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To optimize the power output of the PV array, it is recommended to employ a
high-gain interleaved dc-dc boost converter in the PV energy conversion
system. The proposed converter builds upon the existing two-phase interleaved
dc-dc boost converter, which is commonly used in utility grid integration
circuits or high-power applications due to its ability to minimize ripple current
from the PV. The primary objective of this research project is to elevate the
output voltage of the currently installed PV array in order to cater to high-power
applications or grid integration. The key requirements include achieving high-
efficiency power conversion and fully utilizing the potential of the PV system.
While previous methods have been proposed to increase the solar source's
output voltage, they suffer from drawbacks such as low efficiency, complexity,
and cost. In contrast, the suggested dc-dc converter boasts a remarkable
efficiency of 96% and is capable of converting voltage from 25V to 400V for a
power output of 400W. The performance of the proposed converter topology
has been validated through MATLAB simulation.

Keywords: PV System, DC-DC converter, high gain, soft switching,
interleaved boost converter.

1. Introduction

The photovoltaic system is widely recognized as a solution to modern energy challenges due
to its clean and renewable nature, making it well-suited for electricity distribution. However,
efficient transmission of PV energy to the load requires a high-efficiency interface. This
article introduces a two-stage switched capacitor and linked inductor high boost interleaved
boost converter, which aims to enhance the efficiency of solar power generation systems
using MPPT technology. Compared to other dc-dc converter circuits, this converter achieves
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significant voltage gain at a low duty ratio, resulting in reduced voltage stress across
switches, decreased conduction loss, and minimized ripple. The integration of a two-stage
switching capacitor with a connected inductor effectively boosts the voltage gain, while a
passive clamp circuit enables zero voltage switching of primary switches and zero current
switching facilitated by the intrinsic loss of the inductor. By regulating the current drop rate
through leakage inductance, the converter mitigates issues related to reverse recovery of the
diode, ultimately leading to increased efficiency. Renewable energy sources, such as PV,
have gained increased attention from experts in response to the global energy crisis.
Although PV is widely used in everyday life, its energy conversion system suffers from poor
conversion efficiency and unpredictable source availability. To address these challenges, a
high step-up DC-DC converter is employed to elevate the low voltage profile of PV. This
converter finds applications in various fields, including automotive headlights,
Uninterruptible Power Systems (UPS), and communication power systems. However,
conventional converter topologies experience increased voltage stress on switches when
dealing with high step-up voltages, leading to reduced effectiveness and failure to meet
application requirements.

Numerous converter topologies have been proposed to achieve high step-up voltage gain.
The DC-DC flyback converter, while featuring a simple structure and high voltage gain,
experiences significant voltage stress on switches due to leakage inductance. Energy-
regeneration strategies have been applied to mitigate this stress. The phase-shifted full-
bridge converter, on the other hand, generates higher input ripple currents and achieves a
high step-up gain by utilizing a higher number of turns ratio in the transformer. Electrolytic
capacitors are employed in the phase-shifted full-bridge converter to reduce input current
ripples.

Switching capacitor-based converter circuits, such as active-clamp dual boost and active-
clamp full bridge boost converters, are also used to achieve high step-up conversion with
high efficiency. However, these converters suffer from drawbacks such as high transient
current and substantial conduction loss in the switch, as well as increased complexity with
more switched capacitor cells. Soft-switching techniques have been introduced in switched-
capacitor cell designs to reduce switching loss and electromagnetic interference.
Additionally, a coupled inductor approach with modified turns ratio is utilized to achieve a
large step-up gain. Nevertheless, all currently used high step-up ratio converters and ultra-
step-up converters still experience significant voltage stress across the diode.

The primary drawbacks of the PV energy conversion system lie in its poor energy
conversion efficiency and the unpredictable nature of climate conditions. To maximize the
power output of PV, it is essential to operate at the maximum power point, prompting the
development of several MPPT control algorithms. This paper focuses on the design and
operation of an improved two-phase interleaved boost converter topology, covering voltage
stability analysis and simulation results. Furthermore, it discusses features such as automatic
current sharing, reduced voltage stress on switches and diodes, and overall increased
efficiency in various chapters.
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2. Proposed Topology

The proposed high voltage high gain interleaved dc-dc Fig. 1 depicts the suggested
interleaved high voltage, high gain dc-dc boost converter for high step-up conversion with
MPPT control.

Where,
Li, Lo - Magnetizing Inductances
Dy, D, D3 Ds - Clamp diodes
Ci,Cy - Clamp capacitors
C3 Cs - Output capacitors
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Figure 1: Proposed High Voltage gain DC-DC Converter

The fundamental interleaved boost converter is expanded upon in the proposed converter
architecture by the addition of two extra capacitors and diodes. The energy held in the
inductor and capacitors, along with the energy of the other capacitor, is transferred to the
output during the energy transfer period, allowing the proposed converter to achieve voltage
gain twice. Comparatively to a traditional interleaved two-phase boost converter, active
switches and diodes experience less voltage stress. The integrated MPPT controller
maximises conversion rates while monitoring maximum power. When the duty cycle is
greater than 0.5, a continuous conduction mode of operation is used to produce the high
voltage gain. High voltage gain and current sharing capabilities are not achievable when the
duty ratio is less than 0.5 and the operating mode is discontinuous conduction. because the
inductor, blocking capacitor, and capacitor are not transferring enough energy to one
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another.
(i) Mode 1: (to<t<ty)

In this setting of functioning. The diodes D1, D2, D3, and D4 are switched OFF while
switches S1 and S2 are turned ON. Fig. 2 depicts the current's flow. Current flow increases
iL1 and iL2, and the energy stored in the inductors L1 and L2 increases. Diodes D4 and D2
clamping voltages are equal to (VC4 -VC2) and (VC3 -VC1), and diodes D1 and D3
clamping voltages are equal to VC1 and VC2 of the capacitor voltage, respectively.
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Fig 2: Operating circuit of Mode-1

Capacitors C3 and C4 supply power to the load. The voltage across the capacitors is given
below.

di di
VAR ek S T ] 1
dv dv
C cl =C cl =O 2
dv dv V _+V,
C c3 =C c4 _ c3 "c4 3
gt “ gt ( R ) ©)

(if) Mode 2: (t1 <t <tp)

Switch S2 is turned OFF for the duration of the pause. Diodes D2 and D3 are still
conducting, as is switch S1. Fig. 3 depicts the current flow. Energy is stored in capacitor C1
and released into capacitor C3 of the output capacitor by inductor L2. Energy from the
inductor L2 is stored in C2. In this mode, the inductor current iL2 falls linearly and the
capacitance-voltage VC3=VC2+VC1 rises constantly.
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The various voltage components in this mode is given below.

Vin: 1&
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(iiii) Mode 3: (<t <ts)

The switches S1 and S2 are switched ON and function similarly to mode 1 during this mode

of operation.

(iif) Mode 4:(ts <t <ts)

(4)

(5)

(6)

(7)

(8)
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The switch S2 is turned ON and kept in the OFF position when in this mode of operation. D1
and D4 were retained in an ON state as well.
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Figure 4: Operating waveforms

As the load and the output capacitor C4 approach, the stored energy in the inductor L1 and
capacitor C2 is released. VC4=VC2+VC1 is the voltage across the output capacitor. While
inductor current iL2 constantly grows, iL1 drops linearly.

di
: le_;l :Vin _Vc4 +ch :Vin _Vm (10)
di
Vi, = zd—f (11)
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The suggested converter's symmetrical mode of operation makes implementation simple.
Additionally, the functional waveforms in Fig. 4 depict minimal voltage stress and uniform
current distribution in active switches and diodes.

3. Voltage Stress Analysis

The capacitor voltage ripple is taken to be zero for the purposes of more straightforward
analysis. Below is a direct calculation of the voltage stresses across the active switches S1

and S2.

DVin + (1_ D)(Vin _Vc1) =0

and

DV, +(1=D)(V;, =Vc,) =0

(16)

The capacitor voltage Vcz and Vcaare,

2
V..=V., +V., =—V.
c3 c1 c2= 1 _p'in
and
Vc4 :Vc1 +Vc2 = Evin

The output voltageis,

4
Vo :Vc3 +Vc4 = Evin
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V, 4

V. 1-D

n

(17)

(18)

(19)
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The voltage stresses across the switches S1 and S2

1
V=V, =——V. 20
S1 S2 1-D in ( )
The voltage stress on power switches is,
V
Vs =Vs, = ZO (21)

The voltage stress across the power switches is equivalent to one-fourth of the output
voltage, as shown by Equation 21. Therefore, the proposed converter can handle power
conversion with low-voltage rating devices. Conduction and switching losses are thereby
significantly decreased.

4, Simulation Results

The proposed converter's performance is confirmed for a 400W rating using the MATLAB
simulation model. The suggested converter converts the input voltage of 25V to the output
voltage of 400V. For both switches S1 and S2, a uniform duty ratio of 0.75 and a switching
frequency of 40 Hz are used. The input ripples are lessened by the interleaved mode of
operation. Increasing the switching frequency reduces the size of inductors and output
ripples.
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Figure 5 Input and output Voltage
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Figure 6 Results obtained for blocking capacitor & Output capacitor
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Figure 7 Voltage stress on VDS1, VDS2, VDS3, VDS4.
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Fig. 5 displays the proposed circuit's input and output voltages. Figure 6 displays the output
capacitor voltage waveform and the blocking capacitor voltage waveform. The voltage stress
across the active switch is depicted in Fig. 7. The suggested converter's reduced voltage
stress across the switches and diodes efficiently lowers the corresponding losses and raises
efficiency.

5. Performance Analysis

The proposed topology and the methods mentioned in the literature are compared in terms of
performance in table 1. The voltage gain and normalised voltage stress for active switches
are displayed in Table 1.

Table 1 Comparison of voltage gain and voltage stress of proposed converter with other

converters
Voltage gain Voltage stress
Duty Ratio 0.5 0.6 0.7 0.5 0.6 0.7
Voltage Doubler 4 5 6 0.5 0.5 0.5
High Step Up Ratio Converter 5 6.1 7 0.4 0.43 0.45
Proposed Converter 8 10 14 0.25 0.25 0.25

Fig 8 shows the comparison of the characteristic curve and fig 9 shows the normalized
voltage stress comparison of the proposed and conventional topologies.

Froposed converter

18 i —High step up ratic converter

i ———  Volage Doubler

Voltage Gain

L os 055 0.6 0.65 07 075 08 0.85
Duty Ratio

Figure 8. Voltage gain
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Figure 9. Active Switches Normalized Voltage Stress

Figures 8 and 9 compare the characteristic curves of the proposed and traditional topologies
using normalised voltage stress.
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Figure 10 Proposed Converter Efficiency

Fig. 10 illustrates the proposed converter's MPPT-assisted 96% maximum efficiency. The
power produced by the proposed converter with an MPPT control is 2.4 times larger than
that of the converter without an MPPT control.

6. Conclusions

This study examined a high-gain interleaved dc-dc boost converter for PV systems using an
MPPT controller. High voltage gain is achieved while maintaining a low duty cycle. Both
conduction and switching loss are decreased by the low voltage stress. Another benefit is the
ability to share current symmetrically without building any additional circuits. The power
transmission level is raised by the proposed converter and MPPT controller. The total
outcome demonstrates that the proposed converter is better suited for applications requiring
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substantial step-up voltage gains.
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