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In this article, Pythagorean uncertainty weighted Averaging Aggregation operator has been 

introduced along their several properties, namely idempotency, boundedness and monotonicity. 

Secondly, we applied this proposed operator to deal with multiple attribute group decision making 

problem under Pythagorean uncertainty information. Finally, we constructed an algorithm for 

multiple attribute group decision making problems with suitable example. 
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1. Introduction 

The concept of fuzzy set was first introduced by Zadeh in 1965 [24]. In 1986, Atanassov [2] 

presented the concept of intuitionistic fuzzy set (IFS), which is a general form of the fuzzy set 

[2]. Bustince and Burillo [9] developed that Vague sets are mathematically equal to 

intuitionistic fuzzy set. Pythagorean fuzzy set introduced by [12]. Chen and Tan [10] explained 

multi criteria paper fuzzy decision making based on Vague set. Xu and Yager [20] 

demonstrated several operators such as intuitionistic fuzzy weighted averaging (IFWA), 

intuitionistic fuzzy ordered weighted averaging (IFOWA) and intuitionistic fuzzy hybrid 

averaging (IFHA) operators. Xu and Yager [21] explained geometric aggregation operators, 

such as intuitionistic fuzzy weighted geometric (IFWG) operator and intuitionistic fuzzy 

hybrid geometric (IFHG) operator. They also applied them to multiple attribute group decision 

making (MAGDM) based on intuitionistic fuzzy set (IFS). Xu [20] was developed technique 
 

Nanotechnology Perceptions 20 No. S12 (2024) 456-469 

http://www.nano-ntp.com/


457 M. Thresa Nirmala et al. Applications of Pythagorean Uncertainty... 

Nanotechnology Perceptions Vol. 20 No. S12 (2024) 

 

 

 

for order of preference by similarity to ideal solution (TOPSIS) method for multiple attribute 

group decision making. The advantage of the aggregation operators in this work. We 

familiarize the notion of (3, 2) uncertainty weighted averaging aggregation operator and also 

discuss some of their basic properties. The concept of (3,2)-uncertainty set proposed by [13]. 

Pythagorean fuzzy subsets was discussed by [22]. 

To illustrate the importance of Pythagorean uncertainty collection to extend the grade of 

membership and non-membership degrees, assume that αD(x) = 0.9 and 

βD(x) = 0.8 for X = {x}. We obtain 0.9 + 0.8 = 1.7 > 1, 

(0.9)2 + (0.8)2 = 1.45 > 1 and (0.9)3 + (0.8)3 = 1.241 > 1 which means 

that D = (0.9,0.8) neither following the condition of Fermatean uncertainty set 

nor follows the condition of Pythagorean uncertainty set. 

This paper contains of six sections. In section 2, we give some core explanations and effects 

which can be used in our discussion later. In section 3, we develop Pythagorean weighted 

averaging (PWA) operator and also some of their properties. In Section 4, consists an 

algorithm for multiple attribute group decision making (MAGDM). In section 5, we have 

conclusion. 

 

2. Preliminaries: 

Definition 2.1 (Fuzzy set): Let U be a non-empty set. Then by a fuzzy set on U is meant a 

function A : U → [0,1] . A is called the membership function, A(x) is called the membership 

grade of x in A. We also write A= {(x, A(x)): x∈U}. 

Example 2.2: Consider U = { a, b, c ,d } and A : U → [0,1] defined by A(a) = 0, A(b) = 0.7, 

A(c)=0.4, A(d)=1. 

Definition 2.3 (Pythagorean Fuzzy set (PFS)): A Pythagorean uncertainty set D on a set X is 

defined by D = *(x, (αD(x), βD(x))/x ∈ X+ where αD: X → ,0,1- is the degree of membership 

and βD: X → [0,1] is the degree of non – membership of x ∈ X, respectively which fulfill the 

condition 0 ≤ αD2(x) + βD
2(x) ≤ 1 for all x ∈ X. The degree of indeterminacy πP (x) = 

⬚√1 − (αD
⬚(x))2 − (βD(x))2. 
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Definition 2.4 (Fermatean fuzzy set) [Senapti and Yager, 2020]: Let „X‟ be a universe of 

discourse A. Fermatean uncertainty set “F” in X is an object having the form 𝐹 = {𝑥, 𝑚𝐹( 𝑥) , 
𝑛𝐹( 𝑥) /𝑥 ∈ 𝑋 } where 𝑚𝐹( 𝑥) : 𝑋 → 0,1 and 𝑛𝐹(𝑥) : 𝑋 → 0,1 , including the condition 0 ≤ 𝑚𝐹 

(𝑥 3
) + 𝑛𝐹 (𝑥 3

 ) ≤ 1 for all 𝑥 ∈ 𝑋. The numbers (𝑥) signifies the level (degree) of membership 
and 𝑛𝐹 (𝑥) indicate the non-membership of the element „𝑥‟ in the set F. 

Definition 2.5: Let X be a universal set. Then the Pythagorean uncertainty set (briefly, 

Pythagorean uncertainty is defined by the following; D = *〈x, αD(x), βD(x)〉/x ∈ X}---------- 

--(1) whereαD: X → [0,1] is the degree of membership and βD: X → [0,1] is the degree of non 
– membership of x ∈ X to D, with the condition 

0 ≤ (αD(x))  + (βD(x))   ≤ 1 ----------- (2) 

The Degree of indeterminacy of x ∈ X to D is defined by 
 

2 2 2 

πD(x) = √1 − ,(αD(x))   + (βD(x)) ].------------(3) 
 

It is clear that (αD(x)) + (βD(x))   + (πD(x))   = 1 and πD(x) = 0 whenever 

(αD(x)) + (βD(x)) = 1. In the case of simplicity, we shall mention the symbol D = 

(αD , βD) for the Pythagorean uncertainty set D = {(x, (αD(x), βD(x))/x ∈ X}. 

Here, α 2(x) = (α (x) 
2 

and β 2(x) = (β (x) 
2
for all x ∈ X. 

Example-2.6: Let D be Pythagorean fuzzy set and x ∈ X such that βD(x) = 0.82 and πD(x) = 
0.Then, 

 

|αD(x)| = 3√|(βD(x) − 1)(βD(x) + 1)| 
 

= 3√|(−0.18)(1.82)| 

Y 

(1,0,0) Neutrosophic set 

FFS 

PYFS 

IFS 

(0,1,0) 

(0,0,1) Spherical fuzzy set 
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=  
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√0.3276 

In 2013, Yager defined Pythagorean uncertainty subset (PUS) as a generalization of 

intuitionistic uncertainty set (IUS). 

Definition 2.7: Let σ = (ασ, βσ), σ1 = (ασ1 
, βσ1 

) and σ2 = (ασ2 
, βσ2 

) are three Pythagorean 

uncertainty numbers and γ > 0. Then 

(i)σc = (βσ , ασ) 
(ii) σ1 ⨁ σ2 = (√ασ2 + ασ2 − ασ2 , βσ βσ ) 

1 2 3 1 2 
 

(iii) σ1 ⊗ σ2 = (ασ1ασ2, √(βσ2 + βσ2 − βσ2βσ2) ) 
1 

 
 (iv) γσ = (√(1 − (1 − α2) , βγ) 

2 1 2 

σ σ 
 

(v) σγ = (αγ , √(1 − (1 − β2)γ ) 
σ σ 

Definition 2.8: Let σ = (ασ, βσ) be a Pythagorean uncertainty value. Then we can find the 
score of „σ‟ as the following, 

S (σ) = α2 − β2 where S (σ) ∈ [-1, 1] ----------------- (1) 
σ σ 

 
 

Definition 2.9: Let σ = (ασ, βσ) be a Pythagorean uncertainty number. Then the accuracy 
degree „σ‟ can be defined as follows: 

H (σ) = α2 + β2 where H (σ) ∈ [0, 1] ----------------- (2) 
σ σ 

Definition 2.10: Let σ1 = (ασ1, βσ1) and σ2 = (ασ2, βσ2) be the two Pythagorean uncertainty 
numbers. Then 

S (σ1) = α2   − β2 S (σ2) = α2 − β2 
σ1 σ1 σ2 σ2 

H (σ1) = α2   + β2 H (σ2) = α2   + β2 are the score and accuracy of σ1 and σ2 

σ1 σ1 σ2 σ2 

respectively. The following are the holds: 

(i) If S (σ2) ˃ S (σ1), then σ2 is greater than σ1 represented by σ1 ˂ σ2. 

(ii) If S (σ1) = S (σ2), then, (a) if H (σ1) = H (σ2), then σ1 and σ2 have the same information (ie). 
ασ1 = ασ2 and 

βσ1 = βσ2 represented by σ1= σ2. 

(iii) If H (σ1) ˂ H (σ2), then σ2is greater than σ1. 

 
3. Pythagorean uncertainty Weighted averaging aggregation operator 

Pythagorean fuzzy set was introduced by [22] but in this paper, we familiarize uncertainty 

weighted averaging operator with their properties. 
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Definition 3.1: Let σj = (ασj, βσj) (j = 1,2, … , n) be Pythagorean uncertainty variables and 

let Pythagorean uncertainty weighed average is a mapping from Δn → Δ. Then the Pythagorean 

uncertainty weighed averaging aggregation operator can be defined as, 

Pythagorean FWAr (σ1, σ2,… σn) = r1σ1 ⊕ r2σ2 ⊕ … … ⊕ rnσn ............ (3) 

Where r = (r1, r2, r3, … , rn) is the weighted vector of σj with condition, rj ϵ [0,1] and 
n 
j=1 rj = 1 . 

If 𝐫 = (
𝟏
 , 

𝟏 
, 

𝟏 , … , 𝟏) , then the Pythagorean FWA is converted to Pythagorean uncertainty 
𝐧   𝐧    𝐧 𝐧 

average which is defined as, 

Pythagorean FA (S1,S2,…,Sn) = 
𝟏
(σ1 ⊕ σ2 ⊕ …… ⊕σn ) . 

𝐧 

Example 3.2:   Let σ1 = (0.4, 0.3),   σ2 = (0.6, 0.4), σ3 = (0.7, 0.5), σ4 = (0.8, 0.4) and r = 

(0.1,0.2,0.3, 0.4)
T
 be the weighted vector of σj ( j=1,2,3,4). Then Pythagorean FWAr (σ1, σ2, 

σ3, σ4). 
 

= ( √𝟏 − ∏𝟒 𝟐     
𝐫𝐣 

, ∏𝟒 𝐫𝐣 ) 
𝐣=𝟏 (𝟏 − 𝑎𝜎𝐉) 

    𝐫𝟏 

𝐣=𝟏 (𝛽𝜎𝐣 
) 

𝐫 

 
𝐫𝟐 

𝐫
 

 
 

𝐫𝟑 

= (√𝟏 − (𝟏 − 𝑎𝟐
𝟏) 

𝐫 

,(𝛽𝜎𝟏
 

𝐫𝟒 

) 𝟏
)+ (√𝟏 − (𝟏 − 𝑎𝟐  ) 

𝐫 

, (𝛽𝜎𝟐
 ) 𝟐

) +  (√𝟏 − (𝟏 − 𝑎𝟐  )   , 

(𝛽 𝜎𝟑 ) 𝟑) + (√𝟏 − (𝟏 − 𝑎𝟐  ) , (𝛽𝜎𝟒
 ) 𝟒 ). 

 

= (0.5247, 0.4275) 

 
Theorem 3.3: Let σj = (ασj, βσj) (j=1, 2,….,n) be Pythagorean uncertainty variables, Then 

their aggregated value by applying Pythagorean uncertainty weighted average operator is also 

a Pythagorean uncertainty value Pythagorean FWAr (σ1, σ2,… ,σn) = 
√𝟏 − ∏𝐧 𝐫𝐣 𝟐 ∏𝐧 𝐫𝐣 

⬚ …… (4) and also the weighted vector of σ 
(j=1, 

𝐣=𝟏 (𝟏 − 𝑎𝜎𝐣) , 𝐣=𝟏 (𝛽𝜎𝐣 
) j 

2,…,.n) is rn = (r1, r2,….,rn)
T
 with some conditions 𝐫𝐣 ∈ [𝟎, 𝟏] and ∑𝐧     𝐫𝐣 = 𝟏. 

Proof: By mathematical induction, we can prove that equation (4) holds for all n. 

First we can show that equation (4) holds for n=2. Since, 

    𝐫𝟏 
𝐫

 
𝐫 𝜎 = ((√𝟏 − (𝟏 − 𝑎𝟐  ) , (𝛽⬚ ) 

𝟏
) 

𝟏   𝟏 𝜎𝟏 

 

    𝐫𝟐 

𝜎𝟐 

 
𝐫 

𝐫 𝜎 =  (√𝟏 − (𝟏 − 𝑎𝟐  ) ,(𝛽⬚ ) 
𝟐

 
𝟐   𝟐 𝜎𝟐 𝜎𝟐 

 

So 𝐫𝟏𝜎𝟏 ⊕ 𝐫𝟐𝜎𝟐 

∑ 
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𝟐 ∏𝟐 ⬚ 

𝐣=𝟏 𝜎𝐣 
⬚ 𝐣 

𝐣=𝟏 

𝐣=𝟏 

𝐣=𝟏 

 

    𝐫𝟏 
𝐫 

𝐫𝟐 
𝐫

 
=((√𝟏 − (𝟏 − 𝑎𝟐  ) , (𝛽⬚ ) 

𝟏
) ⊕  ((√𝟏 − (𝟏 − 𝑎𝟐  ) , (𝛽⬚ ) 

𝟐
) 

𝜎𝟏 𝜎𝟐 𝜎𝟐 𝜎𝟐 
 

=(𝟏 − (𝟏 − 𝑎𝟐 
𝐫𝟏 + (𝟏 − (𝟏 − 𝑎𝟐 

𝐫𝟐 − (𝟏 − (𝟏 − 𝑎𝟐 𝐫𝟏 𝟏 − (𝟏 − 𝑎𝟐 
𝐫𝟐 , (𝛽⬚ 𝐫𝟏 

(𝛽⬚  
𝐫𝟑

). 
𝜎𝟏) 𝜎𝟐) 𝜎𝟏) ( 𝜎𝟐) 𝜎𝟐

) 

𝜎𝟐
) 

 
=(√𝟏 − ∏𝟐 

 
 

𝐫𝐣 (𝟏 − 𝑎   ) , 

 
 

𝐫𝐣 (𝛽 )  ) 
𝐣=𝟏 𝜎𝐣 𝐣=𝟏 𝜎𝐣 

 

Thus equation (4) is true for n=2. Let us suppose that equation (4) is true for n=k. Then we 

have Pythagorean FW𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑 … . 𝜎𝐧) 
 

= (√𝟏 − ∏𝐤 
𝐫𝐣 

(𝟏 − 𝑎𝟐 ) , 

 
𝐤 
𝐣=𝟏 

 
𝐫 

𝛽 𝜎𝐣 ) 
 

Now we show that equation (4) is true for n=k+1. 

Pythagorean FW𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, … . , 𝜎𝐤+𝟏) 

=   √𝟏 − ∏𝐤 𝐫𝐣 𝟐 ∏𝐤 ⬚    𝐫𝐣 𝐫𝐤+𝟏 𝟑 r 

( 𝐣=𝟏 (𝟏 − 𝑎𝜎𝐣) , 𝐣=𝟏 𝛽 𝜎𝐣 ) ⊕ (√𝟏 − (𝟏 − 𝑎𝜎 𝐤+𝟏 ) , (𝛽𝜎𝐤+𝟏 ) k+1 ) 

 
 

= (√𝟏 − ∏𝐤+𝟏 𝐫𝐣 (𝟏 − 𝑎𝟐 ) , ∏𝐤+𝟏(𝛽⬚𝜎 𝐫𝐣 

𝐣=𝟏 𝜎𝐣 𝐣=𝟏 𝐣)  ) 
 

Hence equation (4) holds for n=k+1. Thus equation (4) holds for all n. 

Theorem 3.4: Let 𝜎𝐣 = (𝑎𝜎𝐣, 𝛽𝜎𝐣)(𝐣 = 𝟏, 𝟐, . . , 𝐧) be the Pythagorean uncertainty variables 

and the weight vector of 𝜎𝐣(𝐣 = 𝟏, 𝟐, 𝟑, … . , 𝐧) is 𝐫 = (𝐫𝟏, 𝐫𝟐, 𝐫𝟑, … . , 𝐫𝐧) with some conditions 

𝐫𝐣 ∈ [𝟎, 𝟏] and ∑𝐧 𝐫𝐣 = 𝟏. If 𝜎𝐣(𝐣 = 𝟏, 𝟐, 𝟑, … . , 𝐧) are mathematically equal, then 

Pythagorean uncertainty 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, … , 𝜎𝐧) = 𝜎 − − − (𝟓) 

Proof: As we know that, Pythagorean 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, … , 𝜎𝐧) = 𝐫𝟏𝜎𝟏 ⊕ 𝐫𝟐𝜎𝟐 ⊕ … ⊕ 𝐫𝐧𝜎𝐧. 

Let 𝜎𝐣(𝐣 = 𝟏, 𝟐, … , 𝐧) = 𝜎 then Pythagorean uncertainty 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, … , 𝜎𝐧) = 𝐫𝟏𝜎𝟏 ⊕ 

𝐫𝟐𝜎𝟐 ⊕ … ⊕ 𝐫𝐧𝜎𝐧= 𝜎 ∑𝐧 𝐫𝐣= 𝜎 

Theorem 3.5: Let 𝜎𝐣 be Pythagorean uncertainty variables and let the weighted vector of 

𝜎𝐣 𝐛𝐞 𝐫 = (𝐫𝟏, 𝐫𝟐, … , 𝐫𝐧)𝐓 such that 𝐫𝐣 ∈ [𝟎, 𝟏]𝐚𝐧𝐝 ∑𝐧 𝐫𝐣 = 𝟏. 

𝜎− = (𝐦𝐢𝐧(𝑎𝜎𝐣) , 𝐦𝐚𝐱(𝛽𝜎𝟏)) 
𝐣 𝐣 

𝜎+ = (𝐦𝐚𝐱(𝑎𝜎𝐣), 𝐦𝐢𝐧(𝛽𝜎𝐣)), ⬚ 
𝐣 𝐣 

Then 𝜎− ≤ 𝐏𝐲𝐭𝐡𝐚𝐠𝐨𝐫𝐞𝐚𝐧 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, … , 𝜎𝐧) ≤ 𝜎+ − − − −(𝟔) 

Proof: we know that 

𝐦𝐢𝐧(𝑎𝜎𝐣) ≤ 𝑎𝜎𝐣 ≤ 𝐦𝐚𝐱(𝑎𝜎𝐣) --------------- (7) 
𝐣 𝐣 

∏ 
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√ 𝟐 

) 

𝐣 

𝐣 

𝜎 𝜎 

 

𝐦𝐢𝐧(𝛽𝜎𝐣) ≤ 𝛽𝜎𝐣 ≤ 𝐦𝐚𝐱(𝛽𝜎𝐣) ---------------(8) 
𝐣 𝐣 

From equation (7), we have 
 

  

- √𝐦𝐢𝐧(𝑎𝜎 )
𝟐 

≤ √(𝑎𝜎 )
𝟐 

≤ √𝐦𝐚𝐱(𝑎𝜎 )
𝟐

 

𝐣 𝐣 𝐣 𝐣 𝐣 

 
   

- √(𝟏 − 𝐦𝐚𝐱(𝑎𝜎 𝟐   𝐫𝐣 )   ≤ (𝟏 − 𝑎  𝜎 
𝐫𝐣 ≤ √(𝟏 − 𝐦𝐢𝐧(𝑎𝜎𝟐 𝐫𝐣 

𝐣) 𝐣) 
 

 
 

-  √(−𝟏 + 𝐦𝐢𝐧(𝑎𝜎𝟐))  ≤ √− ∏𝐧   (𝟏 − 𝑎𝟐𝜎   
𝐫𝐣

 

𝐣 )) 
 

≤ √(−𝟏 + 𝐦𝐢𝐧(𝑎𝜎𝟐)) 
𝐣 𝐢=𝟏 

 
 - 𝐦𝐢𝐧(𝑎𝜎 ) ≤  √𝟏 − ∏𝐧   (𝟏 − 𝑎𝟐𝜎 

 

 
𝐫𝐣 

𝐣 𝐣 

 
 ≤ 𝐦𝐚𝐱(𝑎𝜎 ) 

𝐣 𝐣 𝐢=𝟏 𝐣) 
𝐣 𝐣 

Now from equation (8), we have 

𝐧 
𝐫𝐣 𝐫𝐣 𝐫𝐣 𝐫𝐣 

- 𝐦𝐢𝐧 (𝛽 𝜎 ) 
𝐣 

≤  𝖦(𝛽 𝜎𝐣) 
𝐣=𝟏 

≤ 𝐦𝐚𝐱(𝛽 𝜎𝐣) 
𝐣 

𝐧 
∑𝐧     𝐫 

 
𝐫𝐣 

 
∑𝐧     𝐫 

- 𝐦𝐢𝐧(𝛽 𝜎𝐣) 
𝐣 

𝐣=𝟏  𝐣   ≤  𝖦(𝛽 𝜎𝐣) 

𝐣=𝟏 

≤ 𝐦𝐚𝐱(𝛽 𝜎𝐣) 
𝐣 

𝐣=𝟏   𝐣 

 - 𝐦𝐢𝐧(𝛽 𝜎 
𝐧 

⬚ ≤  𝖦(𝛽  
 

𝐫𝐣 
 ≤ 𝐦𝐚𝐱(𝛽 𝜎 

 
⬚ − − − − − (𝟗) 

𝐣) 
𝐣  

𝐣=𝟏 

𝐣) 𝐣) 
𝐣 

Let Pythagorean 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . , 𝜎𝐧) = 𝜎. Then 𝐒(𝜎) = 𝑎𝟐 − 𝛽𝟐 

≤ 𝐦𝐚𝐱(𝑎𝜎)𝟐 − 𝐦𝐢𝐧(𝛽𝜎)𝟐 = 𝐒(𝜎+) 
𝐣 𝐣 

Thus 𝐒(𝜎) ≤ 𝐒(𝜎+). Again 

𝐒(𝜎) = 𝑎𝟐 − 𝛽𝟐 
𝜎 𝜎 

≥ 𝐦𝐢𝐧(𝑎𝜎)𝟐 − 𝐦𝐚𝐱(𝛽𝜎)𝟐 = 𝐒(𝜎−). 
𝐣 𝐣 

Thus 𝐒(𝜎) ≥ 𝐒(𝜎−). If 𝐒(𝜎) < 𝐒(𝜎+) 𝐚𝐧𝐝 𝐒(𝜎) > 𝐒(𝜎−), then 

𝜎− < 𝐏𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . , 𝜎𝐧) < 𝜎+--------(10) 

If (𝜎) = 𝐒(𝜎+) , then 
 

𝟐 𝟐 𝟐 𝟐 
- 𝑎𝜎 − 𝛽𝜎 = 𝐦𝐚𝐱 (𝑎𝜎 ) 

𝐣 
− 𝐦𝐢𝐧(𝛽𝜎𝐣) 

𝐣 

- 𝑎𝟐 = 𝐦𝐚𝐱(𝑎𝜎 𝟐 , 𝛽𝟐 = 𝐦𝐢𝐧(𝛽𝜎  
𝟐

 

𝜎 𝐣 𝐣) 𝜎 
𝐣 

𝐣) 

- 𝑎𝜎 = 𝐦𝐚𝐱(𝑎𝜎𝐣) , 𝛽𝜎 = 𝐦𝐢𝐧(𝛽𝜎𝐣) 
𝐣 𝐣 
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𝐣 

𝐣 

𝐣 

𝐣 

𝐢=𝟏 𝐣 

𝐣 𝐣 

 

Since 

𝐇(𝜎) =  𝑎𝟐 + 𝛽𝟐 
𝜎 𝜎 

= 𝐦𝐚𝐱(𝑎𝜎 𝟐 + 𝐦𝐢𝐧(𝛽𝜎 𝟐 = 𝐇(𝜎+) 
𝐣) 

𝐣 𝐣 
𝐣) 

Thus, Pythagorean 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . , 𝜎𝐧) = 𝜎+ − − − (𝟏𝟏) 

If S (𝜎) = S(𝜎−), then 
 

𝟐 𝟐 𝟐 𝟐 
- 𝑎𝜎 − 𝛽𝜎 = 𝐦𝐢𝐧 (𝛽𝜎 ) 

𝐣 
− 𝐦𝐢𝐧(𝑎𝜎𝐣) 

𝐣 

- 𝑎𝟐 = 𝐦𝐢𝐧(𝛽𝜎 𝟐 , 𝛽𝟐 = 𝐦𝐢𝐧(𝑎𝜎   
𝟐

 

𝜎 𝐣 𝐣) 𝜎 
𝐣 

𝐣) 

- 𝑎𝜎 = 𝐦𝐢𝐧(𝛽𝜎𝐣) , 𝛽𝜎 = 𝐦𝐚𝐱(𝑎𝜎𝐣) 
𝐣 𝐣 

Since 

𝐇(𝜎) = 𝑎𝟐 + 𝛽𝟐 = 𝐦𝐢𝐧(𝛽𝜎 𝟐 + 𝐦𝐢𝐧(𝑎𝜎 𝟐 = 𝐇(𝜎−) 
𝜎 𝜎 𝐣 𝐣) 

𝐣 
𝐣) 

Thus , Pythagorean 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . . , 𝜎𝐧) = 𝜎− − − − (𝟏𝟐) 

Thus from the equations (11) and (12), we have 

𝜎− ≤ 𝐏𝐲𝐭𝐡𝐚𝐠𝐨𝐫𝐞𝐚𝐧 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . . , 𝜎𝐧) ≤ 𝜎+. Hence the proof. 

Theorem 3.6: Let 𝜎𝐣(𝐣 = 𝟏, 𝟐, … , 𝐧) and 𝜎∗(𝐣 = 𝟏, 𝟐, … , 𝐧) be the two collection of 

Pythagorean uncertainty variables. If 𝑎𝜎𝐣 ≤ 𝑎𝜎∗ and 𝛽𝜎𝐣 ≥ 𝛽𝜎∗. Then 
𝐣 𝐣 

Pythagorean 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . , 𝜎𝐧) ≤ 𝐏𝐲𝐭𝐡𝐚𝐠𝐨𝐫𝐞𝐚𝐧 𝐅𝐖𝐀𝐫(𝜎∗ , 𝜎∗ , 𝜎∗ , . . , 𝜎∗ ) 

Proof: Since 𝑎𝜎𝐣 ≤ 𝑎𝜎∗ and 𝛽𝜎𝐣 ≥ 𝛽𝜎∗. 

Then ⟺ 𝑎𝟐𝜎∗ ≤ 𝑎𝟐𝜎∗ 

𝟏 𝟐 𝟑 𝐧 

𝐣 𝐉 
 

- √𝟏 − 𝑎𝟐𝜎∗  ≤  √𝟏 − 𝑎𝟐𝜎⬚ 
𝐉 𝐉 

 
  

- √(𝟏 − 𝑎𝟐𝜎∗  
𝐫𝐣     

≤ √(𝟏 − 𝑎𝟐𝜎 𝐫𝐣 

𝐉 ) 

 
- √(𝟏 − ∏𝐧 (𝟏 − 𝑎𝟐𝜎 

𝐣) 

 𝐫𝐣      ≤  √(𝟏 − ∏𝐧 

 
 (𝟏 − 𝑎𝟐𝜎∗ 

 𝐫𝐣 
--------(13) 

 
Now 𝛽𝜎𝐣 ≥ 𝛽𝜎∗, 

𝐢=𝟏 𝐣) 𝐣=𝟏 𝐣 ) 

𝛽𝐫𝐣 𝜎𝐣 ≥  𝛽𝐫𝐣 𝜎∗ 

𝐧 
𝐢=𝟏 𝛽𝐫𝐣 𝜎𝐣   ≥ ∏𝐧 𝛽𝐫𝐣 𝜎∗ ---------(14) 

Let 

- ∏ 
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𝟐 ∏𝟒 

𝜎 

 

Pythagorean 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . , 𝜎𝐧) = 𝜎 ----------- (15) 

𝐏𝐲𝐭𝐡𝐚𝐠𝐨𝐫𝐞𝐚𝐧 𝐅𝐖𝐀𝐫(𝜎∗ , 𝜎∗ , 𝜎∗ , . . , 𝜎∗ ) = 𝜎∗ ---------(16) 
𝟏 𝟐 𝟑 𝐧 

Then form equation (15) and (16), we have 𝐒(𝜎) ≤ 𝐒(𝜎∗). 

If 𝐒(𝜎) < 𝐒(𝜎∗), then 

Pythagorean 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . , 𝜎𝐧) < 𝐏𝐲𝐭𝐡𝐚𝐠𝐨𝐫𝐞𝐚𝐧 𝐅𝐖𝐀𝐫(𝜎∗ , 𝜎∗ , 𝜎∗ , … , 𝜎∗ ) ------- (17) 
 

If 𝐒(𝜎) = 𝐒(𝜎∗), 
𝟐 𝟐 

 
 

 
𝟐 𝟐 

𝟏 𝟐 𝟑 𝐧 

Then ⟺ 𝑎𝜎𝐣−  

𝛽𝜎𝐣 

= 𝑎𝜎𝐣∗ − 𝛽𝜎𝐣∗ 

- 𝑎𝜎𝟐 = 𝑎𝟐𝜎∗ , 𝛽𝜎𝟐 =  𝛽𝟐𝜎∗ 
𝐣 𝐣 𝐣 𝐣 

- 𝑎𝜎𝐣 = 𝑎𝜎∗ , 𝛽𝜎𝐣 = 𝛽𝜎∗ 
𝐣 𝐣 

Since 

𝐇(𝜎) =  𝑎𝜎𝟐 + 𝛽𝜎𝟐 
𝐣 𝐣 

= 𝑎𝟐𝜎∗ + 𝛽𝟐𝜎∗ 
𝐣 𝐣 

= 𝐇(𝜎∗) 
Thus, Pythagorean 𝐅𝐖𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . , 𝜎𝐧) = (𝐏𝐲𝐭𝐡𝐚𝐠𝐨𝐫𝐞𝐚𝐧 )𝐅𝐖𝐀𝐫(𝜎∗ , 𝜎∗ , 𝜎∗ , . . , 𝜎∗ )--- 

----(18) 
𝟏 𝟐 𝟑 𝐧 

Thus from equations (17) and (18), we have 𝐀𝐫(𝜎𝟏, 𝜎𝟐, 𝜎𝟑, . . , 𝜎𝐧) ≤ 
𝐏𝐲𝐭𝐡𝐚𝐠𝐨𝐫𝐞𝐚𝐧 𝐅𝐖𝐀𝐫(𝜎∗ , 𝜎∗ , 𝜎∗ , . . , 𝜎∗ ). 

𝟏 𝟐 𝟑 𝐧 

 

Example 3.7: 𝜎𝟏 = (𝟎. 𝟒, 𝟎. 𝟔), 𝜎𝟐 = (𝟎. 𝟒, 𝟎. 𝟕) 

𝜎𝟑 = (𝟎. 𝟓, 𝟎. 𝟕), 𝜎𝟒 = (𝟎. 𝟔, 𝟎. 𝟔) 

and 

𝜎∗ = (𝟎. 𝟕, 𝟎. 𝟔) , 𝜎∗ = (𝟎. 𝟖, 𝟎. 𝟔), 𝜎∗ = (𝟎. 𝟗, 𝟎. 𝟔) , 𝜎∗ = (𝟎. 𝟖, 𝟎. 𝟑) 
𝟏 𝟐 𝟑 𝟒 

Where 𝐫 = (𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒). 

Now using the Pythagorean 𝐅𝐖𝐀 operator, we get the following result 

 
Pythagorean 𝐅𝐖𝐀 (𝜎 , 𝜎 , 𝜎 

 
, 𝜎  ) = (√𝟏 − ∏𝟒 𝐫𝐣 (𝟏 − 𝑎   ) , 

 
(𝛽⬚ 𝐫𝐣 ) ). 

𝐫 𝟏 𝟐 𝟑 𝟒 𝐣=𝟏 

 
= (0.527,0.5210) 

𝜎𝐉 𝐣=𝟏 𝜎𝐣 

 Again 𝐏𝐲𝐭𝐡𝐚𝐠𝐨𝐫𝐞𝐚𝐧 𝐅𝐖𝐀 (𝜎∗ , 𝜎∗ , 𝜎∗ , 𝜎∗ ) = (√𝟏 − ∏𝟒    (𝟏 − 𝑎𝟐𝜎∗ 
 
𝐫𝐣 

 , ∏𝟒 (𝛽⬚ 𝐫𝐣 ) ) 
𝐫 𝟏 𝟐 𝟑 𝟒 𝐣=𝟏 

 
= (0.7267, 0.1297) 

𝐣 ) 𝐣=𝟏 ∗ 
𝐣 
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Theorem 3.8: (Commutative law). If 𝜎𝐢𝐣 = (𝑎𝜎𝐢𝐣
, 𝛽𝜎𝐢𝐣

) (𝐣 = 𝟏, 𝟐) be two Pythagorean 

uncertainty numbers, then 

(i) 𝜎𝟏𝟏 ⊕ 𝜎𝟏𝟐 = 𝜎𝟏𝟐   ⊕ 𝜎𝟏𝟏 

(ii) 𝜎𝟏𝟏 ⊗ 𝜎𝟏𝟐 = 𝜎𝟏𝟐   ⊗ 𝜎𝟏𝟏 

Proof: It is obvious 

Theorem 3.9: (Associative law). If 𝜎𝐢𝐣 = (𝑎𝜎𝐢𝐣 
, 𝛽𝜎𝐢𝐣 

) (𝐣 = 𝟏, 𝟐, 𝟑) be three Pythagorean 

uncertainty numbers, then 

(i) (𝜎𝟏𝟏 ⊕ 𝜎𝟏𝟐) ⊕ 𝜎𝟏𝟑 = 𝜎𝟏𝟏 ⊕ (𝜎𝟏𝟐 ⊕ 𝜎𝟏𝟑) 

(ii) (𝜎𝟏𝟏 ⊗ 𝜎𝟏𝟐) ⊗ 𝜎𝟏𝟑 = 𝜎𝟏𝟏 ⊗ (𝜎𝟏𝟐 ⊗ 𝜎𝟏𝟑) 

Proof: It is obvious 

Theorem 3.10: Let 𝜎 = (𝑎, 𝛽) and 𝜎𝐢𝐣 = (𝑎𝜎𝐢𝐣 
, 𝛽𝜎𝐢𝐣 

) (𝐣 = 𝟏, 𝟐) be Pythagorean uncertainty 

numbers and a real number 𝜆 > 𝐨, we have 

(𝐢)𝜆(𝜎𝟏𝟏 ⊕ 𝜎𝟏𝟐) = 𝜆𝜎𝟏𝟏 ⊕ 𝜆𝜎𝟏𝟐 

(ii)(𝜎𝟏𝟏 ⊗ 𝜎𝟏𝟐)𝜆 = 𝜎𝜆  ⊗ 𝜎𝜆 
𝟏𝟏 𝟏𝟐 

(iii) 𝜆𝟏𝜎 ⊕ 𝜆𝟐𝜎 = (𝜆𝟏 + 𝜆𝟐)𝜎 

(iv)𝜎𝜆𝟏 ⊗  𝜎𝜆𝟐= 𝜎𝜆𝟏+𝜆𝟐. 

Proof: Here, we prove the parts (i) and (iii) only and the proof of others are similar. 

𝜆𝜎𝟏𝟏 = (𝟏 − (𝟏 − 𝑎𝟏𝟏)𝜆, (𝟏 − 𝑎𝟏𝟏)𝜆 − (𝟏 − 𝑎𝟏𝟏 − 𝛽𝟏𝟏)𝜆)) 

and 

𝜆𝜎𝟏𝟐 = (𝟏 − (𝟏 − 𝑎𝟏𝟐)𝜆, (𝟏 − 𝑎𝟏𝟐)𝜆 − (𝟏 − 𝑎𝟏𝟐 − 𝛽𝟏𝟐)𝜆)) 

Thus, we have 

𝜆𝜎𝟏𝟏 ⊕ 𝜆𝜎𝟏𝟐 = (𝟏 − (𝟏 − 𝑎𝟏𝟏)𝜆(𝟏 − 𝑎𝟏𝟐)𝜆, (𝟏 − 𝑎𝟏𝟏)𝜆 (𝟏 − 𝑎𝟏𝟐)𝜆 

− {(𝟏 − 𝟏 + (𝟏 − 𝑎𝟏𝟏)𝜆 − (𝟏 − 𝑎𝟏𝟏)𝜆 + (𝟏 − 𝑎𝟏𝟏 − 𝛽𝟏𝟏)𝜆) × (𝟏 − 𝟏 

+ (𝟏 − 𝑎𝟏𝟐)𝜆 − (𝟏 − 𝑎𝟏𝟐)𝜆 + (𝟏 − 𝑎𝟏𝟐 − 𝛽𝟏𝟐)𝜆)}) 

=(𝟏 − (𝟏 − 𝑎𝟏𝟏)𝜆(𝟏 − 𝑎𝟏𝟐)𝜆, (𝟏 − 𝑎𝟏𝟏)𝜆(𝟏 − 𝑎𝟏𝟐)𝜆 − (𝟏 − 𝑎𝟏𝟏 − 

𝛽𝟏𝟏)𝜆(𝟏 − 𝑎𝟏𝟐 − 𝛽𝟏𝟐)𝜆) 

= 𝜆(𝜎𝟏𝟏 ⊕ 𝜎𝟏𝟐 ). 

For 𝜆𝟏, 𝜆𝟐 > 𝟎 and the Pythagorean uncertainty numbers 𝜎 = (𝑎, 𝛽), we have 

𝜆𝟏𝜎 = (𝟏 − (𝟏 − 𝑎)𝜆𝟏 , (𝟏 − 𝑎)𝜆𝟏 − (𝟏 − 𝑎 − 𝛽)𝜆𝟏) 

and 
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i=1 

 

𝜆𝟐𝜎 = (𝟏 − (𝟏 − 𝑎)𝜆𝟐 , (𝟏 − 𝑎)𝜆𝟐 − (𝟏 − 𝑎 − 𝛽)𝜆𝟐) 

𝜆𝟏𝜎 ⊕ 𝜆𝟐𝜎 =  (𝟏 − (𝟏 − 𝑎)𝜆𝟏  (𝟏 − 𝑎)𝜆𝟐  (𝟏 − 𝑎)𝜆𝟏  (𝟏 − 𝑎)𝜆𝟐 

− (𝟏 − 𝑎 − 𝛽)𝜆𝟏 × (𝟏 − 𝑎 − 𝛽)𝜆𝟐 ) 

= (𝟏 − (𝟏 − 𝑎)𝜆𝟏+𝜆𝟐 , (𝟏 − 𝑎)𝜆𝟏+𝜆𝟐 − (𝟏 − 𝑎 − 𝛽)𝜆𝟏+𝜆𝟐) 

=(𝜆𝟏 + 𝜆𝟐)𝜎 

 
4. Pythagorean uncertainty weighted averaging Aggregation operator to multiple 

attribute group decision making 

Let 𝐏 = {𝐩𝟏, 𝐩𝟐, 𝐩𝟑, … . . … . , 𝐩𝐧} 𝐛𝐞 𝐚 𝐬𝐞𝐭 𝐨𝐟 𝐧 𝐚𝐥𝐭𝐞𝐫𝐧𝐚𝐭𝐢𝐯𝐞𝐬 𝐚𝐧𝐝 𝐐 = {𝐪𝟏, 𝐪𝟐, … . . , 𝐪𝐦} be 

a set of m alternatives and 𝐫 = (𝐫𝟏, 𝐫𝟐, … . , 𝐫𝐦)𝐓 be the weighted vector of the attributes 𝐐𝐢(𝐢 = 

𝟏, 𝟐, … , 𝐦) such that 𝐰𝐢𝖾[𝟎, 𝟏]𝐚𝐧𝐝 ∑m wi = 1. 

4.1 : Algorithm 

Step-1: The decision makers provide the information in the form of a matrix. 

Step-2: Compute σj(j = 1,2 … , n) using Pythagorean fuzzy weighted averaging (Pythagorean 

FWA) aggregation operator. 

Step-3: Compute the scores of σj(j = 1,2 … , n). If there is no difference between two or more 

than two scores, then we must have to calculate the degrees of accuracy. 

Step-4: Arrange the score function of all alternatives in the form of descending order and select 

the alternatives, which has the highest score function value. 

4.2 Numerical example: we consider an example for selecting a watch from different cell 

phones. 

Suppose a customer wants to buy a cell phone from different cell phones. Let p1, p2, p3, p4, p5 

represent the five cellphones of different companies. Let Q1, Q2, Q3 be the criteria of these 
cellphones. In the process of choosing one of the cellphones; three factors are considered. 

Q1: Price of each cellphone 

Q2: Model of each cellphone 

Q3: Design of each cell phone 

Suppose the weight vector of Qj(j = 1,2,3) is r = (0.3,0.4,0.5)T and the Pythagorean 

uncertainty values of the alternatives Pj(j = 1,2,3,4,5) are represented by the following 

decision matrix. 

Step-1: The decision maker gives the decision in Table 
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Table: Pythagorean uncertainty decision matrix 
 P1 P2 P3 P4 P5 

Q1 (0,0) (0.2,0.1) (0.4,0.2) (0.5,0.4) (0.6,0.3) 

Q2 (0.3,0.1) (0.4,0.2) (0.4,0.3) (0.3,0.2) (0.7,0.5) 

Q3 (0.6,0.4) (0.4,0.3) (0.5,0.2) (0.6,0.3) (0.4,0.2) 

Step-2: Compute σj(j = 1,2,3,4,5) by applying Pythagorean uncertainty weighted average 

operator 

σ1 = (0.5220,0.3020) σ2 = (0.5000,0.3267) 

σ3 = (0.5348,0.2147) σ4 = (0.7592,0.2016) 

σ3 = (0.5201,0.3020) 

Step-3: We can find the scores of σj(j = 1,2,3,4,5) 

S(σ1) = (0.5220)2 − (0.3020)2 = 0.27248 − 0.0912 = 0. 181284 

S(σ2) = (0.5000)2 − (0.3267)2 = 0.25 − 0.1067 = 0.1433 

S(σ3) = (0.5348)2 − (0.2147)2 = 0.28601 − 0.046 = 0.24001 

S(σ4) = (0.7592)2 − (0.2016)2 = 0.57638 − 0.0406 = 0.53578 

S(σ5) = (0.5201)2 − (0.3020)2 = 0.27050 − 0.0912 = 0.17930 

and the accuracy function, 

H(σ1) = (0.5220)2 + (0.3020)2 = 0.3637 , H(σ2) = 0.3567, H(σ3) = 0.3320, H(σ4) = 

0.6169, H(σ5) = 0.3617. 

Step 4: Arrange the scores of the alternatives in the form of descending order and select the 

alternatives, which has the highest score function. Since σ4 > σ3 > σ1 > σ5 > σ2 . 

Hence P4 > P1 > P5 > P2 > P3. Thus the type of cellphone P4 is the best option for the 
customer. 

 
 

5. Conclusion: 

An aggregation operator based on Pythagorean fuzzy number and applied them to the 

multivariable decision making problem, where the values are Pythagorean uncertainty 

numbers is to be presented. Firstly, we have developed Pythagorean uncertainty weighted 

averaging aggregation operator along with their properties namely idempotency, boundedness 

and monotonically. Finally, we have developed a method for multi criteria decision making 

based on the proposed operator and the operational process have illustrated in detail. The main 

advantage of using the proposed method and operator is that this method provides more 

general, accurate and precise results. Therefore, the suggested methodology can be used for 

any type of selection problem involving any number of selection attributes. This method plays 

a vital role in real world situations. We ended the paper with an application of Pythagorean 

uncertainty decision making problem. 
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Future Work: 

In future, some author may develop this given operators in various fuzzy Environment. 
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