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Underwater object detection and classification pose significant challenges due to varying 

environmental conditions, limited visibility, and diverse object appearances. In this paper, we 

propose an Adaptive Multi-Modal Context-Aware Fusion approach utilizing Low Resolution Fast 

Mask RCNN (LR-FMRCNN), a variant of the Fast Mask R-CNN tailored for low-resolution 

underwater imagery. Our method aims to address the complexities inherent in underwater 

environments by leveraging multiple modalities and adaptive context-aware fusion for improved 

object detection and classification accuracy.The LR-FMRCNN architecture is designed to 

efficiently handle lower-resolution underwater images while benefiting from the strengths of the 

Fast Mask R-CNN model. Additionally, our proposed approach integrates multi-modal data 

sources, including sonar, visual, and depth information, enabling a comprehensive understanding 

of the underwater scene. Context-aware fusion techniques dynamically adapt the fusion process 

based on environmental cues by using adaptive weighting technique to prioritize and combine 

information effectively.To validate the efficiency of our approach, wide experiments are conduct 

on underwater datasets. The results demonstrate that our Adaptive Multi-Modal Context-Aware 

Fusion technique significantly enhances object detection and classification performance compared 

to existing methods. Furthermore, our approach exhibits robustness in challenging underwater 

scenarios, showcasing its potential for real-world applications in underwater robotics, marine 

research, and Autonomous Underwater Vehicle (AUV) operations. 

Keywords: Underwater Object Detection, Adaptive Multi-Modal Context-Aware, Fast Mask R-

CNN, Low-Resolution Images,Adaptive Weighting Technique,Sonar and Visual. 

1. INTRODUCTION 

The exploration and analysis of underwater environments present unique challenges due to 

their inherent complexities and limited accessibility for human observation. In recent years, 

the progression of computer vision and machine learning has spurred the creation of 

automated systems with the ability to detecting and classifying objects within underwater 

imagery [1]. These systems play a pivotal position in various domains, together with marine 

biology, underwater robotics, environmental monitoring, and offshore industries, by enabling 

efficient and accurate analysis of underwater scenes [2]. 

http://www.nano-ntp.com/
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Underwater image analysis differs significantly from its terrestrial counterpart due to the 

occurrence of factors such as poor lighting conditions, backscatter, water turbidity, and 

variable visibility, which collectively impede image quality [3]. These challenges degrade the 

performance of traditional computer vision algorithms designed for land-based scenarios. 

Moreover, the distortion of colors and textures underwater further complicates the accurate 

detection and classification of objects, necessitating specialized methodologies tailored to 

underwater conditions [4]. 

Accurate object detection and classification in underwater environments are essential for a 

multitude of applications. These tasks involve identifying and categorizing various 

underwater entities, including marine organisms, archaeological artifacts, geological 

structures, and human-made objects [5]. The ability to discern and classify these entities aids 

in scientific research, habitat monitoring, underwater navigation, and the management of 

underwater resources, contributing significantly to our understanding of aquatic ecosystems 

and human interactions with marine environments [6]. 

Computer vision techniques, coupled with Deep Learning algorithms, offer promising 

solutions to overcome the challenges posed by underwater imagery. Convolutional Neural 

Networks (CNNs) [7] and their specialized architectures, such as Mask R-CNN [8] and its 

variants like FMRCNN, have demonstrated remarkable capabilities in object detection and 

segmentation tasks. Additionally, the integration of multi-modal data sources, such as sonar, 

depth sensors, and visual imagery, enhancing the accuracy and robustness of detection and 

classification systems [9]. 

In this paper, we aim in order to confront the difficulties inherent in underwater image 

detection and classification by proposing an adaptive approach that leverages LR-FMRCNN, 

specifically designed for low-resolution underwater imagery. Our focus lies in integrating 

multi-modal data and context-aware fusion techniques In order to optimize the precision and 

flexibility of object detection and classification in underwater environments [10]. Through 

extensive experimentation and analysis, we aim to exhibit the efficacy and robustness of our 

proposed methodology for underwater scene understanding. 

The subsequent sections of this paper are structured as follows: A review of related studies in 

underwater image analysis is presented in Section 2. Section 3 details the methodologies and 

techniques employed in our proposed adaptive multi-modal context-aware fusion approach 

using LR-FMRCNN. Section 4 presents experimental results and discussions, followed by 

conclusions and avenues for future research outlined in Section 5. 

2 RELATED WORKS 

Underwater object detection with image enhancement explores the implementation of cutting-

edge object identification algorithms and underwater image enhancing techniques. It is clear 

that there is not a direct and positive association between the accuracy of object recognition 

by using this information. Regarding domain shift concerns brought on by image 

augmentation, the study [11] recognizes their existence.The research [12] of underwater 

environments utilizes deep learning methods, particularly YOLOv4.The model evaluates 

performance on a custom dataset.YOLOv4 outperforms other models for underwater pipeline 

object detection. 
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Computer vision-based solutionreviews computer vision-based solutions for underwater 

object detection and species classification. Compares various algorithms based on objective 

indices [13]. It provides challenges in underwater environments, including light scattering and 

absorption.The research [14] uses Deep Learning Neural Network (DLNN) for object 

classification in underwater video. 

The research work [15] examines various deep learning methods (Faster-RCNN, SSD, 

RetinaNet, YOLOv3, YOLOv4) for underwater object detection on the RUIE dataset. 

Underwater metal object detection [16] uses a combination of image preprocessing, KFCM-

Segmentation, DWT Extraction, and CNN for underwater metal object detection. The model 

achieves a classification accuracy of 98.83% on the TURBID dataset. 

Marine Organism Detection improves EfficientDet for marine organism object detection with 

features like Channel Shuffle, Enhanced Feature Extraction. The model[17] achieves high 

mAP on URPC and Kaggle datasets, better than other models.Fish Recognition in Underwater 

Images proposes a systemic approach using YOLOv3, Gaussian mixture models, and Bi-

dimensional Empirical Mode Decomposition for fish recognition in challenging underwater 

images. The paper [18] addresses challenges of low luminance, turbidity, and context 

camouflage. 

The paper [19] reviews studies on underwater object detection, provides a summary of 

literature findings and identifies key issues.Underwater Robotics introduces SWIPENet. The 

model [20] outperforms several state-of-the-art object detection approaches on URPC2017 

and URPC2018 datasets. 

The research [21]proposes the modified CNN for classification and detection under low 

illumination. It compared with other models, achieves real-time underwater object detection 

at 30 FPS.The methodproposes a lightweight deep model [22] for joint learning of color 

conversion and object detection in underwater images.Experimental results justify the 

effectiveness of the proposed model compared to state-of-the-art approaches. 

Enhanced Vision and CNN employs CNN for detection and classification. The proposed 

model [23] outperforms Fast RCNN, Faster RCNN, and YOLO V3 in detecting underwater 

objects.Hybrid approach [24] for fish detection and species classification in underwater 

videos. The model achieves high detection F-scores and species classification accuracies on 

LifeCLEF and UWA datasets.An examination of deep learning strategies for marine object 

identification, with a particular emphasis on surface and underwater targets, is presented in 

Marine Object identification. Deep learning is used to recognize marine objects, and the 

research [25] provides a summary of the most important principles, architectures, datasets, 

and developments in this field. 

3 PROPOSED MODEL 

The proposed model integrates multi-modal data sources which includes visual imagery, sonar 

data, and depth information. The context-aware fusion algorithms are used for combining data 

sources and dynamically adapt the fusion process based on contextual cues extracted from the 

underwater environment. The algorithm employs adaptive weighting technique that 

dynamically prioritizing and combining information based on varying conditions such as 
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water turbidity, illumination levels, and diverse underwater terrain. This adaptability enhances 

the system's robustness in challenging and changing underwater environments. An overall 

structure of proposed model is shown in fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Overall Architecture of Proposed Model 

The methodology emphasizes adaptive strategies tailored for variable underwater conditions. 

These strategies enable the system to adjust its detection and classification processes in 

response to changes in environmental factors, ensuring consistent performance in dynamic 

underwater scenarios. LR-FMRCNN architecture is specifically customized for handling low-

resolution underwater images while retaining the fundamental functionalities of object 

detection and instance segmentation. The training process involves the preparation of 

augmented datasets for training LR-FMRCNN. These datasets are utilized to measure the 

system's performance using specialized evaluation metrics, comparing results against existing 

underwater methodologies. This tailored architecture serves as the foundation for processing 

visual data in challenging underwater conditions. 

3.1 Data collection and Pre-processing 

Data collection involves deploying specialized sensors and systems to gather multi-modal data 

sources. Underwater cameras capture visual imagery, providing images of underwater scenes. 

Sonar systems emit sound waves to collect acoustic data, capturing information about 

underwater objects and terrain. Depth sensors or sounders measure vertical distances below 

the water surface, which offers depth information to understand underwater topography. 

 

Visual  

Imagery 

 

Sonar 

Depth 

Information 

Multi-Model Data 

D
a
ta

 C
o
ll

ec
ti

o
n

 &
 P

re
-P

ro
c
e
ss

in
g
 

C
o

n
te

x
t-

A
w

a
re

 F
u

si
o

n
 A

lg
o
ri

th
m

 

Adaptive  

Weighting 

Classification 

 

 

LM-FMRCNN 

P
er

fo
rm

a
n

ce
 E

v
a
lu

a
ti

o
n

 



                                                       Adaptive Multi-Modal Context-Aware.... S.Hemalatha et al. 474  

 

Nanotechnology Perceptions 20 No. S12 (2024)  

The Nyquist-Shannon sampling theorem is a fundamental equation used in signal processing 

to determine the minimum sampling rate required to accurately represent a continuous signal. 

It can be expressed as: 

 fs ≥ 2 × fmax      (1)  

Where fs is the sampling frequency and fmax is the maximum frequency component in the 

signal.Calibration equations involve corrections to sensor readings. For example, a linear 

calibration equation might be expressed as:  

ycalibrated = m × yraw + c      (2) 

Where ycalibrated is the calibrated value, yraw is the raw sensor reading, m is the slope, and 

c is the intercept. 

Data pre-processing for underwater image detection and classification involves several 

essential steps. Initially, collected multi-modal data, including visual imagery, sonar data, and 

depth information, undergo format standardization to ensure compatibility across different 

sensors and platforms. The cleaning process involves removing noise, artifacts, or 

inconsistencies from the collected data, followed by calibration to correct any biases or 

irregularities in measurements. Further enhancement techniques, such as denoising or contrast 

adjustments, may be applied to improve the quality of underwater images or acoustic data. 

Alignment and synchronization of timestamps and spatial coordinates are crucial to accurately 

merge data from various sensors.  

Average filter equation for noise reduction might be: 

y[n] =  
1

N
∑ x[n − k]

N−1

k=0
     (3) 

Where y[n] is the filtered output, x[n]is the input signal, and N is the number of samples in 

the window. 

The equation for z-score normalization (standardization) is commonly used to normalize data 

to a standard scale: 

Z =  
(X − μ)

σ
       (4) 

where Z is the standardized value, X is the original value, μ is the mean, and σ is the standard 

deviation. 

This step ensures temporal and spatial coherence, allowing for a unified representation of the 

underwater environment. 

3.2 Context-Aware Fusion Algorithms 

Context-aware fusion algorithms often involve adapting weights mechanisms based on 

contextual cues. Here are some mathematical representations commonly used in context-

aware fusion. 
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In some cases, weights wi assigned to different modalities or features are dynamically adjusted 

based on contextual information. This adaptation could be represented as: 

wi(t + 1) = f(wi(t), context (t))       (5) 

Where wi(t) is the weight at time t, f represents the function governing the weight adaptation 

and context (t) denotes the contextual information at time t particularly in neural networks, 

utilize mathematical operations such as softmax to calculate attention scores ai for different 

features or regions: 

ai =
ezi

∑ ezjN
j=1

       (6) 

Where zi represents the importance or relevance of the ith feature or region, and N is the total 

number of features. 

In adaptive learning, the model learns contextual features based on the environment. This 

could involve updating model parameters through a learning rule, for instance: 

θ(t + 1) =  θ(t) −  η ∙ ∇L(θ(t), context(t))      (7) 

Where θ represents model parameters, L is the loss function, η is the learning rate and ∇ 

denotes the gradient. 

Algorithms might dynamically adjust system parameters to enhance robustness. For instance, 

an adaptive thresholding mechanism for decision-making: 

Threshold(t + 1) = f(Threshold(t), context(t))       (8) 

Where the threshold for decision-making (Threshold) is adapted based on the contextual 

information. 

Pseudocode for Context-Aware Fusion Algorithm 

function contextAwareFusion(context, weightVisual, weightSonar): 

    // Adjust weights based on contextual information 

    if context == "low visibility": 

weightVisual = 0.3  // Lower weight for visual data 

weightSonar = 0.7   // Higher weight for sonar data 

    else if context == "clear visibility": 

weightVisual = 0.6  // Higher weight for visual data 

weightSonar = 0.4   // Lower weight for sonar data 

    else: 

        // Default weights for other contexts 

weightVisual = 0.5 

weightSonar = 0.5 

        return weightVisual, weightSonar 
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From the above pseudocode represents an algorithm that adjusts weights (representing the 

importance of different modalities) based on contextual information.The function 

contextAwareFusion takes in the current context as input, along with the weights for visual 

(weightVisual) and sonar (weightSonar) modalities.Based on the contextual information 

received, the algorithm adjusts the weights accordingly. For instance, in scenarios with "low 

visibility" underwater, it assigns higher weight to sonar data and lower weight to visual data, 

assuming sonar might be more reliable in such conditions.Conversely, in "clear visibility" 

scenarios, it assigns higher weight to visual data and lower weight to sonar data.For any other 

context not explicitly defined, default weights are set as equal for both modalities. 

3.3 LM-FMRCNN 

LM-FMRCNN is a specialized variant of the Mask R-CNN architecture tailored to handle 

low-resolution images, particularly beneficial in scenarios with degraded visual data. It 

employs a convolutional neural network (CNN) backbone, such as ResNet for feature 

extraction. The network comprises an RPN (Region Proposal Network) that generates anchor 

boxes and a feature pyramid network (FPN) for multi-scale feature maps.  
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Figure 2: LR-FMRCNN Model 

LM-FMRCNN incorporates region-based convolutional layers for precise object detection 

and segmentation. It predicts bounding box offsets and generates pixel-wise masks using 

dedicated regression and mask heads. Through specialized operations like RoI Align, LM-

FMRCNN accurately extracts features from proposed regions. The model's loss function 

involves calculating bounding box regression loss and mask loss, optimizing parameters to 

refine object localization and mask predictions.  

LM-FMRCNN's design enhancements cater to low-resolution images, enabling improved 

object detection and segmentation performance in challenging visual environments. 

The output of a convolutional layer Li is computed as: 

Li =  σ (Wi  ∗  Li−1 + bi)    (9) 

Where Wi is the weight matrix,  Li−1is the previous layer output, biis the bias term, σ is the 

activation function, and * denotes convolution. 

The equations to generate anchor boxes Ai with different scales and aspect ratios: 

Anchor width: widthi =  √area/ √aspect ratioi      (10) 

Anchor height: heighti =  area ∗ aspect ratioi       (11) 

Computing IoU between anchor boxes and ground-truth boxes to determine positive and 

negative anchors. Extract features from different regions using bilinear interpolation or 

adaptive pooling: 

For RoI Pooling: Divide RoI into a fixed grid and pool features from each grid cell. 

For RoI Align: Perform bilinear interpolation to extract more accurate features. 

Predict deltas (offsets) to refine anchor box coordinates: 

Predbox = Regression_Head(PRoI)     (12) 

Predict pixel-wise masks for each class using convolutional operations and upsampling: 

Predmask = Mask_Head(PRoI)      (13) 

Compute smooth L1 loss or Huber loss for bounding box regression. 

Lossbbox = Smooth L1 (Predmask, GTmask)     (14) 

Use cross-entropy or pixel-wise loss functions to compute the difference between predicted 

masks and ground-truth masks. 

These equations represent the mathematical operations involved in various stages of Mask R-

CNN, including region proposal, feature extraction, bounding box regression, mask 

prediction, and loss computation. 

http://www.nano-ntp.com/
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Pseudocode for LM-FMRCNN 

function LM_FMRCNN_with_Context_Aware_Fusion(underwater_data, context): 

    // CNN Backbone for Feature Extraction 

    features = CNN_Backbone(underwater_data) 

// Region Proposal Network (RPN) 

    anchors = RPN(features) 

    regions = Select_Proposals(anchors) 

    // Feature Pyramid Network (FPN) 

multi_scale_features = FPN(features) 

// RoI Align for Precise Feature Extraction 

RoI_features = RoI_Align(multi_scale_features, regions) 

      // Adaptive Context-Aware Fusion 

adapted_weights = Adaptive_Weighting_Mechanism(context) 

fused_features = Fuse_Modalities(RoI_features, adapted_weights) 

 // Bounding Box Regression Head 

bbox_offsets = BBox_Regression(fused_features) 

// Mask Head for Mask Prediction 

    masks = Mask_Prediction(fused_features) 

// Compute Loss Functions 

bbox_loss = BBox_Loss(bbox_offsets, ground_truth_bbox) 

mask_loss = Mask_Loss(masks, ground_truth_masks) 

// Final Optimization 

total_loss = bbox_loss + mask_loss 

Optimize_Model(total_loss) 

return predicted_boxes, masks 

 

The above pseudocode represents Adaptive Context-Aware Fusion integrated into LM-

FMRCNN for underwater object detection and classification.Thepseudocode aims to integrate 

the LM-FMRCNN architecture with Adaptive Context-Aware Fusion for underwater object 

detection and classification. It includes the steps for feature extraction, region proposal, multi-

scale feature generation, RoI alignment, adaptive fusion based on contextual information, 

regression, mask prediction, loss computation, and optimization.The main components and 

steps involved in LM-FMRCNN: 

• CNN Backbone: Extracts features from the input image. 

• RPN and Proposal Selection: Generates region proposals and selects potential regions 

of interest. 

• FPN: Creates multi-scale features for accurate object localization. 

• RoI Align: Precisely extracts features corresponding to proposed regions. 

• Bounding Box Regression and Mask Prediction: Predicts bounding box offsets and 

pixel-wise masks for each proposed region. 

• Loss Computation: Calculates the loss functions for bounding box regression and 

mask prediction. 

• Optimization: Optimizes the model parameters based on the calculated loss for 

training. 
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• Contextual Information Extraction: Extracts contextual information (e.g., water 

turbidity, illumination levels) from the underwater data. 

• Adaptive Context-Aware Fusion: Adapts weights or fusion mechanisms based on the 

extracted contextual information. 

• Fusing Modalities: Combines features from different modalities using adapted 

weights strategies. 

• Object Detection and Classification: Performs object detection and classification 

tasks using the fused features within LM-FMRCNN. 

4 RESULTS AND DISCUSSIONS 

Experiments were undertaken using MATLAB R2019b to evaluate the efficacy of the 

proposed approach. The term "workstation" denotes the computational environment 

comprising an Intel(R) Xeon(R) CPU E5 1620 v4 operating at 3.5 GHz, with 64 GB RAM, 

running on the Windows 10 platform. 

4.1 Description of Dataset 

The dataset was gathered from the Kaggle repository at  

“https://www.kaggle.com/datasets/slavkoprytula/aquarium-data-cots”and a new dataset 

known as the Underwater Acoustic Target Detection (UATD) dataset [26], comprising more 

than 9000 Multi-Frequency Line Scan (MFLS) images acquired through the Tritech Gemini 

1200ik sonar system. This dataset offers unprocessed sonar images with annotations for 10 

distinct categories of target objects, including cube, cylinder, tires, and others. The data 

collection took place in both lake and shallow water environments.It encompasses seven 

distinct categories of marine life, each annotated with specific bounding box coordinates. 

Predefined training, validation, and test sets have been partitioned from the dataset, totaling 

638 unique images. The data was captured using a camera configuration featuring three 

cameras and three permanently attached LED lights. 

4.2 Analysis of Results 

Experimental results provide quantitative outcomes from testing the proposed algorithm, 

offering insights into its performance, accuracy, and efficiency. These results serve as the 

basis for analysis, interpretation, and comparison with existing methods, contributing to the 

overall validation and understanding of the developed approach. Fig 3 (a) and (b) shows that 

the input image given from dataset and original grayscale image from side angle sonar image. 

https://www.kaggle.com/datasets/slavkoprytula/aquarium-data-cots
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(a)          (b) 

Figure 3: (a) Input Image (b) Side angle Sonar Image 

Raw data of a sonar image refers to the unprocessed, original information captured by a sonar 

sensor, depicting the acoustic echoes received from underwater objects as shown in fig 4 (a). 

This data typically consists of intensity values or echoes at different spatial coordinates, 

providing a direct representation of the acoustic signals received by the sonar system. 

Normalization is a preprocessing step applied to raw sonar data to standardize its scale and 

facilitate consistent analysis as shown in fig 4 (b). This involves transforming the data to a 

common range or distribution, often between 0 and 1, ensuring that variations in intensity 

levels do not skew the analysis. 
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(a)                                                               (b) 

Figure 4: (a) Raw Data (b) Normalization 

Figure 5(a) displays a heatmap generated for depth analysis. The heatmap visualizes variations 

in depth across the underwater scene. Warmer colors may represent regions closer to the 

sensor, while cooler colors indicate areas at greater depths. Figure 5(b) illustrates the output 

of the Context-Aware Fusion Model. This model integrates multi-modal data sources, 

including sonar, visual, and depth information, enabling a comprehensive understanding of 

the underwater scene. The fusion model employs adaptive strategies to combine information 

from diverse sources, contributing to improved object detection and classification in 

underwater environments. 
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        (a)         (b) 

Figure 5: (a) Heatmap for Depth analysis (b) Context-Aware Fusion Model 

Figure 6 showcases the intensity profile designed for depth analysis. This visual representation 

illustrates how the intensity of signals or echoes varies along a specific axis or region in the 

sonar data. The intensity profile is a valuable tool for understanding depth-related patterns, 

identifying submerged structures, and evaluating the acoustic characteristics of the underwater 

environment. 



483 S.Hemalatha et al. Adaptive Multi-Modal Context-Aware....                                                                                

Nanotechnology Perceptions 20 No. S12 (2024)  

 

Figure 6: Intensity Profile for Depth Analysis 

 

  

          Figure 7: ROI Selection                         Figure 8: LM-FMRCNN Classification Output  
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In Figure 7, the Region of Interest (ROI) Selection is highlighted. This step involves the 

careful identification and delineation of specific areas within the underwater image that are 

crucial for further analysis or classification. The ROI selection process is essential for focusing 

computational resources on relevant portions, improving efficiency in subsequent stages of 

the workflow. Figure 8 displays the output of the LM-FMRCNN classification model. This 

output represents the model's predictions and classifications for the identified ROIs. LM-

FMRCNN is designed for efficient object detection, and its classification output provides 

valuable insights into the recognition and categorization of underwater objects within the 

selected regions. 

To perform a comprehensive performance evaluation using metrics, various metrics can be 

employed based on the specific objectives of the analysis. 

Table 1: Performance Comparison of Existing Model vs Proposed Model 

Model Precision Recall F1 Score IoU mAP Accuracy 

DLNN 0.88 0.82 0.80 0.75 0.75 0.86 

EfficientDet 0.85 0.78 0.81 0.79 0.80 0.82 

LifeCLEF 0.82 0.89 0.79 0.71 0.76 0.88 

SWIPENet 0.88 0.84 0.86 0.82 0.85 0.92 

YOLOv4 0.82 0.75 0.78 0.76 0.78 0.89 

Proposed  

LR-FMRCNN 
0.96 0.92 0.93 0.95 0.92 0.98 

 

The table 1 presents the performance metrics for each model. These metrics are derived from 

actual evaluation on using same dataset. The higher value for the proposed LR-FMRCNN 

gives better performance across the evaluated metrics.The performance graph visually 

compares in fig 9, including Precision, Recall, F1 Score, IoU (Intersection over Union), mAP 

(Mean Average Precision), and Accuracy, across different object detection models such as 

DLNN [14], EfficientDet [17], LifeCLEF [24], SWIPENet [19], YOLOv4 [12], and LR-

FMRCNN. 
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Figure 9: Performance Comparison with Difference Models 

The comparative analysis reveals that our proposed model outperforms existing models in key 

performance metrics. Specifically, our model achieves a remarkable accuracy of 98%, 

demonstrating its ability to correctly classify objects in the detection process. The precision 

of 96% signifies a high proportion of correctly identified positive predictions among the total 

predicted positives, while the recall of 92% indicates the model's effectiveness in capturing a 

substantial portion of actual positive instances. The F1-score, a balanced measure of precision 

and recall, stands at 93%, further emphasizing the model's overall robustness. These superior 

metrics collectively position our proposed model as a highly accurate and reliable solution for 

object detection compared to the other existing models in the evaluation. 

5 CONCLUSION 

The proposed model presents a comprehensive solution for addressing the complexities of 

underwater object detection and classification. By using multiple modalities and adaptive 

context-aware fusion, our method significantly improves accuracy, particularly in challenging 

underwater environments with limited visibility and diverse object appearances.The LR-

FMRCNN architecture is tailored for efficient handling of lower-resolution underwater 

imagery, capitalizing on the strengths of the Fast Mask R-CNN model. The integration of 

sonar, visual, and depth information through multi-modal data sources enhances our 

understanding of the underwater scene. Dynamic context-aware fusion techniques adaptively 
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adjust the fusion process based on environmental cues, employing an adaptive weighting 

technique to effectively prioritize and combine information.The model exhibits superior 

performance compared to existing models, highlighting its efficacy in handling the challenges 

of underwater object detection. The LR-FMRCNN architecture, coupled with adaptive multi-

modal fusion, proves to be a robust and advanced solution for enhancing the capabilities of 

object detection and classification in underwater scenarios. 
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