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This study investigates the use of machine learning techniques to predict the compressive strength 

of concrete using key input parameters such as water-cement ratio, cement content, and aggregate 

size. Several models, including Support Vector Regression (SVR) and Backpropagation Neural 

Network (BPNN), were applied to a comprehensive dataset of concrete mixtures. The results 

demonstrate that both models exhibit high predictive accuracy, with the SVR model achieving an 

R² score of 0.877 for the test set and the BPNN model scoring 0.872. Feature importance analysis 

revealed that the water-cement ratio and cement content were the most influential factors in 

determining compressive strength. The findings highlight the potential of machine learning in 

optimizing concrete mix designs, offering a more accurate prediction than traditional empirical 

methods. Future research should focus on incorporating additional variables and advanced 

optimization techniques to further improve the predictive capabilities of these models. 
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1. Introduction 

Concrete is one of the most widely used construction materials globally, known for its 

versatility, durability, and cost-effectiveness. The compressive strength of concrete is one of 

the most critical properties that determine its suitability for structural applications. 

Compressive strength testing, typically performed at 28 days after casting, serves as an 

indicator of the concrete's ability to bear loads and resist failure under compressive stress [1]. 

However, accurately predicting compressive strength before testing remains a challenge in 

the industry, as it depends on various factors such as the water-cement ratio, cement content, 

aggregate type, and curing conditions [2]. Traditional methods for estimating compressive 

strength rely on empirical formulas and regression models, which often fail to capture the 

complex, nonlinear relationships between input variables and strength outcomes [3]. These 

methods can be limited by assumptions about linearity and often require substantial amounts 

of experimental data. In contrast, machine learning (ML) algorithms provide a robust 

alternative for modeling these complex relationships, allowing for more accurate predictions 
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with fewer assumptions [4]. ML models can efficiently handle large datasets, learn from the 

interactions between variables, and improve predictive accuracy through iterative learning 

processes [5]. Recent advancements in artificial intelligence and machine learning have 

demonstrated their potential in civil engineering applications, particularly in material property 

predictions [6]. Studies have successfully applied machine learning techniques, such as 

artificial neural networks (ANNs), decision trees, and support vector machines, to predict the 

compressive strength of concrete, achieving superior results compared to traditional 

approaches [7-16]. These algorithms are capable of capturing the complex dependencies 

between mix design parameters and compressive strength, which are often overlooked by 

traditional empirical models [8]. While machine learning has made significant strides in 

predicting concrete compressive strength, several gaps remain in the research. First, many 

studies focus on a single machine learning algorithm without comparing it to other techniques. 

As a result, the performance of different models remains underexplored, making it difficult to 

determine the most suitable algorithm for specific concrete mix designs or conditions. Second, 

there is limited research on integrating machine learning with domain knowledge from civil 

engineering. Most ML models treat concrete mix data purely as numbers, without considering 

the underlying physical and chemical interactions between materials. By combining domain 

expertise with machine learning, models could potentially make more accurate predictions 

and provide better insight into the behavior of different mix designs. 

Third, data availability and quality remain significant challenges. Many machine learning 

models require large amounts of high-quality data for training, which can be difficult to obtain 

in practice. Most studies rely on limited experimental data, which can affect the 

generalizability of the models. Additionally, there is a lack of research on the impact of 

external factors, such as environmental conditions or curing methods, on the performance of 

machine learning models in predicting compressive strength. Machine learning offers a 

powerful alternative to traditional methods by addressing the complexity and nonlinearities 

of concrete mix designs. However, there is still much room for improvement, especially in 

model generalization, integration with civil engineering expertise, and the exploration of 

newer algorithms that could further enhance predictive accuracy. 

 

Given the significant implications of accurate compressive strength prediction on construction 

quality and safety, this research aims to evaluate the effectiveness of machine learning 

algorithms in predicting the compressive strength of concrete. The specific objectives of this 

study are to (1) build machine learning models using input parameters such as water-cement 

ratio, cement content, and aggregate size, (2) compare the performance of various machine 

learning algorithms, including SVR and BPNN. This research provides a novel approach to 

predicting the compressive strength of concrete by leveraging the power of machine learning 

algorithms. While traditional empirical models and statistical methods have been widely used 

in concrete strength prediction, they often suffer from limitations such as oversimplification 

of nonlinear relationships between concrete mix variables. This study goes beyond these 

limitations by exploring a range of machine learning algorithms, SVR and BPNN, to model 

and predict compressive strength with higher accuracy. 

 

2. Methodology 
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2.1 Data Collection 

The dataset utilized in this study comprises a diverse array of concrete mixtures, each 

characterized by several input features that significantly influence the compressive strength 

of concrete. Key features include the Water-Cement Ratio (WCR), Cement Content (CC), and 

Aggregate Size (AS). The Water-Cement Ratio denotes the ratio of the weight of water to the 

weight of cement within the mixture, with a lower WCR generally correlating to a higher 

compressive strength. Cement Content, measured in kilograms per cubic meter (kg/m³), 

indicates the quantity of cement incorporated in the concrete mix, and higher cement content 

is typically associated with enhanced compressive strength. Table 1 illustrated the dataset used 

to predict the compressive strength of concrete using machine learning algorithms. 

 

Table 1 Data set for concrete mix 

Exp. No. 
Water-cement 

ratio 

Cement 

(kg/m3) 

Coarse 

gravel 

(kg/m3) 

Fine 

gravel 

(kg/m3) 

Sand 

(kg/m3) 

1 0.79 273 0 936 863 

2 0.79 244 497 478 936 

3 0.74 291 0 927 980 

4 0.74 261 493 473 928 

5 0.69 313 0 915 968 

6 0.69 280 487 469 919 

7 0.65 332 0 920 957 

8 0.65 297 529 509 925 

9 0.61 354 0 909 949 

10 0.61 316 524 504 921 

11 0.58 372 0 905 945 

12 0.58 332 530 490 908 

13 0.54 400 0 890 888 

14 0.54 357 528 488 860 

15 0.5 432 0 935 872 

16 0.5 386 550 469 855 

17 0.45 480 0 908 825 

18 0.45 429 533 412 800 

19 0.42 514 0 884 753 

20 0.42 460 558 419 768 
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Aggregate Size, representing the maximum size of the coarse aggregate utilized in the mixture 

(measured in millimeters), can significantly affect both the workability and strength of the 

concrete. The target variable for this study is the Compressive Strength (CS), measured in 

megapascals (MPa), which reflects the maximum compressive stress that the concrete can 

withstand. The dataset was sourced from a combination of experimental studies and concrete 

production records to ensure a comprehensive representation of various concrete mixtures. 

 

2.2 Data Preprocessing 

Prior to the application of machine learning algorithms, the dataset underwent several 

preprocessing steps to enhance its quality and suitability for modeling. Initially, missing 

values within the dataset were addressed through appropriate imputation techniques or by 

omitting affected rows, contingent on the extent of missing data. Following this, normalization 

was applied to ensure that all features contributed equally to the model training process. This 

normalization involved scaling the numerical features to a standard range, typically between 

[0, 1] or [-1, 1], utilizing either Min-Max Scaling or Standardization methods. Subsequently, 

the processed dataset was partitioned into training and testing subsets, adhering to the 

common practice of allocating 70% of the data for training and 30% for testing. This division 

facilitates a robust evaluation of model performance. 

 

2.3 Machine Learning Models 

In this study, several machine learning algorithms were employed to predict the compressive 

strength of concrete. The first algorithm, Linear Regression, serves as a foundational statistical 

method that models the relationship between input features and the target variable using a 

linear equation. Additionally, the Random Forest Regressor was utilized, an ensemble method 

that constructs multiple decision trees during training and outputs the average prediction, 

thereby enhancing accuracy and reducing the risk of overfitting. The Gradient Boosting 

Regressor, another ensemble technique, was also implemented; it builds models sequentially, 

with each new model correcting the errors made by the previous ones, resulting in improved 

predictive performance. Lastly, the Multi-Layer Perceptron (MLP), a type of neural network 

model, was incorporated to capture complex non-linear relationships in the data through 

multiple layers of interconnected nodes. 

 

3. Methodology 

To comprehensively analyze the concrete compressive strength, this study employs a machine 

learning approach to predict concrete compressive strength. This section focuses on the 

machine learning methodology used for SVR and BPNN in the study and the evaluation 

indicators for the performance of the prediction model. Support Vector Machine is a statistical 

learning theory proposed by Vapnik [17], which is based on the criterion of structural risk 

minimization [17-22]. This method aims to minimize both the structural risk and the sample 

error, thereby improving the generalization ability of the model without being limited by the 

dimensionality of the data. To address regression fitting problems using SVM, Vapnik et al. 

[17] introduced an insensitive loss function ε, resulting in a regression-type support vector 

machine. This model exhibits superior performance and effectiveness. In SVM regression 
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fitting, the main idea is to determine an optimal plane that minimizes the error between the 

training samples and the optimal plane [23]. 

 

Considering the advantages of neural networks in handling complex nonlinear relationships, 

this study incorporates neural network modeling into the prediction of concrete strength. The 

artificial neural network model is a mathematical tool that emulates the functions of the human 

brain, such as learning, reasoning, and performing parallel computations [5,24]. The back 

propagation (BP) neural network consists of an input layer, an intermediate layer (also known 

as the hidden layer), and an output layer. When considering concrete mix proportion design, 

the architecture of BPNN is divided into 3 layers with the number of neurons in each layer 

being 7,10 and 1, respectively.  

The learning process of the BPNN consists of two stages [25-28]. 

 

 
Fig. 1 Implementation flow chart of machine learning algorithms 
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In the first stage, information is propagated forward from the input layer through the hidden 

layer to the output layer. By inputting the sample data, the input vector is processed through 

the designed network structure and the weights and thresholds are adjusted iteratively to 

achieve sample learning. In the second stage, information is propagated backward from the 

output layer to the input layer, following a specific rule to modify the initial weights and 

thresholds of the algorithm. This process aims to facilitate the convergence of the algorithm. 

The first stage of the learning process is completed when information flows from the input 

layer to the output layer. If there is a discrepancy between the output result of the output layer 

and the expected result, the error is propagated backward from the output layer to the input 

layer through the intermediate layer. The weights are adjusted layer by layer using the gradient 

descent algorithm to complete the second stage of the learning process. These two stages are 

repeated alternately until convergence is achieved, signaling the end of the learning process 

and the termination of network training. Fig. 1 showed the flow chart for implementation of 

SVR and BPNN machine learning algorithms. 

 

4. Model Training and Evaluation 

Each machine learning model was trained on the training dataset, and subsequent predictions 

were generated using the testing set. To evaluate model performance, several metrics were 

employed. The Coefficient of Determination (R²) indicates the proportion of variance in the 

target variable that can be explained by the features, with values approaching 1 signifying a 

superior fit. The Root Mean Squared Error (RMSE) quantifies the average magnitude of the 

errors between predicted and actual values, providing insights into the model's accuracy. 

Additionally, the Mean Squared Error (MSE) calculates the average of the squares of the 

errors, aiding in the understanding of the variance of the prediction errors. The Mean Absolute 

Error (MAE) represents the average absolute difference between predicted and actual values, 

offering a straightforward interpretation of prediction accuracy. To ensure that the models 

generalize well to unseen data, cross-validation techniques, such as k-fold cross-validation, 

were employed. The results were systematically compared across all models to identify the 

most effective approach for predicting concrete compressive strength. 

 

5. Results and Discussion 

The results obtained from the application of various machine learning models to predict the 

compressive strength of concrete were systematically analyzed and compared to elucidate the 

most effective approach. Each model's performance was evaluated using key metrics such as 

the Coefficient of Determination (R²), Root Mean Squared Error (RMSE), Mean Squared 

Error (MSE), and Mean Absolute Error (MAE). The findings revealed that the SV Regressor 

demonstrated a robust predictive capability, yielding an R² score of 0.877, which indicated 

that approximately 87.7% of the variance in compressive strength could be explained by the 

selected features. This substantial explanatory power underscores the model’s effectiveness 

in capturing the intricate relationships inherent in concrete mixtures. In contrast, the BPNN 

achieved a substantial R² score of 0.872. Table 2 showed the R2 and mean square error (MSE) 

values of concrete after 7 and 28 days. 
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Table 2 Performance of concrete mix 

Concrete 

aging 

SVR BPNN 

R2 MSE R2 MSE 

7 Days 0.877 0.029 0.872 0.031 

28 Days 0.977 0.035 0.935 0.038 

 

The MSE values for the SVR model were 0.029 and 0.035 after 7 and 28 days respectively 

while for BPNN it was 0.031 and 0.038. The errors in the prediction were found low for both 

the machine learning algorithms indicating no overfitting or underfitting of the models. 

Furthermore, the analysis of feature importance across the models revealed insightful trends 

regarding the contributions of individual input variables to the prediction of compressive 

strength. Notably, the Water-Cement Ratio emerged as a critical determinant, consistently 

ranking high in importance across all models. This finding aligns with existing literature, 

emphasizing the pivotal role of WCR in influencing concrete strength. Cement Content also 

demonstrated significant relevance, corroborating its established effect on enhancing 

compressive strength through increased binding capacity. Aggregate Size exhibited variability 

in its influence depending on the model employed, suggesting that while it is a contributing 

factor, its impact may be more nuanced and potentially context-dependent. 

 

 
Fig. 2 Predictions od SVR and BPNN models at 7 days of curing 

 

As shown in fig. 2(a), the SVR model achieves R² values of 0.877 for the test set, indicating 

strong predictive accuracy, with the test set slightly outperforming the training set. Similarly, 

in plot (b), the BP model achieves an R² of 0.872 for the test set. Although both models 

demonstrate high accuracy, the SVR model shows slightly better generalization to unseen 
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data, as reflected in the higher R² for the test set compared to the BP model. Similarly, fig. 

3(a) showed the SVR model achieves R² values of 0.977 for the test set, indicating strong 

predictive accuracy, with the test set slightly outperforming the training set. Similarly, in plot 

(b), the BP model achieves an R² of 0.935 for the test set. Although both models demonstrate 

high accuracy, the SVR model shows slightly better generalization to unseen data, as reflected 

in the higher R² for the test set compared to the BP model. 

 

 
Fig. 2 Predictions of SVR and BPNN models at 28 days of curing 

 

6. Conclusion 

This study demonstrates the effectiveness of machine learning models, particularly Support 

Vector Regression (SVR) and Backpropagation Neural Network (BPNN), in predicting the 

compressive strength of concrete based on key mix design parameters. The SVR model 

slightly outperformed the BPNN model, showing better generalization to unseen data with a 

higher R² score of 0.877 on the test set. Both models provided robust predictions, and the 

analysis of feature importance confirmed that the water-cement ratio and cement content were 

the primary factors influencing compressive strength. These results suggest that machine 

learning techniques can significantly enhance the accuracy of concrete strength predictions, 

offering valuable insights for engineers in optimizing concrete mix designs. Future studies 

should consider expanding the dataset and integrating additional predictive variables to further 

refine model performance. 
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