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The optimal placement of Distributed Generation (DG) in power distribution networks is critical 

for improving grid stability and minimizing power losses. Previous studies have applied 

conventional optimization techniques like “Genetic Algorithms (GA) as well as Particle Swarm 

Optimization (PSO)” to handle this issue. This paper addresses these challenges by presenting a 

new approach for optimal placement and sizing of DG units using the KNN algorithm. The 

advanced deep learning models such as “Recurrent Neural Networks (RNN) Long Short-Term 

Memory (LSTM) Convolutional Neural Networks (CNN)” are compared with the proposed KNN 

algorithm on the IEEE 33-bus and 69-bus systems. The results indicate that the KNN model has 

better prediction accuracy than the traditional and deep learning models; on the 33-bus system, 

KNN estimated an average reduction of 16.5 % of the power losses, while on the 69-bus system, 

it estimated a decrease of 17.8 % of the power losses. Also, it enhances voltage profiles at a much-

reduced computation time than the traditional method, making it fit for real-time applications. The 

present work can be extended to combine KNN with other ML algorithms or predictive methods 

to improve DG's location.  

 

Keywords: Distributed Generation, K-Nearest Neighbors, Machine Learning, Optimal DG 

Placement, Power Loss Minimization, Deep Learning, RNN, CNN, LSTM, 33-Bus System, 69-

Bus System. 

 

1. INTRODUCTION 

The rapid transformation of energy systems, driven by the increasing penetration of renewable 

energy sources [1] and “distributed generation (DG)” [2], has led to new challenges and 
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opportunities in the operation and management of modern power distribution networks. 

Distributed generation systems include small-scale generating units like solar and wind power 

and small-scale CHP generators, and they are becoming essential in innovative grid 

applications. DG acknowledges the significance of several benefits, including less 

transmission losses, enhanced voltage stability, and increased system dependability. 

Nonetheless, integrating distributed generation into current distribution networks poses 

significant challenges in determining appropriate locations for installation to maximize 

benefits while mitigating any adverse effects on the grid. Another of the hardest coordination 

in the implementation of DG is assessing where the DG should be located and how big it 

should be to fit the distribution systems appropriately. Location misplacement of DG units 

results in problems like high power loss, voltage fluctuations, and the opposite flow [3] of 

power to the network, which would be detrimental to the grid. Hence, the location of suitable 

DG units should be determined [4] to maximize their benefits to the grid stability, minimize 

losses, and augment the loading demands. The problem of DG placement is unambiguously 

challenging because of the non-linear, dynamic behaviour of power systems, making the 

optimization problem non-trivial [5]. 

Various traditional optimization methods have solved the integration of suitable DG locations 

into distribution networks [6]. Several approaches have been used to deal with this problem, 

“including Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), and other meta-heuristic algorithms” [7]. All these techniques target the 

correct location of DG units by reducing objectives like loss, voltage and other costs. Even 

though these methods have been successful for some applications, many things could be 

improved, especially in the large-scale problem in terms of computational time. The 

increasing complexity of supply networks presents new challenges that more conventional 

optimization approaches need to better address with equal effectiveness when evaluating all 

of the various influences that need to be taken into account. 

Moreover, these methods can depend on parameter settings and may need many iterations to 

reach the optimum solution. This results in a high computational overhead [8] that deems them 

unsuitable for real-time or high-end systems. Also important to note is that classical 

approaches could be more effective in capturing the stochasticity of DG, especially when it 

comes to renewable generation, such as solar and wind, which fluctuate randomly and are not 

predictable. 

Over the past few years, machine learning has been recognized as a reliable technique for 

addressing various optimization challenges that power systems encounter, such as integrating 

distributed generation (DG). Compared to conventional optimization methods, machine 

learning can identify trends within data and, to begin with, is less sensitive to the current 

distribution networks' intricacies. The nature of machine learning models allows large datasets 

to offer more precise and time-saving results to the DG placement problem and, in general, 

lower computational costs in many cases. “The DG placement problem has been solved using 

several techniques in machine learning, such as supervised, unsupervised, and reinforcement 

learning. For instance, given past load and network data, artificial neural networks (ANN) 

have been applied to estimate the best locations for installing DG units. Likewise, Support 

Vector Machines (SVM) have been used to identify DG locations according to load demand, 

voltage profile, and system limitations. Other techniques, such as Deep Q-Learning (DQL) 
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and Convolutional Neural Networks (CNN), have also been used to enhance the placement of 

DG to enhance the distribution system by considering the system's spatial and temporal 

dependency”. 

In this paper, the KNN algorithm has been identified as helpful in positioning DG in 

distribution networks. This algorithm is one of the simplest and most effective forms of 

machine learning and classifies the data according to the majority class of neighbours. In the 

context of the placement of DG, the KNN tool can be applied to determine areas most suitable 

for DG unit's placement based on data such as load demand, voltage profile and network 

performance history. As we will see, KNN is computationally inexpensive and particularly 

beneficial as we move to more extensive distribution networks where decisions must be made 

in real-time. One of the key benefits of employing KNN as a machine learning solution is 

simplicity while being as efficient or even more efficient than other complex models like 

CNN, RNN, LSTM, and others that take much more time and resources to fine-tune and train. 

Moreover, KNN is a non-parametric technique for classification in which no assumptions are 

made relative to the underlying probability density functions. As such, KNN can be easily 

implemented in different distribution networks with DG integration. 

 

The main Contributions of this research article are as follows: 

• To Enhance grid stability and decrease power losses by proposing a KNN-based 

method for optimally placing DGs in power distribution networks [9]. 

• To Demonstrated that KNN outperforms deep learning models (CNN, RNN, LSTM) 

in accuracy and power loss reduction for “IEEE 33-bus and 69-bus systems” [10]. 

• To Showcase the computational efficiency of KNN, making it suitable for real-time 

DG placement in both small and large networks. 

• To Provided groundwork for integrating KNN with other machine learning 

techniques for dynamic and real-time DG management. 

The structure of the paper is as follows: The second section of the paper is Section 2: Literature 

Survey which examines previously known techniques in DG placement. “It talks about 

method that is involved in optimization like genetic algorithms, Particle swarm optimization 

and the modern machine learning approaches at the same time, what the pros and cons to each. 

Section 3: The Proposed Work encapsulates methodology of applying the KNN algorithm 

through which the DG placement in PDNs is done efficiently. Section 4: Result Analysis gives 

the comparative assessment of the proposed KNN algorithm with other models such as CNN, 

RNN, LSTM having the use of IEEE 33-bus and 69-bus systems”. The comparison is done 

on factors like accuracy and reduction of power loss. Section 5: Conclusion reiterates the 

principal findings, shifts the focus to the importance and originality of the work, and advances 

possible recommendations for future studies including; scalability and exploring real-time 

control of DG using other models. 

 

II. LITERATURE SURVEY 

Prior studies concerning the placement of DGs have predominantly focused on heuristic 

optimization techniques, including Genetic Algorithm (GA) PSO, and Estimated ACO. These 

methods have been documented to effectively minimize power losses and improve the 
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stability of power systems [11]. Recent advancements in classifiers, including ANN, SVM, 

and LSTM, have provided significant solutions to the computational complexities and 

scalability challenges faced by current power distribution networks. 

P.S. Meera et al. [1] Use the AIS algorithm to suggest a new approach to identifying many 

dispersed generators in a distribution network all at once. The methodology employs an 

aggregate technical index (ATI) encompassing multiple objectives, wherein a weighted sum 

technique is implemented to enhance network performance. “The AIS-based clonal selection 

method effectively reduces both real and reactive power losses, enhances the voltage profile, 

and improves voltage stability. Comparative analysis of AIS with two other meta-heuristic 

methods, namely Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), 

demonstrates that AIS outperforms in minimizing power losses and improving voltage 

stability for optimal placement of Distributed Generation (DG) in distribution systems”. 

M. Purlu et al. [2], The main aim is to use GA and PSO for the essential assessment of 

renewable DG units concerning their location, size, and fluctuating power variables. This 

study aims to mitigate annual energy losses and voltage changes in distribution networks, 

focusing specifically on wind and solar energy. Consequently, the results of this study 

demonstrate that energy losses and voltage fluctuations in wind turbines are inferior to those 

of solar systems while functioning under optimal power factor circumstances. The quality of 

solutions, convergence rate, and computational efficiency were superior for PSO compared to 

GA, making it more advantageous for addressing the DG allocation issue in the “IEEE 33-bus 

radial distribution network”. 

Lakshmi et al. [3] Propose a synergistic methodology using a Genetic Algorithm (GA) and a 

Dragonfly Algorithm (DA) to determine the best location and scaling of Distributed 

Generation (DG) inside radial distribution networks. The study primarily aims to minimize 

active power losses and enhance the voltage profile of the system. The HGDA has shown 

greater efficacy compared to conventional GA, PSO, and DA algorithms, especially in 

reducing power loss and improving voltage stability. The results validated the effectiveness 

of the proposed HGDA in improving voltage profiles and system efficiency, positioning it as 

a viable DG deployment alternative in stochastic scenarios. 

A. Aranizadeh et al. [4] Concentrate on the use of the evolutionary Cuckoo Optimization 

Algorithm (COA) to ascertain the ideal placement and capacity of “Distributed Generation 

(DG)” units. The aim is to maintain or reduce network losses while managing voltage levels 

and other distributed generating expenses within an integrated cost function. The 

methodology was assessed on a 13-bus distribution system and successfully identified the 

appropriate placements and capacities of distributed generating units. An analysis of 

fluctuations in parameter weights within the objective function reveals that minor 

modifications may significantly affect the predictions about the location and capacity of 

distributed generation, underscoring the pronounced sensitivity of the optimization outcomes. 

M. M. Ansari et al. [5] provide extensive information on traditional methods for the placement 

and sizing of DG installations. It primarily highlights methodologies such as “GA, PSO, 

Simulated Annealing (SA), and ACO”. These strategies are emphasized to reduce power 

losses and enhance system availability and quality. The research emphasizes that improper 

placement of distributed generation may significantly improve efficiency in distribution 

networks. Nonetheless, it recognizes that some approaches, particularly the TS, may need 
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assistance to get a local optimal solution. The study refrains from addressing modern 

solutions, such as advanced machine learning for distributed generation planning, and 

concentrates on traditional optimization techniques. 

Samal et al. [6] provide a metaheuristic DE-CSA method of DG unit integration in unbalanced 

radial distribution systems. This paper examines various objectives of multi-objective 

planning to reduce feeder loss, voltage fluctuation, neutral current and overall cost. Applying 

the fuzzy set to cope with uncertainties in load and generation turned out to be advantageous, 

translating into better performances vis-à-vis model deterministic. The simulation results 

showed substantial enhancements in the power systems, such as minimized power losses, 

better voltage levels, and better balance of systems. This fuzzy-based approach promotes 

optimizing DG integration in complex and unbalanced distribution networks. 

Anbuchandran et al. [7] propose a firefly algorithm model with multiple objectives to 

determine the location and capacity of “Distributed Generations (DG)” in power systems. The 

screen aims at six objectives: power reduction losses, voltage enhancement, increased voltage 

stability index, total harmonic distortion reduction, and pollutant emissions. The suggested 

methodology employs a fuzzy decision-making technique to identify the most favourable 

compromise alternative among the Pareto optimum choices. The aforementioned cost, 

computed by the suggested technique, demonstrated an improvement in system performance 

when evaluated on both the simulated “IEEE 33 and the real 62-bus Indian Utility System”. 

The study seeks to achieve enhanced outcomes derived from prior studies on power losses 

and voltage profile improvements. 

Azad et al. [8] present an analytical algorithm using a “combined index (CI) to improve 

Distribution generation placement and sizing in radial distribution systems. The work 

minimizes active power losses and enhances voltage profiles without using machine learning 

algorithms. The proposed algorithm has been applied to IEEE 12-bus and 33-bus systems” to 

reveal favourable enhancement in voltage profiles and considerable reduction in energy loss 

cost. Minimum voltage levels were raised from 0.9434 p. u to 0.9907 p. u in the 12-bus system 

and from 0.9039 p. u to 0.9402 p. u in the 33-bus system. Furthermore, the algorithm also 

achieved lower annual energy losses of 12-bus=78.23% and 33-bus=64.37, which showed the 

algorithm's ability to improve the distribution systems' general performance”. 

L. M. Belmino et al. [9] The research examines the use of a differential evolution meta-

heuristic method to ascertain the appropriate placement and size of Distributed Generation 

(DG) units in radial distribution networks. The main goal is to reduce active power losses by 

meticulously examining the arrangement of distributed generation units in connection with 

the corresponding power losses. Numerous simulated case studies have been performed on 

the "IEEE 33-bus and IEEE 69-bus systems" to verify the efficacy of the suggested strategy. 

The findings demonstrate that strategically positioning distributed generation units may 

substantially decrease overall power loss, hence highlighting the advantages of this 

optimization approach. 

K. Roy et al. [10] Recommend the use of the Multi-Verse Optimization (MVO) algorithm for 

optimal placement and size of “Distributed Generation (DG) units inside a 33-node radial 

distribution system. The primary objective is to minimize energy losses in the distribution 

system. The efficacy of the MVO algorithm is then assessed against other established 

algorithms in the literature to demonstrate that the method improves the placement and 
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capacity of distributed generators for optimal system performance”. The results indicate that 

MVO outperforms traditional methods in reducing power losses, hence emphasizing its 

effectiveness as an optimization strategy for DG deployment. Although the research does not 

address machine learning-based solutions, the authors assert that MVO surpasses traditional 

approaches. 

Several studies have also been carried out to determine the most appropriate placement as 

well as sizing of “Distributed Generation (DG)” with the use of machine learning algorithms 

within the recent past due to the discovery that most of these models can be classified under 

supervised learning models and these include SVM, KNN, Decision Trees, among others. 

Nevertheless, some issues still need to be addressed, like the problem of feature selection and 

mapping, which some deep learning algorithms can handle. However, there are some principal 

areas for improvement: an absence of extensive continuous loading and a constant output of 

DG, which tends to vary, making calculations of losses more time-consuming and less precise. 

Many existing methods only cover the active power injection of the power bar, and this study 

does not consider environmental and economic factors. It also takes a long time to compute, 

which often causes the results to be suboptimal. This underscores the need to develop real-

time responsive and multi-objective optimization methodologies. 

 

III. PROPOSED METHODOLOGY 

Based on the K-Nearest Neighbors, the following algorithm can be proposed for solving “the 

optimal placement and sizing of Distributed Generation (DG) unit in power distribution 

networks. KNN is a very simple and fast approach of supervised learning technique used for 

pattern recognition such as load demand etc voltage profile, and power losses with the help of 

data mining”. This non-parametric method functions by choosing the ‘k’ nearest values to an 

input in the data set by utilizing a distance function usually Euclidean distance. By doing this, 

the algorithm is able to make the right predictions of where to place DGs in a network hence 

boosting the network performance as informed by past data. In the case of DG placement, the 

algorithm develops probable sites and sizes of the DGs by analysing the present network state 

against previous similar conditions and chooses the result best for minimum loss and 

enhancing voltage profile. A significant advantage of KNN is that it is an easily scalable 

counter for changing loads and DG output because it provides fast and precise results. This 

way, the algorithm can solve real-time optimization problems in large and complex 

distribution grids without needing prior data learning or ample computational resources, 

making it suitable for dynamic grid environments. In this paper, an attempt has been made to 

present a machine-learning scheme to estimate the best place to install DG units in distribution 

networks. “Four key machine learning models are examined: Recurrent Neural Network 

(RNN), which belongs to the Neural Network grouping; Convolutional Neural Network 

(CNN), which also belongs to the Neural Network grouping; Reinforcement Learning 

methods; and Long Short-Term Memory (LSTM), which is under Supervised Learning. To 

improve distribution system performance, the current paper introduces a new algorithm called 

K-Nearest Neighbors (KNN)”. 

The suggested technique is verified using the “IEEE 33-bus and 69-bus test systems”, where 

the model's predictions are evaluated for both training and testing datasets, partitioned in an 

80:20 ratio. The concept encompasses elements such as feature selection, model training, 
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model testing, and model validation, aimed at achieving optimum DG power injection, 

minimizing voltage levels, and reducing active and reactive electrical losses. “The research 

employs RNN, CNN, LSTM, and a created KNN model, demonstrating the efficacy of 

sophisticated machine learning approaches in decision-making for distributed generation 

placement and, therefore, the distribution network”. 

 
Figure 1: System Architecture 

 

3.1 Data Collection 

The data sources for the empirical study on the placement policy of DG using ML are the 

following: Load profiles, voltage levels, records of power losses and other vital data supplied 

by power distribution companies. Renewable energy resources feed irradiance and wind speed 

data, which are crucial information for evaluating renewable energy generation ability. Power 

usage data from smart meters and sensors provide updated information on the electricity used 

and the grid's ability to conduct it, including substations and geographical information from 

GIS and principal infrastructure maps depicting distribution networks' actual layout and 

location. Other valuable sources include performance logs of the grid and outage reports 

obtained from historical archives to determine whether specific parts of the network are prone 

to failure. However, other economic and regulatory factors, such as tariff structures, incentives 

and energy policies, are also incorporated. In datasets, essential factors are load demand, 

voltage profile, losses, renewable energy capability, stability, and economics. The parameters 

are vital in determining the placement of DG, sizing of the DG, and enhancing the total 

network's performance. 

 

3.2 Data Pre-processing 

Data pre-processing remains an essential factor when addressing the efficiency of learning 

algorithms aimed at optimizing distributed generation (DG) technology placement. It also 
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involves preparing, cleaning, transforming, and standardizing the data preparatory for feeding 

into learning machines.  

 

The essential data pre-processing steps include: 

 

Data Cleaning refers to filling gaps in load profiles and voltage levels by employing means 

such as mean loading or even estimating. To improve the data acquired, instances in 

consumption data or power loss records are dealt with using Z-score or Interquartile Range 

(IQR) techniques to improve  

taction To enhance modelling efficiency, choose the necessary inputs, such as load demand, 

voltage levels, renewable energy generation capability, power loss, etc., via variable reduction 

techniques like Principal Component Analysis (PCA) or Correlation Analysis. 

 

Data Normalization: Convert all numerical data, including voltage levels, load demand, and 

power loss, to Min-Max Normalization or Z-score normalization so that its values range 

between 0 and 1. This prevents any feature from overloading the learning process because of 

the variations of the values. 

 

 

Xnorm =
X−Xmin

Xmax−Xmin
                           (1) 

or 

Xnorm =
X−μ

σ
                                     (2) 

Where, X is “the original data, Xmin and Xmax are the minimum and maximum values in the 

dataset, μ is the mean, and σ is the standard deviation”. 

 

Data Transformation: Other data formats, such as bus type or generator status data, which 

is categorical, are encoded numerically using methods such as one hot encoding or label 

encoding so that they can be input to machine learning algorithms. After transformation, the 

dataset is split into training and testing sets, usually in an 80:20 split, for model training and 

to determine accuracy on unseen data. It may also be helpful in cross-validation to augment 

generalization further. When feature engineering, new features such as power-to-load ratios, 

voltage deviation indicators, etc, are created from the available data to improve the model's 

accuracy. 

 

3.3 Machine learning algorithms 

To enable the development of Machine Learning models, generated data sets were developed 

to train on. The idea of the new “KNN algorithm with respect to RNN, CNNs, and LSTM” 

was then obtained for each of them, along with their corresponding “R2 scores and Mean 

Absolute Percentage Error or MAPE, in order to forecast the values of reactive power losses 

and minimum busbar voltages”. 
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The K-Nearest Neighbors: The algorithm is a supervised learning method that is used for 

classification and regression tasks; it is non-parametric. Using KNN, which finds the most 

similar past occurrences (neighbors) and makes decisions based on those discoveries, the 

optimal placement and capacity of “Distributed Generation (DG)” units within power 

distribution networks may be forecasted.  

The following is a description of the KNN method specifically designed for the DG 

optimization problem: 

 

Feature Selection: In this step, the relevant features, such as load demand, voltage levels, 

power losses, and other DG-related parameters, are selected. A feature vector 𝐗 is defined as: 

𝐗 = [x1, x2, … , xn]                       (3) 

Where: 

x1, x2, … , xn are the selected features. 

 

Calculate Distance Metric: To find the nearest neighbours, calculate the distance between 

the new input (current network conditions) and each point in the historical dataset. The most 

common metric is Euclidean distance: 

d(𝐗, 𝐘) = √∑  n
i=1   (xi − yi)

2             (4) 

𝐗 = [x1, x2, … , xn] is the input data point, and 𝐘 = [y1, y2, … , yn] is a historical data point, 

with n being the number of features. 

 

Choose the Value of K: Select the number of nearest neighbours K (often determined through 

cross-validation). The optimal K is usually an odd number to avoid ties in classification. 

 

K Nearest Neighbors: After calculating the distance between the input and each historical 

data point, select the K data points with the smallest distances. These points are the KNNof 

the input data. 

 

Prediction via Weighted Average: For each of the KNN, gather the DG placement and sizing 

configurations (output). A weighted average of these configurations determines the predicted 

DG placement for the new input: 

ỳ =
∑  K

i=1  wi⋅yi

∑  K
i=1  wi

                           (5) 

Where: 

yi is the DG placement configuration of the i-th neighbour. 

wi =
1

d(𝐗,𝐘i)
 is the weight based on the inverse of the distance d(𝐗, 𝐘i). 

ỳ is the predicted optimal DG placement. 

 

Evaluation and Objective Function: Evaluate the predicted DG placement performance by 

calculating the distribution network's total power loss and voltage profile. The goal is to 

minimize power loss: 

Ploss = ∑  N
i=1 Ii

2Ri                      (6) 

“where: 
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Ii is the current through the i-th branch, 

Ri is the resistance of the i-th branch, 

N is the total number of branches in the network”. 

 

Model Validation: Separate the data into a training set and a testing set, usually in an 80:20 

split. Evaluate the model's efficacy by looking at metrics like voltage stability and power loss 

reduction. Adjust K so that cross-validation yields better results. 

 

IV. SIMULATION AND RESULT ANALYSIS 

The KNN method designed for the placement of distributed generation units was implemented 

and assessed on the standard “IEEE 33-BUS and 69-BUS radial distribution system test 

benches”. This simulation exercise was conducted on the MATLAB platform, using metrics 

such as % power loss reduction, voltage profile enhancement, and calculation time to assess 

the algorithm's effectiveness. 

 

Simulation Setup 

• Dataset: The dataset used for simulation included historical load data, voltage 

profiles, and DG placement configurations. This data was pre-processed using 

normalization techniques to ensure uniformity across different feature scales. 

• Training and Testing: The dataset was partitioned into 80% for training and 20% 

for testing to assess the KNN algorithm's generalization capability on unseen data. 

• Distance Metric: The Euclidean distance metric was used to identify the K nearest 

neighbours for each input. 

• Optimal K Selection: Cross-validation was employed to determine the optimal 

number of neighbours K. A range of values for K was tested, and the value that 

minimized power losses and maximized voltage stability was chosen. 

 

The evaluation of these “parameters is conducted using the IEEE 33-bus and IEEE 69-bus 

distribution test systems”. Figures 2 and 3 illustrate the single-line schematics for the “33-bus 

and 69-bus distribution systems”, respectively. This simulation method facilitates the 

assessment and examination of the system's impacts across various typologies and conditions. 
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Figure 2: IEEE 33-bus test system 

 

Figure 3: IEEE 33-bus test system 

 

Results Analysis 

The effectiveness of the implemented (KNN algorithm for placing optimal DG was assessed 

through simulation studies on the “IEEE 33-bus and 69-bus radial distribution systems. The 

KNN algorithm was also compared with much more sophisticated deep learning models like 

Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Convolutional 

Neural Networks (CNN)”. The goal was, therefore, to evaluate the models according to these 

three criteria: power loss reduction, voltage profile improvement, and computational cost. 

 

Power Loss Reduction: In the simulation, the primary objective was to minimize the total 

active power loss across the network, with comparisons made between “the proposed KNN 
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algorithm and deep learning models such as RNN, LSTM, and CNN”. In Figure 4 and Table 

1, the 33-bus system, KNN, achieved the most significant reduction, lowering power losses 

by 16.5%, from 210 kW to 175.5 kW. This outperformed RNN, which resulted in a 14.9% 

reduction (178.7 kW), LSTM with a 13.5% reduction (181.7 kW), and CNN with a 15.8% 

reduction (176.8 kW). Similarly, in the 69-bus system, KNN again outperformed the other 

models, reducing power losses by 17.8%, from 230 kW to 189 kW. RNN achieved a 16.2% 

reduction (192.8 kW), LSTM delivered a 14.8% reduction (196.1 kW), and CNN resulted in 

a 16.9% reduction (191.3 kW). These results demonstrate that KNN consistently provided the 

most effective reduction in power losses across both systems.  

 

Table 1: Power Loss Reduction 

Model 

33-Bus Power Loss 

Reduction (%) 

69-Bus Power Loss 

Reduction (%) 

KNN 

Proposed 16.5 17.8 

RNN 14.9 16.2 

LSTM 13.5 14.8 

CNN 15.8 16.9 

 

 
Figure 4: Power Loss Reduction  
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Voltage Profile Improvement:  The enhancement in the voltage profile was done by 

assessing the minimum voltage levels at some nodes across the network. From Fig. 5 and Tab. 

1 it was possible to observe in the 33-bus system that the KNN algorithm offered the best 

improvement, raising the minimum voltage to 0.96 p.u. compared to other models. In 

comparison RNN raised the minimum voltage up to 0.94 p.u., LSTM up to 0.93 p.u. and CNN 

up to 0.95 p.u. In the same context with the 69-bus system, the KNN performed better again 

by increasing the minimum voltage to 0.95p.u. Instead, it was increased to 0.93 p.u. by RNN, 

0.92 p.u. by LSTM, and 0.94 p.u.by CNN respectively. These results plainly show that KNN 

offered more enhanced voltage profile enhancements than the other algorithms over both 

systems. 

 

 

 

Table 2: Bus Voltage Profile  

Model 

33-Bus Voltage 

Profile (p.u.) 

69-Bus Voltage Profile 

(p.u.) 

KNN 

Proposed 0.96 0.95 

RNN 0.94 0.93 

LSTM 0.93 0.92 

CNN 0.95 0.94 

 

 
Figure 4: Bus Voltage Profile 
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Computational Efficiency: The computational efficiency of each model was evaluated by 

measuring the computation time to assess their suitability for real-time applications. In Table 

3 and Figure 5, the 33-bus system, the KNN algorithm demonstrated the fastest performance, 

requiring only 12 seconds of computation time. In comparison, RNN took 18 seconds, LSTM 

required 25 seconds, and CNN completed the task in 15 seconds. Similarly, in the more 

extensive 69-bus system, KNN again proved to be the most efficient, requiring 18 seconds. 

RNN took 24 seconds, LSTM required 30 seconds, and CNN completed in 20 seconds. These 

results highlight KNN's superior computational efficiency, making it a more viable option for 

real-time DG placement optimization than the other models. 

 

 

 

Table 3: Computation Time 

Model 

33-Bus 

Computation 

Time (s) 

69-Bus Computation Time 

(s) 

KNN 

Proposed 12 18 

RNN 18 24 

LSTM 25 30 

CNN 15 20 
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Figure 5: Computation Time 

 

VI. CONCLUSION 

This paper describes a comparison between the “K-Nearest Neighbours (KNN) technique and 

modern deep neural networks such as Recurrent Neural Networks (RNN), Long Short-Term 

Memory (LSTM), and Convolutional Neural Networks (CNN) to solve the problem related to 

the size and placement of DG units in the power distribution sector. Comparing the results in 

terms of power loss reduction, voltage profile enhancement, and computation time, the KNN 

algorithm frequently outperformed the other techniques analysed in this study”. In the 33-bus 

system, KNN saved the highest amount of power loss, with 16.5%, while RNN, LSTM, and 

CNN saved 14.9%, 13.5%, and 15.8%, respectively. Likewise, in the case of the 69-bus 

system, the value of KNN optimized the power losses by 17.8% more than that of RNN 

(16.2%), LSTM (14.8%) and CNN (16.9%). Concerning the voltage profile enhancement, 

KNN continued appearing as the model, maintaining the highest minimum voltage levels in 

both microgrids while enhancing the voltage stability compared to the others. Further, it is 

remarkable that KNN produced higher accuracy than the DL methods significantly faster and 

would consume minimal computational time in both systems, making it ideal for real-time 

applications. Finally, the results justify using the KNN algorithm as a practical, reliable, and 

optimal solution to solve the problem of placement of DG units in power distribution 

networks. The model can reduce power losses, achieve high-voltage stability, and work with 

low computational complexity. It is a high-quality replacement for more complex models like 

RNN, LSTM, and CNN. These results imply that KNN is a highly effective algorithm as it 

maintains a good balance between accuracy and time consumption, thus appropriately fitting 
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the placement of DG in real-time in both small and large power networks. Ideas for future 

work could then revolve around extending the work done here by using other machine-

learning methods in conjunction with KNN to determine the best placement locations for DGs. 
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