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Clustered or hierarchical data structures with binary responses are prevalent in various practical 

applications. These structures can involve an equal or unequal number of observations, leading to 

the analysis of data exhibiting intricate variability patterns. Mixed models, incorporating fixed 

effects of interest and random effects to address clustering, are commonly employed due to their 

appropriateness in practice. Random effects in these models account for multiple error structures. 

In the domain of clustered binary mixed effects models, the Hierarchical Generalized Linear Model 

(HGLM) stands out as a preferred model. This study assesses the performance of the h-Likelihood 

estimation method for clustered binary mixed effects models with both balanced and unbalanced 

cluster sizes. Evaluation through computer simulations considers parameters such as unbiasedness, 

Type I error rate, power, and standard error. The simulations encompass varying numbers of 

clusters and cluster sizes, revealing nuances in the performance of the mixed effects clustered 

binary data model based on the cluster sizes. 
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INTRODUCTION 

Numerous research endeavors across health, finance, education, and the social sciences have 

entailed the collection of binary data organized into clusters. For instance, studies might 

involve the smoking status of students sampled from various schools or the disease status of 

animals from different farms. Such data typically exhibit correlations within clusters, where 

students from the same school or animals from the same farm tend to share similarities that 

distinguish them from individuals in other clusters. In the design of these studies, a critical 

decision point emerges regarding the selection of the number of groups to sample from. 

Opting for a larger number of groups or schools tends to reduce data dependence and enhance 

the precision of estimates related to explanatory variables. In certain experimental settings, 

clusters may be either balanced or unbalanced, with variations in the number of observations 

within each cluster. Unbalanced clusters can arise from uneven sub-sampling practices or 

random missing elements in clustered multivariate outcomes. The presence of different cluster 

sizes can introduce varying dispersions, thereby posing challenges of heterogeneity in models 

that necessitate distinct variance components, a concern previously explored in continuous 

http://www.nano-ntp.com/
mailto:entesar.el-saeiti@uob.edu.ly
mailto:entesar.el-saeiti@uob.edu.ly


1035 Intesar N. El-Saeiti et al. H-Likelihood Estimation Method For....                                                                              

 

Nanotechnology Perceptions 20 No. 5 (2024)  

response studies (El-Saeiti, 2004). This study adopts a nested design incorporating mixed 

effects models, a pragmatic choice due to its inclusion of fixed and random factors. When a 

model encompasses both fixed and random effects, it is referred to as a generalized linear 

mixed model (GLMM) or a hierarchical generalized linear model (HGLM) as introduced by 

Lee and Nelder (1996). Lee et al. (2024) provides a valuable contribution to the literature on 

advanced statistical methods for modeling and analyzing multivariate longitudinal binary 

data, leveraging the H-likelihood estimation technique. The proposed methodology can be a 

valuable tool for researchers and practitioners working with such complex data structures. 

Hierarchical generalized linear models accommodate additional error components in the 

linear predictors of generalized linear models, offering a non-normative distribution 

requirement and thereby broadening the model class. Within hierarchical generalized linear 

models, response variables and random effects can adhere to any distribution within the 

exponential family, a concept elaborated by McCullagh and Searle (2001). Consequently, 

HGLMs stand out as more suitable for clustered data compared to generalized linear models 

(GLMs). Yau, K. K., & Lee, A. H. (2021) presents a generalized mixed effects model for the 

analysis of longitudinal binary data. The model incorporates both random and fixed effects, 

and allows for the inclusion of time-varying covariates. The model parameters are estimated 

using the H-likelihood approach, which provides a unified framework for estimating the fixed 

and random effects. In generalized linear models, the estimation of the mean component 

typically involves using Maximum Likelihood (ML) methods. An extension to this approach 

within Hierarchical Generalized Linear Models (HGLM) is the Restricted Pseudo Likelihood 

(REPL) estimation method for binary mixed effect models, extensively discussed by El-Saeiti 

(2015). Comparative studies by Helena and Louise (1997) have indicated that parameter 

estimates obtained through ML and REPL methods exhibit fairly close agreement. To estimate 

both the mean and dispersion parameters, researchers often turn to the hierarchical likelihood 

(HL) estimation technique. Unlike traditional approaches, HL does not necessitate normality 

assumptions for random components, akin to the REPL method, thereby allowing for a wider 

array of model specifications as highlighted by Lee and Nelder (1996).  

Lee and Nelder 2006, propose a class of double hierarchical generalized linear models 

in which random effects can be specified for both the mean and dispersion. Heteroscedasticity 

between clusters can be modelled by introducing random effects in the dispersion model, as 

is heterogeneity between clusters in the mean model. 

The formulation of the hierarchical likelihood for the response variable y is expressed as: 

h = ln(f(y|v; β, φ)) + ln(f(v; α)). 

Here, f(y|v; β) and f(v; α) represent the conditional density function of y given random effect 

v and the density function of v, respectively. Lee and Nelder (1996) argued for developing 

algorithms based on the v-scale rather than the u-scale due to the flexibility of v in assuming 

real values, unlike u which may have constrained ranges leading to convergence issues. 

Parameter estimates in HGLMs are derived by maximizing the h-likelihood, leading to the 

computation of Maximum Hierarchical Likelihood Estimates (MHLEs). These estimates are 

obtained by solving the partial derivatives of the h-likelihood with respect to the fixed effects 

(β) and random effects (v). In the context of binary outcomes, the HGLM framework, as 

elucidated by Lee and Nelder (1996), involves modeling the dependent variable with a 
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binomial distribution and the random effect with a beta distribution. Further insights into 

binary outcomes with beta distribution for random effects can be found in the works of El-

Saeiti (2013), Lalonde (2009), and Lee and Nelder (1996). 

The key components of the HGLM framework include the response distribution 

(Binomial), random distribution (Beta), linear component (η), and the link function (logit). 

The h-likelihood for the binomial-beta model is given by: 

h = l(β, φ; y|v) + l(α; v). 

The estimation equations for the fixed part (β) and random component (v) in the h-likelihood 

estimation process are derived to obtain estimates for both parameters, ensuring a 

comprehensive understanding of the model and its components. 

 

SIMULATION 

In the simulation study conducted, the researcher initiated data generation by creating two 

distinct datasets: one with balanced cluster sizes and the other with unbalanced cluster sizes. 

Parameters were defined and values were generated including random effect variables, 

followed by the calculation of probabilities for the dependent variable. In cases of unequal 

cluster sizes, varying numbers of subjects were generated per cluster using a Poisson 

distribution, where the mean for the Poisson distribution represented the average number of 

observations within each cluster. By altering the mean cluster sizes (n̅ = 10, 25, 50, 100), the 

researcher illustrated the impact on statistical performance across different sample sizes. 

Furthermore, a normally distributed continuous variable, xi j, was generated with a mean of 3 

and a known variance of 20 (xij ∼ N(3, 20)). Subsequently, a beta-distributed random variable, 

ui, was created with parameters γ = 2 and λ = 3 for each cluster i (ui ∼ Beta(2, 3)). For scenarios 

with equal cluster sizes, similar processes were followed, but with an equal number of 

observations in each cluster. 

Each data unit was randomly generated from a Bernoulli distribution with a success 

probability calculated as       pij =
e

(β0 + β1 xij  + ui)

1+ e
(β0 + β1 xij  + ui).  

Here, β0 = 1 and β1 = 0.2, and parameter estimates were derived using the H-Likelihood 

method Heo and Leon (2005). 

The study specified the number of clusters (K = 10, 20, 50, 100), the cluster size for 

balanced clusters (n = 10, 25, 100), and for unbalanced clusters, the mean number of 

observations per cluster (n̅ = 10, 25, 100). For each combination of K and n, 1,000 datasets 

were generated for both equal and unequal cases to evaluate power, Type I error rates, and 

standard errors. Power, Type I error rates, and standard errors were computed based on the 

model with the systematic component ηij = β0 + β1 x1ij + vi, with a specified treatment effect 

for β1. 

The H-Likelihood Hierarchical Generalized Linear Model (HGLM) was utilized for data 

generation, where the systematic component for data generation was ηij = 1 + 0.2 x1i j + vi, and 

for the model fitting, it was represented as ηij = 1 + 0.2 x1ij + 3.1 x2ij + vi, with vi ∼ Beta(2, 3). 

The researcher employed the HGLM function within the HGLM package in R to estimate 

parameters β and t-statistics along with corresponding p-values. By averaging 1,000 estimates 
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obtained through simulation, the researcher calculated the values for β1, β2, power of the 

hypothesis test for β1, Type I error rate for β2, and the standard error for β1. 

 

RESULT:  

Table 1 for Binomial Beta h-likelihood estimate parameters. The Binomial Beta h-likelihood 

estimate 

 

Table 1: Estimate parameters 

 

The estimation of parameters β1 and β2 using Binomial Beta h-likelihood for both balanced 

and unbalanced cluster sizes demonstrated values that closely approximated the true 

parameters, with β1 estimated at 0.2 and β2 at 0. The Binomial Beta h-likelihood method 

proved to be effective in providing estimates that closely matched the actual values. 

In Table 2, the Binomial Beta h-likelihood Type I error rates for β2 were detailed for 

both balanced and unbalanced cluster sizes. Type I error rates were calculated as the 

proportion of p-values less than 0.05 under the null hypothesis H0: β2 = 0. Ideally, the Type I 

error rate should hover around 0.05. The explanation of the Type I error rate for β2 revealed 

slightly varying values for equal and unequal cluster sizes. It was observed that balanced 

cluster sizes exhibited lower values compared to unbalanced cluster sizes.   

Table2: Type I Error 

                         Balanced Cluster                         Unbalanced Cluster 

Clusters        Sample size            β̂0                   β̂1                    β̂0                       β̂1 

 10 0.2319765 -0.007228321 0.1958833 0.009286461 

K = 10 25 0.1939059 0.003553967 0.2017746 0.0108503 

 50 0.1970002 -0.002042296 0.188225 -0.0001238602 

 100 0.199145 0.002284678 0.2009817 -0.01050844 

 10 0.215392 -0.03054897 0.210038 0.01873527 

K = 20 25 0.2038395 -0.01017131 0.2013315 -0.001884942 

 50 0.2035105 0.004907986 0.2022876 0.0006811804 

 100 0.2006388 -0.002680622 0.1983477 -0.000997808 

 10 0.2080814 0.001532905 0.1958833 0.009286461 

K = 50 25 0.1994717 0.002696468 0.2022252 0.006061514 

 50 0.1967751 -0.0005004571 0.2000865 0.002234016 

 100 0.2001256 0.0007905866 0.20241 0.000397104 

 10 0.2004939 0.001584383 0.196161 0.003048525 

K = 100 25 0.2016236 -0.002657747 0.202098 0.002534502 

 50 0.1991661 0.0008547018 0.2014994 0.001459892 

 100 0.1996344 -0.00128299 0.1980433 0.001697924 
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Table 3 illustrated the power of the hypothesis test for β1 using the Binomial Beta h-likelihood 

method. Statistical power was determined as the ratio of correctly rejected null hypotheses      

(H0: β1 = 0). The test was iterated 1,000 times through simulation to ascertain how frequently 

the test yielded significant results. Power represented the proportion of these 1,000 tests that 

were correctly rejected. 

It was observed that balanced cluster sizes exhibited greater statistical power compared to 

unbalanced cluster sizes, particularly evident with smaller sample sizes. The power statistics 

for balanced clusters surpassed those for unbalanced clusters, indicating that the Binomial 

Beta h-likelihood method provides more accurate estimates for balanced cluster binary models 

than for unbalanced cluster models. 

 

Table 3: Power 

 

Clusters Sample size Balanced Unbalanced 

 10 0.89 0.906 

K =10 25 1 0.677 

 50 1 0.864 

 100 1 0.991 

 10 0.998 0.615 

K =20 25 1 0.937 

 50 1 0.999 

Clusters Sample size Balanced Unbalanced 

 10 0.12 0.085 

K = 10 25 0.07 0.095 

 50 0.12 0.09 

 100 0.073 0.104 

 10 0.136 0.109 

K = 20 25 0.09 0.096 

 50 0.165 0.108 

 100 0.067 0.087 

 10 0.067 0.085 

K =50 25 0.065 0.126 

 50 0.087 0.104 

 100 0.123 0.089 

 10 0.102 0.06 

K = 100 25 0.082 0.134 

 50 0.095 0.136 

 100 0.087 0.121 
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 100 1 1 

 10 1 0.906 

K =50 25 1 1 

 50 1 1 

 100 1 1 

 10 1 0.991 

K =100 25 1 1 

 50 1 1 

 100 1 1 

 

In Table 4, the concept of Standard Error (SE) is examined. The average Standard Error (SE̅̅ ̅) 

was determined as the mean of the 1,000 SE values for the estimates of β1. A smaller SE̅̅ ̅ 

denoted reduced estimated variability or increased precision in the parameter estimates. The 

standard error for β̂ indicated the level of efficiency improvement. 

The findings in Table 4 suggest that the Binomial Beta h-likelihood method exhibited smaller 

standard errors for balanced clusters. 

 

Table 4: Stranded error 

 

Clusters Sample size Balanced Unbalanced 

 10 0.07152838 0.05695932 

K =10 25 0.04197166 0.08128032 

 50 0.02903917 0.05683201 

 100 0.0202115 0.04005908 

 10 0.04737441 0.09272815 

K =20 25 0.02885089 0.05658015 

 50 0.02028826 0.04003575 

 100 0.0142676 0.02824783 

 10 0.02903625 0.05695932 

K =50 25 0.01807183 0.03579394 

 50 0.0127137 0.02526456 

 100 0.00901145 0.01782909 

 10 0.0202617 0.04016537 

K =100 25 0.01277624 0.0252753 

 50 0.009003529 0.01786361 

 100 0.006371349 0.01261467 

 

Tables 1 through 4 present a comprehensive overview of the simulation results for the 

Binomial Beta h-likelihood method applied to both equal and unequal cluster sizes. These 

tables summarize the findings related to parameter estimation, power statistics, Type I error 

rates, and standard errors. The analysis from these tables indicates that the Binomial Beta h-
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likelihood method serves as a reliable estimator. Across 1,000 replications, the estimates were 

remarkably close to the true values, with β1 estimated at 0.2 and β2 approximating zero. In 

terms of statistical power, balanced clusters exhibited higher values compared to unbalanced 

clusters, while Type I error rates were notably lower for balanced clusters than for unbalanced 

ones. 

Moreover, smaller average standard errors (SE) in the estimation process indicated 

reduced variability and enhanced precision in parameter estimates. Notably, balanced cluster 

sizes displayed superior performance compared to unbalanced cluster sizes in terms of these 

metrics, highlighting the efficacy of the Binomial Beta h-likelihood method, particularly for 

balanced cluster binary models. 

CONCLUSIONS: 

The Binomial Beta h-likelihood method emerged as a robust approach for handling mixed 

effects in clustered binary data models, showcasing nuanced variations based on cluster sizes. 

Through 1,000 replications, the estimates closely mirrored the actual values, demonstrating 

the method's effectiveness. Notably, in balanced scenarios, the power of the hypothesis test 

for regression parameters outperformed unbalanced setups, while the Type I error rates for 

these tests were deemed acceptable, notably lower for balanced clusters compared to 

unbalanced ones. Furthermore, the standard error associated with regression parameters was 

minimal. 

This study establishes the Binomial Beta h-likelihood method as a viable estimation 

technique, particularly well-suited for balanced clustered sizes over unbalanced cluster binary 

responses. The simulation results underscore the method's proficiency, especially in scenarios 

with balanced cluster sizes. 

FUTURE WORK 

Since Binomial Beta h-likelihood is an acceptable estimation method for balanced clustered 

sizes more than unbalanced clusters binary response; It is a good idea to adjust the Binomial 

Beta h-likelihood estimate method to deal with unbalanced cluster size which will be the next 

work for the author. 
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