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Research in agriculture is growing, and predicting the best crops for an area depends on factors like 

moisture, rainfall, and temperature. Environmental changes have made farming more challenging, 

leading to the use of Deep Learning (DL) for prediction. Although DL models like Deep Neural 

Networks (DNNs) and Convolutional Neural Networks (CNNs) learn features from the given data, 

they cannot handle time-series or sequential data. They are not suitable for extracting features at 

different temporal scales, resulting in low performance in predicting future crop yields. As a result, 

in this paper, a novel DL-based future Crop Yield prediction Network called the DeepCropYNet 

model is proposed using a comprehensive dataset comprising historical information on weather, 

soil, and crop yields. This proposed DeepCropYNet employs a hierarchical integration of Long 

Short-Term Memory (LSTM) and Temporal Convolutional Network (TCN). The initial step 

involves the normalization of the time series of past yield and atmospheric data, followed by input 

to the LSTM network to distinguish temporal dependencies and extract representative features. 

Also, the TCN is constructed to apply a hierarchy of temporal convolutions across the input data, 

capturing features at various time scales. The resulting feature vectors from the TCN are forwarded 

to a Fully Connected (FC) layer for predicting future crop yields after specific periods. Finally, the 

experimental outcomes reveal that the DeepCropYNet model attains 88%, 90%, 86%, 84%, and 

82% accuracy on groundnut, maize, moong, rice, and Urad crop datasets, contrasted with the 

conventional models.  

 

Keywords: Crop yield prediction, Deep learning, Temporal scale, Long short-term memory, 

Temporal convolutional network. 

 

 

1. Introduction 

Agriculture is a major social issue as it is the primary source of food. Many countries still have 

populations suffering from food shortages and high population growth rates, leading to 

starvation [1]. The increasing population, temperature variability, soil erosion, and changing 
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weather require solutions to ensure agricultural development and timely harvesting. It is also 

important to promote environmentally responsible farming and food production methods [2]. 

Accurate forecasting of agricultural yield, crop protection, and soil estimation is crucial for 

the nation's food supply [3]. Precise agricultural productivity predictions are also necessary 

for proper export and import evaluations to enhance public food safety [4]. 

Predicting crop productivity is a challenging task due to a multitude of complex factors. 

Location, soil quality, pests, genotype, water availability, temperature, rainfall, crop planning, 

and other variables all contribute to the success of agricultural output [5]. In the past, farmers 

relied on their expertise and historical data to forecast crop yields and make informed 

harvesting decisions [6-7]. However, the emergence of new technologies such as crop model 

simulation and Artificial Intelligence (AI) has allowed for more precise yield prediction in 

recent years [8-9]. 

Machine Learning (ML) algorithms like decision trees and their ensembles are easily 

interpretable methods, while neural networks may use feature attribution techniques to provide 

explanations for their predictions [10]. The study of making ML and AI more understandable 

is growing, and feature attribution approaches have made DL models easier to understand and 

analyse [11]. DL also offers the advantage of automatic feature learning such as learning 

complex associations among data, enhancing the discriminative ability of the learned features 

[12]. Numerous studies have employed DL models such as DNN and CNN to forecast crop 

yields, with some comparing their findings to those generated using traditional ML methods 

and analyzing the influence of different features [13-14]. However, these studies do not 

address the challenge of extracting the features at multiple temporal scales since the temporal 

convolutions across the input data are not considered in the standard CNN. 

1.1 Main Contributions of the Paper 

Therefore, this article introduces the DeepCropYNet model, a new deep network for predicting 

crop yields. The model uses historical weather, soil, and crop yield data to make predictions. 

It combines LSTM and TCN to extract features at different time scales. First, the historical 

yield and environmental data are normalized. Then, the LSTM captures temporal 

dependencies and extracts representative features. Additionally, the TCN applies temporal 

convolutions to extract features from multiple time scales. The resulting feature vectors are 

used to predict future crop yields. Thus, the DeepCropYNet model effectively captures spatial 

and temporal dependencies to improve prediction performance. 

The following sections are structured as follows: Section II discusses earlier studies. Section 

III describes the DeepCropYNet model for crop yield prediction, and Section IV illustrates its 

performance. Section V provides a summary of the entire work. 

 

2. Literature Survey 

This section discusses recent studies related to predicting different crop yields using various 

ML and DL algorithms. Gavahi et al. [15] introduced DeepYield, a CNN combined with 

LSTM to enhance the precision of agricultural yield predictions. However, to improve its 

forecasting capability, it must consider additional variables such as weather and environmental 

conditions that impact crop development. 
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Shahhosseini et al. [16] introduced a hybrid approach that combines ML and crop modeling. 

Initially, crop modeling was used to determine features, which were then input into an 

ensemble ML algorithm for the final crop yield prediction. However, this method was unable 

to fully capture the complex relationships between yield and agrometeorological data. 

Ansarifar et al. [17] introduced a new predictive framework, the interaction regression model, 

to forecast crop yields based on the influence of weather, soil, management, and their 

interactions. However, the model's efficiency may be compromised as it struggles to identify 

robust features and interactions when dealing with larger datasets. 

Paudel et al. [18] studied ML methods for predicting crop yield at various spatial levels. They 

compared regional crop yield predictions to a linear trend model over 5 years and analyzed the 

differences between observed and estimated yields for average and extreme harvests. They 

also combined local forecasts to the state level. However, the input data may not contain each 

parameter contributing to yield erraticism, such as inconsistencies in meteorological variables. 

Nejad et al. [19] introduced a 3D-CNN and attention Convolutional LSTM (ConvLSTM) 

model for predicting multispectral agricultural yield. A series of CNNs were used to extract 

spectral-spatial characteristics, while a ConvLSTM was used to extract spatiotemporal 

features for estimating crop productivity. However, it cannot capture representative features 

at multiple scales. Oikonomidis et al. [20] developed hybrid DL models, including CNN-

XGBoost, CNN-DNN, and CNN-LSTM, to forecast crop yield based on weather and soil 

factors. However, these models may face challenges in capturing long-term dependencies in 

data, particularly when dealing with intricate relationships in agricultural systems. They may 

not encompass all pertinent contextual information. 

Khan et al. [21] introduced a new method for predicting oil palm yield using supervised ML 

algorithms. They collected data on soil moisture, climate, and fresh fruit bunch yield, removed 

duplicates, and trained tree and AdaBoost models to forecast oil palm yield. Conversely, it 

struggles to comprehend complex relationships among variables in agrometeorological and 

other multisource datasets. Batool et al. [22] utilized ML algorithms to predict tea crop yield 

based on climate, crop, soil, and agronomic information. However, such algorithms were 

unable to effectively capture the spatial and temporal relationships among the various data, 

resulting in inaccurate predictions. 

Tripathi et al. [23] introduced a DL Multi-Layer Perceptron (DLMLP) and remote sensing for 

predicting soil health and crop yield. They utilized satellite data from Sentinel-1 and Sentinel-

2, along with field data, to predict soil health attributes. These predicted soil factors were 

subsequently used to forecast wheat crop yield. However, the model was unable to capture the 

spatial and temporal relationships among different environmental factors. 

Seireg et al. [24] utilized computer simulation data to develop an Ensemble ML Algorithm 

(EMLA) for predicting wild blueberry yield. The hyperparameters of the MLA were fine-

tuned using a Bayesian optimizer. A combination of cascade and stacking approaches, along 

with feature selection algorithms, was employed to create a unique blend of MLA for yield 

prediction. However, the accuracy of the predictions decreased when dealing with large 

datasets. 

Zhu et al. [25] introduced a new Deep-learning Adaptive Crop Model (DACM) designed to 
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enable adaptive high-precision yield prediction in huge regions. The model focuses on 

adaptive learning of the spatial heterogeneity of crop development by completely capturing 

crop data. But it does not extract temporal correlations between environmental factors and 

crop yield at different periods. Srivastava et al. [26] utilized the CNN model, incorporating 1D 

convolution operation to capture the time dependencies of environmental and phenological 

factors to predict winter wheat yield. However, a major limitation was its black-box nature, 

resulting in poor prediction performance. 

2.1 Research Gap 

Based on these studies, it is clear that CNN models are effective at capturing spatial 

relationships within data. However, when it comes to tasks involving temporal relationships, 

such as predicting crop yield based on environmental attributes over time, CNNs may have 

limitations. They do not effectively extract features in different temporal scales or consider 

temporal convolutions across input sequences. Additionally, they operate on fixed-size input 

windows, making it difficult to capture patterns occurring over extended periods and handle 

irregular time intervals between data points. To address these challenges in crop yield 

prediction with temporal data, alternative architectures like LSTMs or hybrid models 

combining CNNs with recurrent layers may be more suitable. This study aims to address these 

challenges by adopting the TCN with the LSTM, which extracts representative features from 

different temporal scales. 

 

3. Proposed Methodology 

This section provides a brief explanation of the DeepCropYNet model for predicting future 

crop yields. A general layout of this study is illustrated in Figure 1. Initially, historical yield 

data and environmental data (e.g., CO2 concentration, temperature, humidity, soil pH, etc.) 

are gathered. These data are then pre-processed and input into the DeepCropYNet model to 

predict future crop yields. Further, the model's effectiveness is measured by evaluating the 

estimated crop yields with the observed crop yields. This methodology comprises pre-

processing, LSTM, TCN, and FC layer modules, which are briefly described in the following 

subsections. 

 

Figure 1 General Layout of this Study 
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3.1 Data Pre-processing 

The goal is to estimate future crop yield after a specific duration using time-series data that 

includes past yield and atmospheric data. As depicted in Figure 2, the time-series of length N, 

represented by xt−N, … , xt is used as the input for the network. The xt in time-series is a vector 

that includes observed yield data, and environmental data recorded during period t. Initially, 

the data is normalized to a range between 0 and 1 by applying normalization to each factor 

(e.g., historical yield, soil parameters, and weather parameters) using Eq. (1). 

x̂t
i =

xt
i−xmin

i

xmax
i −xmin

i        (1) 

In Eq. (1), xt
i is the ith factor at t, xmax

i  and xmin
i  are the highest and lowest ranges for the 

corresponding factor. 

3.2 Design of DeepCropYNet Model 

Afterwards, the standardized time-series data is inputted into the many LSTM units, as 

depicted in Figure 2. In each LSTM unit, the following arithmetic operations are performed: 

it = σ(Wxi
xt + Whi

ht−1 + Wci
ct−1 + bi)    (2) 

ft = σ(Wxf
xt + Whf

ht−1 + Wcf
ct−1 + bf)    (3) 

ct = ftct−1 + it tanh tanh (Wxc
xt + Whc

ht−1 + bc)   (4) 

ot = σ(Wxo
xt + Who

ht−1 + Wco
ct−1 + bo)    (5) 

ht = ot tanh tanh (ct)       (6) 

In Eqns. (2) – (6), xt, ot, ht are the input, output, and state of the LSTM related to the instance 

during t, respectively, ct indicates the LSTM cell value signifying encoded past data acquired 

before t, σ(∙),tanh tanh (∙)  are sigmoid and tanh functions, respectively, and other variables 

are corresponding weights and biases. 

Thus, the LSTM network extracts representative features from the standardized input time-

series as its states [⋯ , ht−1, ht, ht+1, ⋯ ], which are given to the TCN for further processing. 

The TCN module implements a series of temporal convolutions to its input data, capturing 

descriptive features at various time scales. As shown in Figure 2, the dilated TCN module 

comprises many residual blocks, each containing several dilated causal convolution layers. 

The dilated convolution layers perform dilated causal temporal convolution operations. 
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Figure 2 Architecture of DeepCropYNet Model 

Specifically, the tth result in the lth layer and jth block (represented by St
j,l

) is determined from 

the previous layer using Eq. (7). 

St
j,l

= f (w1St−s
j,l−1

+ w2St
j,l−1

+ b)      (7) 

In Eq. (7), f(∙) is the Rectified Linear Unit (ReLU) activation function, w1 and w2 are weights, 
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and b denotes the bias value.  

During the training process, weight normalization is applied to the weights of a dilated 

convolution layer to aid in the convergence of the associated weight training algorithm such 

as the Adam. Additionally, to improve model generalizability, it is feasible to eliminate certain 

weights from the dilated convolution layers. 

An extra 1D convolution process is applied to all residual blocks to align the size of the residual 

block input with that of the dilated causal convolution layer result, allowing them to be added 

together. The result of a specific residual block serves as the input for the subsequent block, 

and the result of the final residual block is the absolute result. The absolute yield prediction is 

produced by flattening the result of the TCN's final residual block and inputting it into the FC 

layer. Particularly, the FC layer contains a single result with a ReLU activation. The 

parameters of DeepCropYNet are listed in Table 1. 

Table 1 Parameters of DeepCropYNet Model 
Network Parameters Range 

LSTM No. of LSTM units 200 

TCN 

No. of dilated convolutional layers 3 

Kernel size 3 

Dilated rate 1 

No. of convolutional filters 250 

Activation function ReLU 

Dropout rate 0.2 

Training parameters 

Learning rate 0.001 

Batch size 32 

No. of epochs 100 

Optimizer Adam 

Thus, the DeepCropYNet model is trained to predict future crop yield, and its performance is 

measured by comparing the predicted values to the actual crop yield values. 

Algorithm 1: Future Crop Yield Prediction Using DeepCropYNet Model 

Input: Historical yield data, soil parameters, and weather parameters 

Output: Predicted crop yields 

1. Begin 

2. Normalize each input data using Eq. (1); 

3. Train the LSTM network for feature learning; 

//LSTM procedure: 

Input: xt, ht−1, and ct−1; 

Initialize parameters: 

Wf, Wi, Wc, Wo: weight matrices for the forget, input, cell state, and output gates, correspondingly; 

bf, bi, bc, b0: bias vectors for the forget, input, cell state, and output gates, correspondingly; 

LSTM cell: 

Function_LSTM_Cell(xt, ht−1, ct−1) 

   Forget gate ft; 
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   Input gate it; 

   Cell state update ct; 

   Output gate ot; 

   Hidden state ht; 

Return ht, ct  

4. Concatenate LSTM outputs; 

5. Train the TCN model; 

//TCN procedure 

Create dilated convolutional layers in the TCN; 

Capture features with different receptive fields; 

Apply weight normalization, ReLU, and dropout after convolutional layer; 

6. Flatten the TCN outputs; 

7. Apply FC with ReLU to predict future crop yields; 

8. End 

 

4. Experimental Results 

This section evaluates the efficiency of the DeepCropYNet model with existing models in 

MATLAB 2019b. The experiment was conducted on a system with a quad-core Intel i5 2.20 

GHz processor and 64 GB storage. Weather, crop, and soil data for groundnut, maize, moong 

(green gram), rice, and Urad (black gram) from May to December 2022 were obtained from 

sources [27], [28], and [29]. A total of 4730 data points were collected (946 data points for 

each crop) and divided into an 80-20 ratio for training and testing. For comparison analysis, 

existing models such as DeepYield [15], CNN-DNN [20], DLMLP [23], and DACM [25] were 

also implemented and tested using the dataset considered in this study. 

● Mean Absolute Error (MAE): It represents the mean absolute dissimilarity between 

estimated and observed values. 

MAE =
1

n
∑ |yi − ŷi|

n
i=1       (8) 

In Eq. (8), n denotes total observations, yi and ŷi denote the observed and estimated values of 

ith data, respectively. 

● Mean Squared Error (MSE): It measures the mean squared dissimilarity between 

estimated and observed values. 

MSE =
1

n
∑ (yi − ŷi)

2n
i=1       (9) 

● Root Mean Squared Error (RMSE): It is the square root of the MSE, provided that a 

mean magnitude of losses. 

RMSE = √
1

n
∑ (yi − ŷi)

2n
i=1       (10) 
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● Correlation coefficient (r): It is used to assess the degree of association between 

predicted crop yields and actual crop yields. 

r = √1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−yi)
2

n
i=1

      (11) 

In Eq. (11), yi is the mean of the actual crop yield values. 

● Accuracy: It is calculated by 

Accuracy =
Number of correct predictions

Total number of predictions
× 100   (12) 

● Precision: It is the percentage of exactly estimated positive instances (True Positives 

(TP)) to the sum of instances predicted as positive (TP + False Positives (FP)). 

Precision =
TP

TP+FP
× 100      (13) 

● Recall: It is the percentage of exactly estimated positive instances (TP) to the sum of 

actual positive instances (TP + False Negatives (FN)). 

Precision =
TP

TP+FN
× 100      (14) 

● F-measure: It is determined by 

F − measure =
2×Precision×Recall

Precision+Recall
× 100    (15) 

Table 2 presents a test results of different models for predicting future crop yields using the 

considered dataset. 

Table 2 Test Results of Different Crop Yield Prediction Models 
Crop type Metrics DLMLP CNN-DNN DACM DeepYield DeepCropYNet 

Groundnut 

MAE 0.1011 0.0864 0.0715 0.0608 0.0513 

MSE 0.0901 0.0796 0.0674 0.0582 0.0469 

RMSE 0.3002 0.2821 0.2596 0.2412 0.2166 

r  0.8150 0.8294 0.8386 0.8500 0.8617 

Precision (%) 72 78 81 84 88 

Recall (%) 78 79 82 85 89 

F-measure (%) 75 78.5 81.5 84.5 88.5 

Accuracy (%) 76 79 81 84 88 

Maize 

MAE 0.1143 0.0998 0.0802 0.0711 0.0586 

MSE 0.1107 0.1035 0.0951 0.0837 0.0719 

RMSE 0.3327 0.3217 0.3084 0.2893 0.2681 

r  0.8096 0.8114 0.8237 0.8311 0.8459 

Precision (%) 70 76 80 88 92 

Recall (%) 76 78 81 87 89 

F-measure (%) 73 77 80.5 87.5 90.5 

Accuracy (%) 75 77 82 85 90 

Moong 

MAE 0.1056 0.0966 0.0844 0.0730 0.0612 

MSE 0.0988 0.0904 0.0817 0.0705 0.0600 

RMSE 0.3143 0.3007 0.2858 0.2655 0.2449 

r  0.8178 0.8302 0.8411 0.8537 0.8644 

Precision (%) 72 75 78 80 85 
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Recall (%) 78 80 81 85 88 

F-measure (%) 75 77 79 82 87 

Accuracy (%) 74 76 80 83 86 

Rice 

MAE 0.1028 0.0931 0.0817 0.0699 0.0576 

MSE 0.0989 0.0910 0.0800 0.0676 0.0552 

RMSE 0.3145 0.3017 0.2828 0.2600 0.2349 

r  0.8107 0.8213 0.8335 0.8479 0.8600 

Precision (%) 68 72 76 78 82 

Recall (%) 75 80 82 85 88 

F-measure (%) 71 76 79 81 86 

Accuracy (%) 70 74 78 80 84 

Urad 

MAE 0.1206 0.1094 0.0972 0.0855 0.0741 

MSE 0.1152 0.1035 0.0911 0.0834 0.0709 

RMSE 0.3394 0.3217 0.3018 0.2888 0.2663 

r  0.8095 0.8201 0.8325 0.8461 0.8587 

Precision (%) 68 70 74 76 80 

Recall (%) 72 75 78 80 85 

F-measure (%) 70 72 76 78 83 

Accuracy (%) 69 71 75 77 82 

Figure 3(a) illustrates the test results for the DeepCropYNet in comparison to existing models 

for predicting future groundnut crop yield. The MAE of DeepCropYNet is 49.26%, 40.63%, 

28.25%, and 15.63% lower than the DLMLP, CNN-DNN, DACM, and DeepYield models, 

respectively. The MSE is reduced by 47.95%, 41.08%, 30.42%, and 19.42% compared to the 

DLMLP, CNN-DNN, DACM, and DeepYield, respectively. The RMSE is 27.85%, 23.22%, 

16.56%, and 10.2% lower than the DLMLP, CNN-DNN, DACM, and DeepYield models, 

respectively. Additionally, the correlation coefficient is increased by 5.73%, 3.89%, 2.75%, 

and 1.38% compared to the DLMLP, CNN-DNN, DACM, and DeepYield models, 

respectively. 

 

Figure 3(a) Performance Analysis of Different Yield Prediction Models for Groundnut Crop 

 

R
an

ge

Evaluation Metrics

Test Results for Groundnut Crop
DLMLP

CNN-DNN

DACM

DeepYield

DeepCropYNet



329 G. Pramela et al. A Combined Long Short-Term Memory...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S12 (2024) 

 

Figure 3(b) Prediction Efficiency of Different Yield Prediction Models for Groundnut Crop 

Figure 3(b) demonstrates that the DeepCropYNet increases precision by 22.2%, 12.8%, 8.6%, 

and 4.8% compared to the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

Additionally, the recall is 14.1%, 12.7%, 8.5%, and 4.7% higher than the DLMLP, CNN-

DNN, DACM, and DeepYield models, respectively. The f-measure is also 18%, 12.7%, 8.6%, 

and 4.7% higher than the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

Furthermore, the accuracy is 15.8%, 11.4%, 8.6%, and 4.8% higher than the DLMLP, CNN-

DNN, DACM, and DeepYield models, respectively. 

 

Figure 4(a) Performance Analysis of Different Yield Prediction Models for Maize Crop 

Figure 4(a) shows the test results for the DeepCropYNet compared to other models for 

predicting future maize crop yield. The MAE of DeepCropYNet is lower than the DLMLP, 

CNN-DNN, DACM, and DeepYield models by 48.73%, 41.28%, 26.93%, and 17.58% 

respectively. The MSE of DeepCropYNet is reduced by 35.05%, 30.53%, 24.4%, and 14.1% 

compared to the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. The 

RMSE is lower than the DLMLP, CNN-DNN, DACM, and DeepYield models by 19.42%, 

16.66%, 13.07%, and 7.33% respectively. The correlation coefficient is increased by 4.48%, 

4.25%, 2.7%, and 1.78% compared to the DLMLP, CNN-DNN, DACM, and DeepYield 

models, respectively. 

Figure 4(b) demonstrates that the DeepCropYNet increases precision by 31.4%, 21.1%, 15%, 

and 4.5% compared to the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 
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Additionally, the recall is 17.1%, 14.1%, 9.9%, and 2.3% higher than the DLMLP, CNN-

DNN, DACM, and DeepYield models, respectively. The f-measure is also 24%, 17.5%, 

12.4%, and 3.4% higher than the DLMLP, CNN-DNN, DACM, and DeepYield models, 

respectively. Furthermore, the accuracy is 20%, 16.9%, 9.8%, and 5.9% higher than the 

DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

 

Figure 4(b) Prediction Efficiency of Different Yield Prediction Models for Maize Crop 

 

Figure 5(a) Performance Analysis of Different Yield Prediction Models for Moong Crop 

Figure 5(a) shows the test results for the DeepCropYNet compared to other models for 

predicting future moong crop yield. The MAE of DeepCropYNet is significantly lower than 

the DLMLP, CNN-DNN, DACM, and DeepYield models, with reductions of 42.05%, 

36.65%, 27.49%, and 16.16% respectively. The MSE is also reduced by 39.27%, 33.63%, 

26.56%, and 14.89% compared to the same models. The RMSE is lower by 22.08%, 18.56%, 

14.31%, and 7.76% respectively. Additionally, the correlation coefficient is increased by 

5.7%, 4.12%, 2.77%, and 1.25% compared to the DLMLP, CNN-DNN, DACM, and 

DeepYield models. 
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Figure 5(b) Prediction Efficiency of Different Yield Prediction Models for Moong Crop 

Figure 5(b) demonstrates that the DeepCropYNet increases precision by 18.1%, 13.3%, 9%, 

and 6.3% compared to the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

Additionally, the recall is 12.8%, 10%, 8.6%, and 3.5% higher than the DLMLP, CNN-DNN, 

DACM, and DeepYield models, respectively. The f-measure is also 16%, 13%, 10.1%, and 

6.1% higher than the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

Furthermore, the accuracy is 16.2%, 13.2%, 7.5%, and 3.6% higher than the DLMLP, CNN-

DNN, DACM, and DeepYield models, respectively. 

 

Figure 6(a) Performance Analysis of Different Yield Prediction Models for Rice Crop 

Figure 6(a) illustrates the test results for the DeepCropYNet in comparison to other models for 

predicting future rice crop yield. The MAE of DeepCropYNet is 43.97%, 38.13%, 29.5%, and 

17.6% lower than the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

Additionally, the MSE of DeepCropYNet is reduced by 44.19%, 39.34%, 31%, and 18.34% 

compared to the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. The 

RMSE is also lower than the DLMLP, CNN-DNN, DACM, and DeepYield models by 

25.31%, 22.14%, 16.94%, and 9.65% respectively. Furthermore, the correlation coefficient is 

increased by 6.08%, 4.71%, 3.18%, and 1.43% compared to the DLMLP, CNN-DNN, DACM, 

and DeepYield models, respectively. 
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Figure 6(b) Prediction Efficiency of Different Yield Prediction Models for Rice Crop 

Figure 6(b) demonstrates that the DeepCropYNet increases precision by 20.6%, 13.9%, 7.9%, 

and 5.1% compared to the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

Additionally, the recall is 17.3%, 10%, 7.3%, and 3.5% higher than the DLMLP, CNN-DNN, 

DACM, and DeepYield models, respectively. The f-measure is also 21.1%, 13.2%, 8.9%, and 

6.2% higher than the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

Furthermore, the accuracy is 20%, 13.5%, 7.7%, and 5% higher than the DLMLP, CNN-DNN, 

DACM, and DeepYield models, respectively. 

 

Figure 7(a) Performance Analysis of Different Yield Prediction Models for Urad Crop 

 

Figure 7(b) Prediction Efficiency of Different Yield Prediction Models for Urad Crop 
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Figure 7(a) demonstrates the test results for the DeepCropYNet in comparison to other models 

for predicting future Urad crop yield. The MAE of DeepCropYNet is 38.56%, 32.27%, 

23.77%, and 13.33% lower than the DLMLP, CNN-DNN, DACM, and DeepYield models, 

respectively. Additionally, the MSE of DeepCropYNet is reduced by 38.45%, 31.5%, 22.17%, 

and 14.99% compared to the DLMLP, CNN-DNN, DACM, and DeepYield models, 

respectively. The RMSE is also lower than the DLMLP, CNN-DNN, DACM, and DeepYield 

models by 21.54%, 17.22%, 11.76%, and 7.79% respectively. The correlation coefficient is 

increased by 6.08%, 4.71%, 3.15%, and 1.49% compared to the DLMLP, CNN-DNN, DACM, 

and DeepYield models, respectively. 

Figure 7(b) demonstrates that the DeepCropYNet increases precision by 17.6%, 14.3%, 8.1%, 

and 5.3% compared to the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

Additionally, the recall is 18.1%, 13.3%, 9%, and 6.3% higher than the DLMLP, CNN-DNN, 

DACM, and DeepYield models, respectively. The f-measure is also 18.6%, 15.3%, 9.2%, and 

6.4% higher than the DLMLP, CNN-DNN, DACM, and DeepYield models, respectively. 

Furthermore, the accuracy is 18.8%, 15.5%, 9.3%, and 6.5% higher than the DLMLP, CNN-

DNN, DACM, and DeepYield models, respectively. 

According to these analyses, it is evident that the DeepCropYNet model outperforms other 

models in accurately predicting future crop yields. This is due to its ability to capture both 

spatial and temporal dependencies among environmental data and crop yield at different 

periods. Therefore, this model can be beneficial for farmers in predicting yield productivity 

earlier based on weather and soil conditions. 

 

5. Conclusion 

This paper presents the DeepCropYNet model for predicting future crop yields from the 

historical data on weather, soil, and crop yields by combining the LSTM and TCN 

architectures. First, the collected yield and environmental data are normalized and given to the 

LSTM to extract representative features. The TCN is trained to capture temporal dependencies 

among different factors, and extract representative features at multiple scales. The resultant 

feature vector is then passed to the FC layer to accurately predict future crop yields. The 

experimental results confirm that DeepCropYNet outperforms existing models, making it an 

effective tool for precision agriculture and informed decision-making in crop yield prediction. 

The test results show that for groundnut, maize, moong, rice, and Urad crops, DeepCropYNet 

achieved MAE values of 0.0513, 0.0586, 0.0612, 0.0576, and 0.0741, MSE values of 0.0469, 

0.0719, 0.06, 0.0552, and 0.0709, RMSE values of 0.2166, 0.2681, 0.2449, 0.2349, and 

0.2663, and correlation coefficients of 0.8617, 0.8459, 0.8644, 0.86, and 0.8587, respectively. 

For groundnut, maize, moong, rice, and Urad crops, DeepCropYNet achieved precision values 

of 88%, 92%, 85%, 82%, and 80%, recall values of 89%, 89%, 88%, 88%, and 85%, f-measure 

values of 88.5%, 90.5%, 87%, 86%, and 83%, and accuracy of 88%, 90%, 86%, 84%, and 

82%, respectively. 
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