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The quality of new materials, notably the composites is judged by knowledge of its 

reactions and its resistances to different mechanical behavior under the effect of different 

types of loading. The current paper presents the study of buckling under the effect of a 

q(x) loading of a nanocomposite composed of a reinforcement of double-walled carbon 

nanotube (DWCNT) and an elastic matrix a polyethylene type polymer. The beam model 

chosen for the calculation is that of Euler-bernouli and the elastic model is that of 

Winkler. Pasternak's model was subsequently concluded. The critical buckling load (Pcr) 

of this composite was determined using the non-local elasticity theory which takes into 

account the small scale effect (e0a) and the effect of the elastic Van der Waals forces 

between the tubes of CNT. Several parameters on the effect of the critical buckling load 

were considered and discussed such as, the chirality of CNT and their geometric ratio 

(L/D), the nonlocal effect (e0a), the mode number (N) and the stiffness of the elastic 

matrix. The results showed the importance of these parameters and their significant 

impact on the critical buckling load. it increases when the geometric ratio (L/d) and the 

small-scale coefficient (e0a) decrease and when the mode number (N) and chirality 

number (n) increase. Moreover, it turns out that the application of the nonlocal elasticity 

theory model is important and necessary for high mode numbers and small-scale 

coefficient (e0a) and for short nanotubes. Thus, the incorporation of CNTs into an elastic 

polymer matrix makes it possible to obtain a very rigid nanocomposite material with an 

exceptional critical buckling load. The results also highlight the importance of taking 

into account the different parameters linked to the material studied as well as other 

external effects.    
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1. Introduction   

Composites based on carbon nanotubes constitute today have constituted a fundamental 

element studies in general in materials sciences and in particular in nanotechnologies (Ahmadi 

et al., 2016, Belmahi et al., 2019). They have sparked numerous research activities, closely 

linked to their extraordinary physico-mechanical (strength-to-weight ratio, specific stiffness), 

chemical and thermal properties (Keivan 2014, Omar, 2019, Xuan-Bach et al., 2023, Haoting 

et al., 2024). The carbon nanotubes represents an allotropic form of carbon distinct from 

diamond and graphite (Kaushik et al., 2015) and has only a single layer of graphene coiled on 

itself (Peter 1999). CNTs are ultimate reinforcing agents, called nanofibers, in different matrix 

materials for the development of a new class of extremely strong and ultra-lightweight 

nanocomposites (Dinesh et al., 2016, Belmahi et al., 2019, Haoting et al., 2024). 

Nanocomposites are materials presenting a nanometric structure at a scale between 1 and 100 

nm (Henriette et al., 2009, Ashton 2013, Charles 2014). They have the capacity to improve 

the macroscopic properties of products as well as the mechanical properties, without 

compromising the ductility of the material (Bakis et al., 2002, Charles 2013, Sachse et al., 

2013,). They are considered homogeneous at the macroscopic level and heterogeneous at the 

microscopic level (Belmahi et al., 2019). Their use is based on knowledge, at different scales, 

of their behavior and characteristics taking into account the different factors that intervene 

(Hurang et al., 2010, Shehata et al., 2011). In a composite, the carbon nanotube represents the 

reinforcement which is responsible for overall stability, particularly mechanical performance. 

It increases the rigidity which implies the increase in the Young's modulus and the breaking 

stress of the nanocomposite. It is associated with a filler or a matrix which can in the general 

case be a polymer or an organic material which ensures cohesion (Hurang et al., 2010, Charles 

2013, Shokuhfar et al., 2013, Kaushik et al., 2015, Haoting et al., 2024). Nano-composites 

based on carbon nanotubes are currently of interest to several fields in mechanics, in 

construction such as a recess, in the aerospace industry and aeronautics (Mrazova, 2013, 

Xuan-Bach et al., 2023, Basati et al., 2024, Emrah et al., 2024).  

 Several questions have been developed on this material, in particular free and forced 

vibration, among which we cite some work : on the linear and nonlinear vibration analysis by 

the use and application of different theories: by Timoshenko beam theory (Ansari et al., 

2013),by nonlocal Euler-Bernoulli beam theory (Necla et al., 2016, Rakrak 2016), by 

variational iteration method (Hajnayeb et al., 2015, Ahmadi et al., 2016) and other works on 

vibration: (Gafour, et al., 2013, Danilo et al., 2015, Ramezani, et al., 2015, Soltani et al., 2015, 

Rakrak et al., 2016, Tuan et al., 2017, Dihaj et al., 2018, Hamidi et al., 2018). Carbon 

nanotubes (CNTs) are susceptible to buckling or structural instability due to their long and 

hollow tubular structures (Iijima et al., 1996, Motevall et al., 2012). This can significantly 

influence their performance as structural or functional elements in CNT-based 

nanocomposites (Ball, 2001, Qian et al., 2002, Zhang.y et al., 2007). The buckling present a 

deformation process in which a structure affected with to high stress dergoes a sudden change 

in morphological state at a critical load (Chemi et al., 2018). According to the authors 
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(Mahmood et al., 2004, Wang et al., 2006, Hiroyuki, 2011), for small loads, the beam is 

compressed in the axial direction while maintaining its linear shape, and the strain energy is 

proportional to the square of the axial displacement. However, beyond a certain critical load, 

it suddenly bends in an arc and the relationship between strain energy and displacements 

deviates considerably from the square law. Besides axial compression, bending and torsion 

give rise to buckling behaviors of elastic beams, where buckling patterns strongly depend on 

geometric and material parameters. In this context, several works on the buckling of carbon 

nanotubes have been carried out, we quote: the Buckling under Axial Compression: (Zhang 

et al., 2007) with Molecular Dynamics (MD) simulations, they have been observed that a 

SWCNT with an aspect ratio of 6 remains in its cylindrical shell configuration but becomes 

shorter under axial compression prior to buckling. The Buckling under bending moment and 

axial compression: (Chang et al., 2005) proved that SWNTs possess extraordinary structural 

flexibility, they can undergo stretching and compression and they return to the in the initial 

state. More recent studies on composites based on carbon nanotubes such as: the buckling of 

stiffened panels made of carbon and glass fiber reinforced composites by Haoting et al., 2024, 

buckling of a composite beam reinforced with carbon fibers /fibers under mechanical and 

thermal loads by Xuan-Bach et al.2023; Basati et al., 2024 and under compressive load by 

PatrykRozylo, 2023 and Kuba et al., 2023. Buckling of a CNT-reinforced polymer composite 

beam using experimental and analytical methods by Emrah et al., 2024.  

The study that we will present in this work has the objective and particularity of 

analyzing the critical buckling load of a composite composed of a double-walled carbon 

nanotube (DWCNT) reinforcement incorporated in a polymer matrix which represents the 

elastic medium according to the Winkler model. Therefore, the Euler-Bernoulli calculation 

model and the theory of nonlocal elasticity are used. The carbon nanotube considered in this 

work is of the double wall type (DWCNTs). 

 

2.  Calculation of critical buckling load  

 

2.1 Application of Nonlocal Theory 

 

In nonlocal elasticity theory the stress at a reference point (x) is considered as a function of 

the strain field estimated at each point in the body. This observation is consistent with the 

atomic model and experimental observations on photon dispersion. Furthermore, when the 

effect of stresses at points other than (x) is neglected, the nonlocal theory of elasticity 

conforms to the classical (local) theory of elasticity by settingsmall scale effect (e0a = 0). 

Therefore, the nonlocal theory provides a more precise description of material behavior 

compared to the classical (local) theory of elasticity. The basic equations for a nonlocal, linear, 

homogeneous and isotropic elastic solid, not subject to an external force are given by (Belmahi 

et al., 2018) 
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{

σij,j = 0

σij(x) = ∫α(|x − x
′|, τ)Cijklεkl(x

′)dV(x′),    ∀x ∈ V

εijij =
1

2
(ui,j + ui,i)

                                                        (1) 

 

Where: 

 

Cijkl is the classical macroscopic stress tensor at point x', 

σijandεij are stress and strain tensors respectively, 

α(|x − x′|, τ = e0a/l): is the kernel function 

 

2.2 Calculation 

Consider a nanocomposite represented by nanobeam of length L, of uniform section 

A and of constant Young's modulus E.  

the nonobeam is composed of a carbon nanotube reinforcement integred in an elastic medium 

of the Winkler type which represents the matrix (figure 1). 

The variables x and w represent respectively the axial coordinate and the transverse 

displacement.  

 

Figure 1 Geometries and arrangement of a CNT integrated in an Winkler elastic medium 

(Belmahi et al., 2019). 

 

 

The following terms will be used in the development below: 

 

kwin : rigidity winkler (depending on the type of polymer matrix). 

 : Buckling slenderness ratio. 

e0a : small scale effect. 

E :Young's modulus. 

I :Moment of inertia. 

t:Carbon nanotube layer thickness. 
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d1, d2: are respectively the radiuses of the inner and outer tubes. 

M: bending moment. 

V: shear force. 

q: is the distributed load on the nanobeam 

 

The non-local constitutive relation approximated to a one-dimensional form and the 

deformation ε for the Euler-Bernoulli model are given by (Belmahi et al., 2019): 

 

𝜎(𝑥) − (𝑒0𝑎)2
𝜕2𝜎(𝑥)

𝜕𝑥2
= 𝐸𝜀(𝑥)                                                                                                (2) 

𝜀(𝑥) =  −𝑦
𝑑2𝑊(𝑥)

𝑑𝑥2
                                                                                                                    (3) 

 

Consider a homogeneous beam of constant section (A). In the case of the Euler-

Bernoulli beam model, the transverse vibration motion is described as follows (figure 2): 

 

Figure 2 Elementary representation of the Euler Bernoulli beam. 

 

 
 

The force and moment balance equations can be easily provided from the free body diagram 

of an infinitesimal element of a beam structure subjected to an axial load P [1]. 

 
𝑑𝑉

𝑑𝑥
= −q(x) +kwin w(x)                                                                                                   (4) 

 
𝑑𝑀

𝑑𝑥
= −P 

𝑑𝑤

𝑑𝑥
+ V                                                                                                                       (5) 

 

D’où  

 
𝑑2𝑀

𝑑2𝑥
= −P 

𝑑2𝑤

𝑑2𝑥
+
𝑑𝑉

𝑑𝑥
                                                                                                         (6) 
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Let us substitute equation (4) into (6):  

 
𝑑2𝑀

𝑑2𝑥
= −P

𝑑2𝑤

𝑑2𝑥
−q(x)+ kwin w(x)                                                                                              (7) 

 

The resulting bending moment in a beam section is given as follows: 

 

𝑀 = ∫ 𝑦𝜎𝑑𝐴
1

𝐴
                                                                                                                           (8) 

 

From relations (2), (3) and (8), the bending moment M for the nonlocal model can be 

expressed by: 

  

𝑀 = (𝑒0𝑎2)
𝜕2𝑀

𝑑2𝑥
−  𝐸 ∫ 𝑦2𝑑𝐴

𝑑2𝑤

𝑑2𝑥

1

𝐴
                                                                                          (9) 

 

Knowing that the moment of inertia 

 

𝐼 =  ∫ 𝑦2
1

𝐴
𝑑𝐴                                                                                                                          (10) 

 

Equation (9) become: 

[1 − (𝑒0𝑎 2)
𝑑2

𝑑2𝑥
]𝑀 = −EI 

𝑑2𝑤

𝑑2𝑥
                                                                                              (11) 

Substituting equation (7) into equation (12) and deriving gives the following equation 

(12): 

 
𝑑2𝑀

𝑑2𝑥
= −EI 

𝑑4𝑤

𝑑4𝑥
+ (𝑒0𝑎 2)[−𝑃

𝑑4𝑤

𝑑4𝑥
−
𝑑2𝑞(𝑥)

𝑑2𝑥
+  𝑘𝑤𝑖𝑛 

𝑑2𝑤

𝑑2𝑥
(𝑥)  ]                                          (12) 

 

Substituting equation (7) again into equation (12), we obtain: 

 

−𝑃
𝑑2𝑤

𝑑2𝑥
− 𝑞(𝑥) + 𝑘𝑤𝑖𝑛 𝑤(𝑥) = −EI

𝑑4𝑤

𝑑4𝑥
+ (𝑒0𝑎 2) [−𝑃

𝑑4𝑤

𝑑4𝑥
−
𝑑2𝑞(𝑥)

𝑑2𝑥
+  𝑘𝑤𝑖𝑛 

𝑑2𝑤

𝑑2𝑥
(𝑥)]    

(13) 

 

By simplification 

 

EI
𝑑4𝑤

𝑑4𝑥
+ (1 − (𝑒0𝑎2)

𝑑2

𝑑2𝑥
) [ −𝑃

𝑑2𝑤

𝑑2𝑥
− 𝑞(𝑥) +  𝑘𝑤𝑖𝑛𝑤(𝑥)  ]  = 0                                          (14) 

 

The Van der Waals pressure should be a linear function of the difference in deflections 

of the two layers adjacent to the point as follows: 

 

𝑞12 = 𝑐𝑡(𝑤2 −𝑤1)                                                                                                                              (15) 
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𝑞21 = −
𝑑1

𝑑2
𝑐𝑡(𝑤2 −𝑤1)                                                                                                                      (16) 

 

Where, d1 and d2 are the radius of the inner and outer tubes respectively. 

 

Substituting equation (15), then equation (16) into equation (14), we obtain the 

following system of equation (17): 

 

{
𝐸𝐼

𝑑4𝑤1

𝑑𝑥4
+ (1 − (𝑒0𝑎2)

𝑑2

𝑑𝑥2
)[−𝑃

𝑑2𝑤1

𝑑𝑥2
− 𝑐𝑡(𝑤2 −𝑤1) + 𝑘𝑤𝑖𝑛𝑤1(𝑥)]   =  0

𝐸𝐼
𝑑4𝑤2

𝑑𝑥4
+ (1 − (𝑒0𝑎2)

𝑑2

𝑑𝑥2
)[−𝑃

𝑑2𝑤2

𝑑𝑥2
+
𝑑1

𝑑2
𝑐𝑡(𝑤2 −𝑤1) + 𝑘𝑤𝑖𝑛𝑤2(𝑥)]   =  0

                 (17) 

 

Let us assume the following sinusoidal buckling functions as a solution to the previous 

system (17) 

 

{
𝑤1 = 𝑊1 𝑠𝑖𝑛 (𝑥)
𝑤2 = 𝑊2 𝑠𝑖𝑛 (𝑥) 

                                                                                                              (18) 

 

After substituting equation (18) into equation (17) we obtain the following 

homogeneous system: 

 

{
[𝐸𝐼1

4 + (1 + 𝑒0𝑎22)(𝑐𝑡 + 𝑘𝑤𝑖𝑛 + 𝑃2)]𝑊1 – [(1 + 𝑒0𝑎22)𝑐𝑡]𝑊2 = 0

[−(1 + 𝑒0𝑎22)
𝑑1

𝑑2
𝑐𝑡]𝑊1 + [𝐸𝐼2

4 + (1 + 𝑒0𝑎22) (
𝑑1

𝑑2
𝑐𝑡 + 𝑘𝑤𝑖𝑛 + 𝑃2)]𝑊2 = 0

     

(19) 

 

It is written in matrix form as follows: 

 

[
𝑘11 𝑘12
𝑘21 𝑘22

] (𝑊1
𝑊2
) = 0                                                                                                               (20) 

With : 

 

{
 
 

 
 
𝑘11 = 𝐸𝐼1

4 + (1 + 𝑒0𝑎22)(𝑐𝑡 + 𝑘𝑤𝑖𝑛 + 𝑃2 )

𝑘12 = (1 + 𝑒0𝑎
2

2)𝑐𝑡

𝑘21 = (1 + 𝑒0𝑎
2

2)
𝑑1

𝑑2
𝑐𝑡

𝑘22 = 𝐸𝐼2
4 + (1 + 𝑒0𝑎22 )(

𝑑1

𝑑2
𝑐𝑡 + 𝑘𝑤𝑖𝑛 + 𝑃2 )

                                                       (21) 

 

So the determinant: 

 

[𝐸𝐼1
4 + (1 + 𝑒0𝑎22)(𝑐𝑡 + 𝑘𝑤𝑖𝑛 + 𝑃2)] ∗ [𝐸𝐼2

4 + (1 + 𝑒0𝑎22) (
𝑑1

𝑑2
𝑐𝑡 + 𝑘𝑤𝑖𝑛 +

𝑃2)] − [−(1 + 𝑒0𝑎22)𝑐𝑡] ∗ [−(1 + 𝑒0𝑎22)
𝑑1

𝑑2
𝑐𝑡] = 0                                                (22) 
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And the solution will be as follows: 

 

𝑎1𝑃
2 + 𝑏1𝑃 + 𝑐1 = 0                                                                                                                (23) 

 

With: 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝒂𝟏 = 
4 + 𝑒0𝑎48 + 2𝑒0𝑎26

𝒃𝟏 = 2𝑒0𝑎
4

6𝑘𝑤𝑖𝑛 + 𝐸𝐼1
8𝑒0𝑎2 + 22𝑘𝑤𝑖𝑛 + 44𝑒0𝑎2𝑘𝑤𝑖𝑛 + 𝑒0𝑎

4
6 𝑑1

𝑑2
𝑐𝑡

+2𝑐𝑡𝑒0𝑎24 + 𝐸𝐼1
6 + 

6𝐸𝐼2 + 𝑒0𝑎
2

8𝐸𝐼2 + 𝑐𝑡
2 + 

2 𝑑1

𝑑2
𝑐𝑡 + 𝑒0𝑎46𝑐𝑡

+24𝑒0𝑎2
𝑑1

𝑑2
𝑐𝑡

𝒄𝟏 = 𝑒0𝑎
4

4𝑘𝑤𝑖𝑛
2 + 𝑘𝑤𝑖𝑛𝐸𝐼2

4 + 𝑘𝑤𝑖𝑛
𝑑1

𝑑2
𝑐𝑡 + 𝑒0𝑎26𝑐𝑡𝐸𝐼2 + 2𝑒0𝑎

2
2𝑘𝑤𝑖𝑛

2

+𝑐𝑡𝐸𝐼2
4 + 𝐸2𝐼1

8𝐼2 + 𝑒0𝑎
2

6𝑘𝑤𝑖𝑛𝐸𝐼2 + 𝐸𝐼1
4𝑘𝑤𝑖𝑛 + 𝑒0𝑎

4
4𝑐𝑡𝑘𝑤𝑖𝑛 + 𝑘𝑤𝑖𝑛

2

+2𝑐𝑡𝑒0𝑎22𝑘𝑤𝑖𝑛 + 𝑒0𝑎
4

4𝑘𝑤𝑖𝑛
𝑑1

𝑑2
𝑐𝑡 + 𝑐𝑡𝑘𝑤𝑖𝑛 + 𝐸𝐼1

6𝑒0𝑎2𝑘𝑤𝑖𝑛

+2𝑘𝑤𝑖𝑛𝑒0𝑎
2

2 𝑑1

𝑑2
𝑐𝑡 + 𝐸𝐼1

4 𝑑1

𝑑2
𝑐𝑡 + 𝐸𝐼1

6𝑒0𝑎2
𝑑1

𝑑2
𝑐𝑡

           

(24) 

 

So, the final equation that solves system (24) and will give us the critical buckling 

load (Pcr) of DWCNT-nanocomposite in which the effect of the Winkler elastic medium 

together with the different parameters were considered is the following: 

 

𝑃𝑐𝑟1 = 
−𝑏1±√𝑏1

2−4𝑎1𝑐1

2𝑎1
                                                                                                         (25) 

 

2.3 The case of Pasternak elastic model  

In Pasternak model the interaction between the different layers of an elastic medium 

was represented by a layer made up of incompressible vertical elements which only deform 

by transverse shear of Pasternak rigidity kp and which will be connected to the ends of winkler 

springs. This is the Winkler-Pasternak model. 

 

 

Figure 3 Beam on two-parameter elastic foundation (Winkler-Pasternak) (Dobromir, 2012) 
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The pressure-deflection relationship according to the Pasternak model is given by 

(Dobromir, 2012): 

f(x) = 𝑘𝑤𝑖𝑛 𝑤 − 𝑘𝑃 w 
𝜕2𝑤

𝜕𝑥2
  

                                                                                                  (26)                                                                   

Replacing the Winkler elastic medium model given in equation (4) by the Pasternak 

model given in formula (26) and following the same development above we find the new 

critical buckling load as a function of the Pasternak elastic medium which takes into 

consideration the shear between the layers of the elastic medium: 

 𝑃𝑐𝑟2 = 
−𝑏2±√𝑏2

2−4𝑎2𝑐2

2𝑎2
                                                                                         (27) 

 

The coefficients of the real numbers are:    
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝒂𝟐 = 𝑒0𝑎
226 + 

4 + 𝑒0𝑎48

 𝒃𝟐 = 𝑐𝑡
2 + 

6𝐸𝐼2 + 2
4 𝑘𝑝 +

2𝑑14 𝑒0𝑎2

𝑑2
𝑐𝑡 + 𝑐𝑡6𝑒0𝑎4 + 4𝑒0𝑎24𝑘𝑤𝑖𝑛

+2𝑒0𝑎46𝑘𝑤𝑖𝑛 + 𝑒0𝑎
2

8𝐸𝐼2 +
𝑑1 6 𝑒0𝑎4

𝑑2
𝑐𝑡 + 46𝑒0𝑎2𝑘𝑝 + 2𝑐𝑡4𝑒0𝑎2

+22𝑘𝑤𝑖𝑛 + 2𝑒0𝑎
4

8𝑘𝑝 +
𝑑12

𝑑2
𝑐𝑡 + 

8𝐸𝐼1𝑒0𝑎
2 + 

6𝐸𝐼1

𝒄𝟐 = 2
6𝑒0𝑎2𝑘𝑝2 + 

8𝑒0𝑎4𝑘𝑝2 + 22𝑒0𝑎2𝑘𝑤𝑖𝑛
2 + 22𝑘𝑤𝑖𝑛 𝑘𝑝

+𝑐𝑡 𝑘𝑤𝑖𝑛 +
𝑑14 𝐸𝐼1

𝑑2
𝑐𝑡 + 

6𝐸𝐼1𝑒0𝑎
2𝑘𝑤𝑖𝑛 + 

6𝐸𝐼1𝑘𝑝 + 
8𝐸𝐼1𝑒0𝑎

2𝑘𝑝

+𝑐𝑡4𝐸𝐼2 + 𝑐𝑡 𝑘𝑝
2 + 𝑘𝑤𝑖𝑛 

4𝐸𝐼2 + 4
4𝑘𝑤𝑖𝑛 𝑒0𝑎

2𝑘𝑝 + 𝑘𝑝6𝐸𝐼2

+26𝑘𝑤𝑖𝑛 𝑒0𝑎
4𝑘𝑝 + 22𝑒0𝑎2𝑘𝑤𝑖𝑛 𝑐𝑡 + 2

4𝑒0𝑎2𝑘𝑝 𝑐𝑡 +
𝑑1𝑘𝑤𝑖𝑛

𝑑2
𝑐𝑡 +

2𝑑1𝑘𝑤𝑖𝑛
2𝑒0𝑎2

𝑑2
𝑐𝑡

+

2𝑑1𝑘𝑝

𝑑2
𝑐𝑡 +

2𝑑1𝑘𝑝4𝑒0𝑎2

𝑑2
𝑐𝑡 + 

6𝑒0𝑎2𝐸𝐼2𝑐𝑡 + 
4𝑒0𝑎4𝑘𝑤𝑖𝑛 𝑐𝑡 + 

6𝑒0𝑎4𝑘𝑝 𝑐𝑡

+6𝐸𝐼2𝑒0𝑎
2𝑘𝑤𝑖𝑛 +

𝑑1𝑘𝑤𝑖𝑛
4𝑒0𝑎4

𝑑2
𝑐𝑡 + 

8𝐸𝐼2𝑒0𝑎
2𝑘𝑝 +

𝑑1𝑘𝑝6𝑒0𝑎4

𝑑2
𝑐𝑡

+4𝑒0𝑎4𝑘𝑤𝑖𝑛
2 + 𝐸𝐼1

2𝐸𝐼2
8 +

𝑑1𝐸𝐼1
6𝑒0𝑎2

𝑑2
+ 

4𝐸𝐼1𝑘𝑤𝑖𝑛

   

(28) 

 

Therefore: 

 

{𝑑1 =  
√3

𝜋
𝑎𝑐𝑐√(𝑛

2 +𝑚2 + 𝑛𝑚)

𝑑2 =  𝑑1 +  2 ℎ   
                                                                                          (29) 

 

{
𝐼1 =

(𝑑1+𝑡)4−(𝑑1−𝑡)4

64
𝜋

𝐼2 =
 (𝑑2+𝑡)4− (𝑑2−𝑡)4

64
𝜋

                                                                                                         (30) 

 

2.4 Calculation Data 

The nanocomposite is composed of a double-walled zigzag-like carbon nanotube 

reinforcement (DWCNT) with an effective thickness equal to t = 0.285 nm, the density ρ = 2. 

3 g/cm3, the distance between the layers h = 0.34 nm , the Poisson's ratio υ = 0.19. 

For the rigidity of the kwin elastic support, we have chosen a polyethylene type 

polymer; its value is kwin = 0.9 GPa. 

The Young's modulus des (DWCNT) values used in this calculation were calculated 

by Bao et al., 2004, table 1. 

 

Table 1 Young's modulus values of DWCNT for zigzag-like. 
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Hamada indices 

(n,m) 

Young'smodulus 

(DWNT) (GPa) 

Bao et al., 2004. 

(14,0)  939.032 

(17,0) 938.553 

(21,0)  936.936 

(24,0)  934.201 

(28,0) 932.626 

(31,0) 932.598 

(35,0) 933.061 

 

3. Rusults 

The results discussed below will show how the different parameters of geometric ratio (L/D), 

small-scale coefficient (e0a) and mode number (N) will affect the critical buckling load on a 

DWNTC integrated in an elastic matrix. 

 

Table 2 Results of critical buckling load according to different parameters (Only maximum 

and minimum values). 

N 2 6 

e0a 0 2 0 2 

L/D 10 40 10 40 10 40 10 40 

( 14,0 ) 59.84 
-

111.96 
36.90 -112.05 619.38 23.04 111.66 14.68 

( 17,0 ) 65.78 
-

143.98 
44.07 -144.06 696.88 23.38 153.32 15.72 

( 21,0 ) 73.15 
-

192.90 
53.11 -192.97 799.76 23.05 218.93 16.23 

( 24,0 ) 78.15 
-

234.28 
59.33 -234.35 875.50 22.19 274.63 15.93 

( 28,0 ) 84.53 
-

295.68 
67.18 -295.74 978.16 20.49 357.45 14.86 

( 31,0 ) 89.11 
-

346.41 
72.73 -346.47 1056.35 18.81 425.30 13.58 

( 35,0 ) 94.84 
-

420.29 
79.66 -420.35 1161.30 16.00 522.07 11.23 

 

Table 3 Results of the critical buckling load as a function of the rigidity of the elastic matrix 

for chirality (14, 0) (N= 6; L/D= 10) 

e0a kwin =0 kwin= 0,9 kp=0,321 

0 650.66 619.38 602.24 
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1 398.52 395.01 390.33 

2 113.32 111.66 101.26 

 

The results obtained from Table 2 and 3 are based on the theory of non-local elasticity 

and also on the integration of the Euler Bernouli beam model in the calculation. 

 

Figure 4  Variation the critical buckling load (Pcr) and the small scale coefficient (e0a) of 

DWCNT L/D = 10 and N = 6) . 

 

In figure 4, we see that the critical buckling load is smaller when the small scale 

coefficient taken into account in the calculation is high (e0a = 2). This explains the importance 

of using the non-local elasticity theory which gives a margin of safety in the calculation 

compared to the local elasticity theory. For example, in the case of a carbon nanotube with 

chirality (14. 0). It is see a difference in the critical buckling load of approximately 80% going 

from a small scale effect (e0a = 0 to 2). Also, we see that the critical buckling load increases 

with the increase in the hamada index (an increase of approximately 78% going from chirality 

(n =14 to 35) according to the results of table 2 and figure 04. 

 

Figure 5  Variation the critical buckling load (Pcr) in terms of the geometric ratio (L/D) of 

the DWCNT (e0a = 2 and N =6). 
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The figure 5 represents the variation the critical buckling load (Pcr) in terms of the geometric 

ratio (L/D) of the DWCNT. It is see that the critical buckling load increases when the geometric 

ratio of the reinforcement decreases (an increase of approximately 97% going from a geometric 

ratio (L/D = 40 to 10 ). This explains the importance of choosing the lowest possible geometric 

ratio (L/D) in order to have a high critical load and prevent the material from deforming 

perpendicular to the axis of the applied force when it is compressed in the lengthwise. This 

figure 5 also confirms the previous observation that the highest critical buckling load is relative 

to the highest hamada index. 

 

Figure 6 Variation the critical buckling load (Lcr) in terms of the mode number (N) of the 

DWCNT (e0a = 2 and L/D = 10). 
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The figure 6 represents the variation the critical buckling load (Lcr) in terms of the mode 

number. It is see that the critical buckling load increases both when the mode number N 

increases and when the chirality number increases in a remarkable way. For example, for the 

case of reinforcement with a chirality number (n = 35), the critical buckling load increases by 

approximately 70% going from N = (2 to 10) and we can have a difference in increase of 80% 

going from a number of chirality (n =14 to 35). Therefore the critical load is all the better for 

the modes and for the highest numbers of chirality. According to (Belmahi et al. 2018 & 2019) 

in the high modes the interactions between the atoms increase because of the short wavelength 

attributed to the small diameter of the carbon nanotube  reinforcement  and to the elastic matrix 

considered. 

 

Figure 7 Variation of the critical buckling load (Pcr) as a function of the elastic medium (L/D 

= 10, N=6 and eoa = 2) 
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Figure 07 represents the variation of the critical buckling load as a function of the small-scale 

effect and for different types of elastic medium. it is noted and consistent with Figure 04 that 

for any type of elastic medium, the critical load decreases with the increase in the ratio at 

small scales (e0a) hence the importance of making a calculation with the non-local theory, 

also, a small difference is noted between the values of the critical load without elastic medium 

(kwin =0) and with the presence of the elastic medium (polyethylene kwin =0.9), this means that 

the assembly of these two materials does not It is not affected and remains perfect with 

characteristics close to the carbon nanotube. according to (Chemi et al., 2018), this small 

variation is attributed to the weak van der Waals forces between the internal and external tubes 

of the carbon nanotube. Indeed, according to (Belmahi et al., 2019) the matrix ensures the 

cohesion of the nanocomposite, while the carbon nanotube represents the reinforcement which 
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is responsible for these mechanical performances and overall stability.  It is also noted that 

the critical buckling load calculated with the Pasternak model ( kp = 0.321) which is more 

generalized is less than in the case calculated with Winkler. therefore, the Pasternak 

calculation remains more secure. 

 

4. Conclusion  

In this paper, the study of the critical buckling load is important, such that in this work the 

latter was calculated for a carbon nanotube (DWCNT) represented by an Euler-Bernoulli 

nanobeam model and integrated in a Winkler type elastic matrix. Numerous parameters were 

taken into account including, the dimensional or geometric ratio (L/d), the small scale 

coefficient (e0a) and the mode number (N) and the chirality number. The results have shown 

the dependence of the critical buckling load on the different parameters cited above. to have 

a high critical charge, you must have the lowest geometric ratio (L/d), the highest mode 

number (N) and chirality number and vice versa. thus the procedure with a small scale effect 

coefficient between 1 and 2 makes it possible to take into account the non-local effect and to 

have security in the calculation. Also, it can be concluded in the case of high rigidities than 

the non-local theory is necessary and the presence of a very rigid matrix reduces the critical 

buckling load and the Pasternak model is more secure in the calculation of this critical load 

than the Winkler model. 
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