualification of flight simulation training devices’, 

International Civil Aviation Organization, Montreal, volume I—aeroplanes. 

[18] ICAO (2014) ‘Manual on Aeroplane Upset Prevention and Recovery Training’. 

INTERNATIONAL CIVIL AVIATION ORGANIZATION. 

[19] Johnson, B. and Christensen, L. (2012) ‘Quantitative, qualitative, and mixed approaches’, 

Educational Research, University of South Alabama: SAGE [Preprint]. 

[20] Johnson, C.M. and Wiegmann, D.A. (2011) ‘Pilot Error During Visual Flight Into Instrument 

Weather: An Experiment Using Advanced Simulation and Analysis Methods’, Proceedings of the 

Human Factors and Ergonomics Society Annual Meeting, 55(1), pp. 138–142. Available at: 

https://doi.org/10.1177/1071181311551029. 

[21] Lewkowicz, R. et al. (2015) ‘Flights with the risk of spatial disorientation in the measurements of 

oculomotor activity of pilots’, The Polish Journal of Aviation Medicine and Psychology, 21(3), 

p. 23. 

[22] Li, Y. et al. (2015) ‘EEG functional network properties related to visually induced unrecognized 

spatial disorientation’, Bio-medical materials and engineering, 26(s1), pp. S1115–S1124. 

[23] Navathe, P.D. and Singh, B. (1994) ‘An operational definition for spatial disorientation’, Aviation 

Space and Environmental Medicine, 65, pp. 1153–1153. 

[24] Newman, M. et al. (2014) ‘Perceptual Modeling as a Tool to Prevent Aircraft Upset Associated 

with Spatial Disorientation’, in AIAA Guidance, Navigation, and Control Conference. AIAA 

Guidance, Navigation, and Control Conference, National Harbor, Maryland: American Institute 

of Aeronautics and Astronautics. Available at: https://doi.org/10.2514/6.2014-0443. 

[25] Newman, R.L. and Rupert, A.H. (2020) ‘The Magnitude of the Spatial Disorientation Problem in 

Transport Airplanes’, Aerospace Medicine and Human Performance, 91(2), pp. 65–70. Available 

at: https://doi.org/10.3357/AMHP.5442.2020. 



                                                       Machine Learning-Based Spatial.... Yim Sehoon et al. 1338  

 

Nanotechnology Perceptions 20 No. S11 (2024)  

[26] Patton, M. (2002) ‘Qualitative Research and Evaluation Methods. London: Sage Publications’. 

Inc. 

[27] Previc, F.H. et al. (2007) ‘Simulator-induced spatial disorientation: effects of age, sleep 

deprivation, and type of conflict’, Aviation, space, and environmental medicine, 78(5), pp. 470–

477. 

[28] e Silva, L.C. and Murça, M.C.R. (2023) ‘A data analytics framework for anomaly detection in 

flight operations’, Journal of Air Transport Management, 110, p. 102409. 

[29] Timothy, K.K., Peng, C. and Jung, J.J. (2019) ‘Spatial-Temporal Long Short-Term Memory (ST-

LSTM) Modelling for Flight Departure Delay Prediction: Preliminary study’, Proceedings of the 

Korea Information and Communications Society Conference, 23(2), pp. 265–268. 

[30] Tu, M.-Y. et al. (2021) ‘Analysis of in-flight spatial disorientation among military pilots in 

Taiwan’, Journal of Medical Sciences, 41(1), pp. 22–28. 

[31] US Helicopter Safety Team (2020) ‘Spatial Disorientation Induced by a Degraded Visual 

Environment’. Available at: https://ushst.org/wp-content/uploads/2021/02/Rec-Prac-HSE-127-

Spatial-Disorientation.pdf (Accessed: 28 April 2024). 

[32] Vreeken, J. (2013) ‘Helicopter flight in a degraded visual environment’. National Aerospace 

Laboratory NLR. 

[33] Webb, C.M. et al. (2010) ‘The effect of spatial disorientation on working memory and 

mathematical processing’, Aviation Space and Environmental Medicine, 81, p. 313. 

[34] Williams, Q.L. et al. (2018) ‘PW 2658 Human machine interaction system for providing neural 

interface based model for alerting and mitigation of spatial disorientation for pilots’, Injury 

Prevention, 24(Suppl 2), pp. A218–A218. Available at: https://doi.org/10.1136/injuryprevention-

2018-safety.603. 

 


