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The optimal placement of Distributed Generation (DG) in power distribution networks is critical
for improving grid stability and minimizing power losses. Previous studies have applied
conventional optimization techniques like “Genetic Algorithms (GA) as well as Particle Swarm
Optimization (PSO)” to handle this issue. This paper addresses these challenges by presenting a
new approach for optimal placement and sizing of DG units using the KNN algorithm. The
advanced deep learning models such as “Recurrent Neural Networks (RNN) Long Short-Term
Memory (LSTM) Convolutional Neural Networks (CNN)” are compared with the proposed KNN
algorithm on the IEEE 33-bus and 69-bus systems. The results indicate that the KNN model has
better prediction accuracy than the traditional and deep learning models; on the 33-bus system,
KNN estimated an average reduction of 16.5 % of the power losses, while on the 69-bus system,
it estimated a decrease of 17.8 % of the power losses. Also, it enhances voltage profiles at a much-
reduced computation time than the traditional method, making it fit for real-time applications. The
present work can be extended to combine KNN with other ML algorithms or predictive methods
to improve DG's location.

Keywords: Distributed Generation, K-Nearest Neighbors, Machine Learning, Optimal DG
Placement, Power Loss Minimization, Deep Learning, RNN, CNN, LSTM, 33-Bus System, 69-
Bus System.

1. INTRODUCTION
The rapid transformation of energy systems, driven by the increasing penetration of renewable
energy sources [1] and “distributed generation (DG)” [2], has led to new challenges and
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opportunities in the operation and management of modern power distribution networks.
Distributed generation systems include small-scale generating units like solar and wind power
and small-scale CHP generators, and they are becoming essential in innovative grid
applications. DG acknowledges the significance of several benefits, including less
transmission losses, enhanced voltage stability, and increased system dependability.
Nonetheless, integrating distributed generation into current distribution networks poses
significant challenges in determining appropriate locations for installation to maximize
benefits while mitigating any adverse effects on the grid. Another of the hardest coordination
in the implementation of DG is assessing where the DG should be located and how big it
should be to fit the distribution systems appropriately. Location misplacement of DG units
results in problems like high power loss, voltage fluctuations, and the opposite flow [3] of
power to the network, which would be detrimental to the grid. Hence, the location of suitable
DG units should be determined [4] to maximize their benefits to the grid stability, minimize
losses, and augment the loading demands. The problem of DG placement is unambiguously
challenging because of the non-linear, dynamic behaviour of power systems, making the
optimization problem non-trivial [5].

Various traditional optimization methods have solved the integration of suitable DG locations
into distribution networks [6]. Several approaches have been used to deal with this problem,
“including Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), and other meta-heuristic algorithms” [7]. All these techniques target the
correct location of DG units by reducing objectives like loss, voltage and other costs. Even
though these methods have been successful for some applications, many things could be
improved, especially in the large-scale problem in terms of computational time. The
increasing complexity of supply networks presents new challenges that more conventional
optimization approaches need to better address with equal effectiveness when evaluating all
of the various influences that need to be taken into account.

Moreover, these methods can depend on parameter settings and may need many iterations to
reach the optimum solution. This results in a high computational overhead [8] that deems them
unsuitable for real-time or high-end systems. Also important to note is that classical
approaches could be more effective in capturing the stochasticity of DG, especially when it
comes to renewable generation, such as solar and wind, which fluctuate randomly and are not
predictable.

Over the past few years, machine learning has been recognized as a reliable technique for
addressing various optimization challenges that power systems encounter, such as integrating
distributed generation (DG). Compared to conventional optimization methods, machine
learning can identify trends within data and, to begin with, is less sensitive to the current
distribution networks' intricacies. The nature of machine learning models allows large datasets
to offer more precise and time-saving results to the DG placement problem and, in general,
lower computational costs in many cases. “The DG placement problem has been solved using
several techniques in machine learning, such as supervised, unsupervised, and reinforcement
learning. For instance, given past load and network data, artificial neural networks (ANN)
have been applied to estimate the best locations for installing DG units. Likewise, Support
Vector Machines (SVM) have been used to identify DG locations according to load demand,
voltage profile, and system limitations. Other techniques, such as Deep Q-Learning (DQL)
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and Convolutional Neural Networks (CNN), have also been used to enhance the placement of
DG to enhance the distribution system by considering the system's spatial and temporal
dependency”.

In this paper, the KNN algorithm has been identified as helpful in positioning DG in
distribution networks. This algorithm is one of the simplest and most effective forms of
machine learning and classifies the data according to the majority class of neighbours. In the
context of the placement of DG, the KNN tool can be applied to determine areas most suitable
for DG unit's placement based on data such as load demand, voltage profile and network
performance history. As we will see, KNN is computationally inexpensive and particularly
beneficial as we move to more extensive distribution networks where decisions must be made
in real-time. One of the key benefits of employing KNN as a machine learning solution is
simplicity while being as efficient or even more efficient than other complex models like
CNN, RNN, LSTM, and others that take much more time and resources to fine-tune and train.
Moreover, KNN is a non-parametric technique for classification in which no assumptions are
made relative to the underlying probability density functions. As such, KNN can be easily
implemented in different distribution networks with DG integration.

The main Contributions of this research article are as follows:
e To Enhance grid stability and decrease power losses by proposing a KNN-based
method for optimally placing DGs in power distribution networks [9].
e To Demonstrated that KNN outperforms deep learning models (CNN, RNN, LSTM)
in accuracy and power loss reduction for “IEEE 33-bus and 69-bus systems” [10].
e To Showcase the computational efficiency of KNN, making it suitable for real-time
DG placement in both small and large networks.
e To Provided groundwork for integrating KNN with other machine learning
techniques for dynamic and real-time DG management.
The structure of the paper is as follows: The second section of the paper is Section 2: Literature
Survey which examines previously known techniques in DG placement. “It talks about
method that is involved in optimization like genetic algorithms, Particle swarm optimization
and the modern machine learning approaches at the same time, what the pros and cons to each.
Section 3: The Proposed Work encapsulates methodology of applying the KNN algorithm
through which the DG placement in PDNs is done efficiently. Section 4: Result Analysis gives
the comparative assessment of the proposed KNN algorithm with other models such as CNN,
RNN, LSTM having the use of IEEE 33-bus and 69-bus systems”. The comparison is done
on factors like accuracy and reduction of power loss. Section 5: Conclusion reiterates the
principal findings, shifts the focus to the importance and originality of the work, and advances
possible recommendations for future studies including; scalability and exploring real-time
control of DG using other models.

Il. LITERATURE SURVEY

Prior studies concerning the placement of DGs have predominantly focused on heuristic
optimization techniques, including Genetic Algorithm (GA) PSO, and Estimated ACO. These
methods have been documented to effectively minimize power losses and improve the
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stability of power systems [11]. Recent advancements in classifiers, including ANN, SVM,
and LSTM, have provided significant solutions to the computational complexities and
scalability challenges faced by current power distribution networks.

P.S. Meera et al. [1] Use the AIS algorithm to suggest a new approach to identifying many
dispersed generators in a distribution network all at once. The methodology employs an
aggregate technical index (ATI) encompassing multiple objectives, wherein a weighted sum
technique is implemented to enhance network performance. “The AlS-based clonal selection
method effectively reduces both real and reactive power losses, enhances the voltage profile,
and improves voltage stability. Comparative analysis of AIS with two other meta-heuristic
methods, namely Genetic Algorithms (GA) and Particle Swarm Optimization (PSO),
demonstrates that AIS outperforms in minimizing power losses and improving voltage
stability for optimal placement of Distributed Generation (DG) in distribution systems”.

M. Purlu et al. [2], The main aim is to use GA and PSO for the essential assessment of
renewable DG units concerning their location, size, and fluctuating power variables. This
study aims to mitigate annual energy losses and voltage changes in distribution networks,
focusing specifically on wind and solar energy. Consequently, the results of this study
demonstrate that energy losses and voltage fluctuations in wind turbines are inferior to those
of solar systems while functioning under optimal power factor circumstances. The quality of
solutions, convergence rate, and computational efficiency were superior for PSO compared to
GA, making it more advantageous for addressing the DG allocation issue in the “IEEE 33-bus
radial distribution network”.

Lakshmi et al. [3] Propose a synergistic methodology using a Genetic Algorithm (GA) and a
Dragonfly Algorithm (DA) to determine the best location and scaling of Distributed
Generation (DG) inside radial distribution networks. The study primarily aims to minimize
active power losses and enhance the voltage profile of the system. The HGDA has shown
greater efficacy compared to conventional GA, PSO, and DA algorithms, especially in
reducing power loss and improving voltage stability. The results validated the effectiveness
of the proposed HGDA in improving voltage profiles and system efficiency, positioning it as
a viable DG deployment alternative in stochastic scenarios.

A. Aranizadeh et al. [4] Concentrate on the use of the evolutionary Cuckoo Optimization
Algorithm (COA) to ascertain the ideal placement and capacity of “Distributed Generation
(DG)” units. The aim is to maintain or reduce network losses while managing voltage levels
and other distributed generating expenses within an integrated cost function. The
methodology was assessed on a 13-bus distribution system and successfully identified the
appropriate placements and capacities of distributed generating units. An analysis of
fluctuations in parameter weights within the objective function reveals that minor
modifications may significantly affect the predictions about the location and capacity of
distributed generation, underscoring the pronounced sensitivity of the optimization outcomes.
M. M. Ansari et al. [5] provide extensive information on traditional methods for the placement
and sizing of DG installations. It primarily highlights methodologies such as “GA, PSO,
Simulated Annealing (SA), and ACO”. These strategies are emphasized to reduce power
losses and enhance system availability and quality. The research emphasizes that improper
placement of distributed generation may significantly improve efficiency in distribution
networks. Nonetheless, it recognizes that some approaches, particularly the TS, may need
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assistance to get a local optimal solution. The study refrains from addressing modern
solutions, such as advanced machine learning for distributed generation planning, and
concentrates on traditional optimization techniques.

Samal et al. [6] provide a metaheuristic DE-CSA method of DG unit integration in unbalanced
radial distribution systems. This paper examines various objectives of multi-objective
planning to reduce feeder loss, voltage fluctuation, neutral current and overall cost. Applying
the fuzzy set to cope with uncertainties in load and generation turned out to be advantageous,
translating into better performances vis-a-vis model deterministic. The simulation results
showed substantial enhancements in the power systems, such as minimized power losses,
better voltage levels, and better balance of systems. This fuzzy-based approach promotes
optimizing DG integration in complex and unbalanced distribution networks.

Anbuchandran et al. [7] propose a firefly algorithm model with multiple objectives to
determine the location and capacity of “Distributed Generations (DG)” in power systems. The
screen aims at six objectives: power reduction losses, voltage enhancement, increased voltage
stability index, total harmonic distortion reduction, and pollutant emissions. The suggested
methodology employs a fuzzy decision-making technique to identify the most favourable
compromise alternative among the Pareto optimum choices. The aforementioned cost,
computed by the suggested technique, demonstrated an improvement in system performance
when evaluated on both the simulated “IEEE 33 and the real 62-bus Indian Utility System”.
The study seeks to achieve enhanced outcomes derived from prior studies on power losses
and voltage profile improvements.

Azad et al. [8] present an analytical algorithm using a “combined index (CI) to improve
Distribution generation placement and sizing in radial distribution systems. The work
minimizes active power losses and enhances voltage profiles without using machine learning
algorithms. The proposed algorithm has been applied to IEEE 12-bus and 33-bus systems” to
reveal favourable enhancement in voltage profiles and considerable reduction in energy loss
cost. Minimum voltage levels were raised from 0.9434 p. u to 0.9907 p. u in the 12-bus system
and from 0.9039 p. u to 0.9402 p. u in the 33-bus system. Furthermore, the algorithm also
achieved lower annual energy losses of 12-bus=78.23% and 33-bus=64.37, which showed the
algorithm's ability to improve the distribution systems' general performance”.

L. M. Belmino et al. [9] The research examines the use of a differential evolution meta-
heuristic method to ascertain the appropriate placement and size of Distributed Generation
(DG) units in radial distribution networks. The main goal is to reduce active power losses by
meticulously examining the arrangement of distributed generation units in connection with
the corresponding power losses. Numerous simulated case studies have been performed on
the "IEEE 33-bus and IEEE 69-bus systems" to verify the efficacy of the suggested strategy.
The findings demonstrate that strategically positioning distributed generation units may
substantially decrease overall power loss, hence highlighting the advantages of this
optimization approach.

K. Roy et al. [10] Recommend the use of the Multi-Verse Optimization (MVO) algorithm for
optimal placement and size of “Distributed Generation (DG) units inside a 33-node radial
distribution system. The primary objective is to minimize energy losses in the distribution
system. The efficacy of the MVO algorithm is then assessed against other established
algorithms in the literature to demonstrate that the method improves the placement and
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capacity of distributed generators for optimal system performance”. The results indicate that
MVO outperforms traditional methods in reducing power losses, hence emphasizing its
effectiveness as an optimization strategy for DG deployment. Although the research does not
address machine learning-based solutions, the authors assert that MVVO surpasses traditional
approaches.

Several studies have also been carried out to determine the most appropriate placement as
well as sizing of “Distributed Generation (DG)” with the use of machine learning algorithms
within the recent past due to the discovery that most of these models can be classified under
supervised learning models and these include SVM, KNN, Decision Trees, among others.
Nevertheless, some issues still need to be addressed, like the problem of feature selection and
mapping, which some deep learning algorithms can handle. However, there are some principal
areas for improvement: an absence of extensive continuous loading and a constant output of
DG, which tends to vary, making calculations of losses more time-consuming and less precise.
Many existing methods only cover the active power injection of the power bar, and this study
does not consider environmental and economic factors. It also takes a long time to compute,
which often causes the results to be suboptimal. This underscores the need to develop real-
time responsive and multi-objective optimization methodologies.

I1l. PROPOSED METHODOLOGY

Based on the K-Nearest Neighbors, the following algorithm can be proposed for solving “the
optimal placement and sizing of Distributed Generation (DG) unit in power distribution
networks. KNN is a very simple and fast approach of supervised learning technique used for
pattern recognition such as load demand etc voltage profile, and power losses with the help of
data mining”. This non-parametric method functions by choosing the ‘k’ nearest values to an
input in the data set by utilizing a distance function usually Euclidean distance. By doing this,
the algorithm is able to make the right predictions of where to place DGs in a network hence
boosting the network performance as informed by past data. In the case of DG placement, the
algorithm develops probable sites and sizes of the DGs by analysing the present network state
against previous similar conditions and chooses the result best for minimum loss and
enhancing voltage profile. A significant advantage of KNN is that it is an easily scalable
counter for changing loads and DG output because it provides fast and precise results. This
way, the algorithm can solve real-time optimization problems in large and complex
distribution grids without needing prior data learning or ample computational resources,
making it suitable for dynamic grid environments. In this paper, an attempt has been made to
present a machine-learning scheme to estimate the best place to install DG units in distribution
networks. “Four key machine learning models are examined: Recurrent Neural Network
(RNN), which belongs to the Neural Network grouping; Convolutional Neural Network
(CNN), which also belongs to the Neural Network grouping; Reinforcement Learning
methods; and Long Short-Term Memory (LSTM), which is under Supervised Learning. To
improve distribution system performance, the current paper introduces a new algorithm called
K-Nearest Neighbors (KNN)”.

The suggested technique is verified using the “IEEE 33-bus and 69-bus test systems”, where
the model's predictions are evaluated for both training and testing datasets, partitioned in an
80:20 ratio. The concept encompasses elements such as feature selection, model training,
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model testing, and model validation, aimed at achieving optimum DG power injection,
minimizing voltage levels, and reducing active and reactive electrical losses. “The research
employs RNN, CNN, LSTM, and a created KNN model, demonstrating the efficacy of
sophisticated machine learning approaches in decision-making for distributed generation
placement and, therefore, the distribution network”.

Data
Generate : _
Row Dataset

Feature

Extraction
H Comparative Study of
e Existing Machin leaming
= Aot

Figure 1: System Architecture

3.1 Data Collection

The data sources for the empirical study on the placement policy of DG using ML are the
following: Load profiles, voltage levels, records of power losses and other vital data supplied
by power distribution companies. Renewable energy resources feed irradiance and wind speed
data, which are crucial information for evaluating renewable energy generation ability. Power
usage data from smart meters and sensors provide updated information on the electricity used
and the grid's ability to conduct it, including substations and geographical information from
GIS and principal infrastructure maps depicting distribution networks' actual layout and
location. Other valuable sources include performance logs of the grid and outage reports
obtained from historical archives to determine whether specific parts of the network are prone
to failure. However, other economic and regulatory factors, such as tariff structures, incentives
and energy policies, are also incorporated. In datasets, essential factors are load demand,
voltage profile, losses, renewable energy capability, stability, and economics. The parameters
are vital in determining the placement of DG, sizing of the DG, and enhancing the total
network's performance.

3.2 Data Pre-processing
Data pre-processing remains an essential factor when addressing the efficiency of learning
algorithms aimed at optimizing distributed generation (DG) technology placement. It also
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involves preparing, cleaning, transforming, and standardizing the data preparatory for feeding
into learning machines.

The essential data pre-processing steps include:

Data Cleaning refers to filling gaps in load profiles and voltage levels by employing means
such as mean loading or even estimating. To improve the data acquired, instances in
consumption data or power loss records are dealt with using Z-score or Interquartile Range
(IQR) techniques to improve

taction To enhance modelling efficiency, choose the necessary inputs, such as load demand,
voltage levels, renewable energy generation capability, power loss, etc., via variable reduction
techniques like Principal Component Analysis (PCA) or Correlation Analysis.

Data Normalization: Convert all numerical data, including voltage levels, load demand, and
power loss, to Min-Max Normalization or Z-score normalization so that its values range
between 0 and 1. This prevents any feature from overloading the learning process because of
the variations of the values.

_ X_Xmin
Xnorm - Xmax—Xmin (1)
or
X—p
Xnorm = (2)

Where, X is “the original data, X,;, and X,,.x are the minimum and maximum values in the
dataset, p is the mean, and o is the standard deviation”.

Data Transformation: Other data formats, such as bus type or generator status data, which
is categorical, are encoded numerically using methods such as one hot encoding or label
encoding so that they can be input to machine learning algorithms. After transformation, the
dataset is split into training and testing sets, usually in an 80:20 split, for model training and
to determine accuracy on unseen data. It may also be helpful in cross-validation to augment
generalization further. When feature engineering, new features such as power-to-load ratios,
voltage deviation indicators, etc, are created from the available data to improve the model's
accuracy.

3.3 Machine learning algorithms

To enable the development of Machine Learning models, generated data sets were developed
to train on. The idea of the new “KNN algorithm with respect to RNN, CNNs, and LSTM”
was then obtained for each of them, along with their corresponding “R2 scores and Mean
Absolute Percentage Error or MAPE, in order to forecast the values of reactive power losses
and minimum busbar voltages”.
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The K-Nearest Neighbors: The algorithm is a supervised learning method that is used for
classification and regression tasks; it is non-parametric. Using KNN, which finds the most
similar past occurrences (neighbors) and makes decisions based on those discoveries, the
optimal placement and capacity of “Distributed Generation (DG)” units within power
distribution networks may be forecasted.

The following is a description of the KNN method specifically designed for the DG
optimization problem:

Feature Selection: In this step, the relevant features, such as load demand, voltage levels,
power losses, and other DG-related parameters, are selected. A feature vector X is defined as:
X = [X1, X5, o) Xp] (3)

Where:

X1,Xp, ..., Xp are the selected features.

Calculate Distance Metric: To find the nearest neighbours, calculate the distance between
the new input (current network conditions) and each point in the historical dataset. The most
common metric is Euclidean distance:

dX,Y) = 2L, (x5 —yi)? (4)

X = [X4,Xy, ..., Xp] IS the input data point, and Y = [y4,y>, ..., ¥n] i @ historical data point,
with n being the number of features.

Choose the Value of K: Select the number of nearest neighbours K (often determined through
cross-validation). The optimal K is usually an odd number to avoid ties in classification.

K Nearest Neighbors: After calculating the distance between the input and each historical
data point, select the K data points with the smallest distances. These points are the KNNof
the input data.

Prediction via Weighted Average: For each of the KNN, gather the DG placement and sizing
configurations (output). A weighted average of these configurations determines the predicted
DG placement for the new input:

1 Wiyi
g
Where:

y; is the DG placement configuration of the i-th neighbour.
wj is the weight based on the inverse of the distance d(X,Y;).

T axy
y is the predicted optimal DG placement.

Evaluation and Objective Function: Evaluate the predicted DG placement performance by
calculating the distribution network's total power loss and voltage profile. The goal is to
minimize power loss:

l:’loss = {\I=1 IizRi (6)

“where:
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I; is the current through the i-th branch,
R; is the resistance of the i-th branch,
N is the total number of branches in the network™.

Model Validation: Separate the data into a training set and a testing set, usually in an 80:20
split. Evaluate the model's efficacy by looking at metrics like voltage stability and power loss
reduction. Adjust K so that cross-validation yields better results.

IV. SIMULATION AND RESULT ANALYSIS

The KNN method designed for the placement of distributed generation units was implemented
and assessed on the standard “IEEE 33-BUS and 69-BUS radial distribution system test
benches”. This simulation exercise was conducted on the MATLAB platform, using metrics
such as % power loss reduction, voltage profile enhancement, and calculation time to assess
the algorithm's effectiveness.

Simulation Setup

o Dataset: The dataset used for simulation included historical load data, voltage
profiles, and DG placement configurations. This data was pre-processed using
normalization techniques to ensure uniformity across different feature scales.

e Training and Testing: The dataset was partitioned into 80% for training and 20%
for testing to assess the KNN algorithm's generalization capability on unseen data.

e Distance Metric: The Euclidean distance metric was used to identify the K nearest
neighbours for each input.

e Optimal K Selection: Cross-validation was employed to determine the optimal
number of neighbours K. A range of values for K was tested, and the value that
minimized power losses and maximized voltage stability was chosen.

The evaluation of these “parameters is conducted using the IEEE 33-bus and IEEE 69-bus
distribution test systems”. Figures 2 and 3 illustrate the single-line schematics for the “33-bus
and 69-bus distribution systems”, respectively. This simulation method facilitates the
assessment and examination of the system's impacts across various typologies and conditions.
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Figure 3: IEEE 33-bus test system

Results Analysis

The effectiveness of the implemented (KNN algorithm for placing optimal DG was assessed
through simulation studies on the “IEEE 33-bus and 69-bus radial distribution systems. The
KNN algorithm was also compared with much more sophisticated deep learning models like
Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Convolutional
Neural Networks (CNN)”. The goal was, therefore, to evaluate the models according to these
three criteria: power loss reduction, voltage profile improvement, and computational cost.

Power Loss Reduction: In the simulation, the primary objective was to minimize the total
active power loss across the network, with comparisons made between “the proposed KNN

Nanotechnology Perceptions 20 No. S12 (2024)



Advanced Machine Learning Solutions For.... Dr. Harish S. Avchat et al. 738

algorithm and deep learning models such as RNN, LSTM, and CNN”. In Figure 4 and Table
1, the 33-bus system, KNN, achieved the most significant reduction, lowering power losses
by 16.5%, from 210 kW to 175.5 kW. This outperformed RNN, which resulted in a 14.9%
reduction (178.7 kW), LSTM with a 13.5% reduction (181.7 kW), and CNN with a 15.8%
reduction (176.8 kW). Similarly, in the 69-bus system, KNN again outperformed the other
models, reducing power losses by 17.8%, from 230 kW to 189 kW. RNN achieved a 16.2%
reduction (192.8 kW), LSTM delivered a 14.8% reduction (196.1 kW), and CNN resulted in
a 16.9% reduction (191.3 kW). These results demonstrate that KNN consistently provided the
most effective reduction in power losses across both systems.

Table 1: Power Loss Reduction

33-Bus Power Loss | 69-Bus Power Loss
Model Reduction (%) Reduction (%)
KNN
Proposed 16.5 17.8
RNN 14.9 16.2
LSTM 13.5 14.8
CNN 15.8 16.9

Power Loss Reduction (%)

181
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17 i
g .
c
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5 16 :
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o
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14}
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Figure 4: Power Loss Reduction
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Voltage Profile Improvement:

systems.

Table 2: Bus Voltage Profile

The enhancement in the voltage profile was done by
assessing the minimum voltage levels at some nodes across the network. From Fig. 5 and Tab.
1 it was possible to observe in the 33-bus system that the KNN algorithm offered the best
improvement, raising the minimum voltage to 0.96 p.u. compared to other models. In
comparison RNN raised the minimum voltage up to 0.94 p.u., LSTM up to 0.93 p.u. and CNN
up to 0.95 p.u. In the same context with the 69-bus system, the KNN performed better again
by increasing the minimum voltage to 0.95p.u. Instead, it was increased to 0.93 p.u. by RNN,
0.92 p.u. by LSTM, and 0.94 p.u.by CNN respectively. These results plainly show that KNN
offered more enhanced voltage profile enhancements than the other algorithms over both

33-Bus Voltage | 69-Bus Voltage Profile
Model Profile (p.u.) (p.u.)
KNN
Proposed | 0.96 0.95
RNN 0.94 0.93
LSTM 0.93 0.92
CNN 0.95 0.94

Voltage Profile Improvement (p.u.)

0.960

0.955¢

0.950 =

0.945¢

0.940

ge Profile (p.u.)

1 0.935

Volta

0.930¢

0.925¢}

0.920}

33-Bus
&~ 69-Bus

Figure 4: Bus Voltage Profile
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Computational Efficiency: The computational efficiency of each model was evaluated by
measuring the computation time to assess their suitability for real-time applications. In Table
3 and Figure 5, the 33-bus system, the KNN algorithm demonstrated the fastest performance,
requiring only 12 seconds of computation time. In comparison, RNN took 18 seconds, LSTM
required 25 seconds, and CNN completed the task in 15 seconds. Similarly, in the more
extensive 69-bus system, KNN again proved to be the most efficient, requiring 18 seconds.
RNN took 24 seconds, LSTM required 30 seconds, and CNN completed in 20 seconds. These
results highlight KNN's superior computational efficiency, making it a more viable option for
real-time DG placement optimization than the other models.

Table 3: Computation Time

33-Bus
Computation 69-Bus Computation Time
Model Time () (s)
KNN
Proposed 12 18
RNN 18 24
LSTM 25 30
CNN 15 20
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Figure 5: Computation Time

VI. CONCLUSION

This paper describes a comparison between the “K-Nearest Neighbours (KNN) technique and
modern deep neural networks such as Recurrent Neural Networks (RNN), Long Short-Term
Memory (LSTM), and Convolutional Neural Networks (CNN) to solve the problem related to
the size and placement of DG units in the power distribution sector. Comparing the results in
terms of power loss reduction, voltage profile enhancement, and computation time, the KNN
algorithm frequently outperformed the other techniques analysed in this study”. In the 33-bus
system, KNN saved the highest amount of power loss, with 16.5%, while RNN, LSTM, and
CNN saved 14.9%, 13.5%, and 15.8%, respectively. Likewise, in the case of the 69-bus
system, the value of KNN optimized the power losses by 17.8% more than that of RNN
(16.2%), LSTM (14.8%) and CNN (16.9%). Concerning the voltage profile enhancement,
KNN continued appearing as the model, maintaining the highest minimum voltage levels in
both microgrids while enhancing the voltage stability compared to the others. Further, it is
remarkable that KNN produced higher accuracy than the DL methods significantly faster and
would consume minimal computational time in both systems, making it ideal for real-time
applications. Finally, the results justify using the KNN algorithm as a practical, reliable, and
optimal solution to solve the problem of placement of DG units in power distribution
networks. The model can reduce power losses, achieve high-voltage stability, and work with
low computational complexity. It is a high-quality replacement for more complex models like
RNN, LSTM, and CNN. These results imply that KNN is a highly effective algorithm as it
maintains a good balance between accuracy and time consumption, thus appropriately fitting
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the placement of DG in real-time in both small and large power networks. Ideas for future
work could then revolve around extending the work done here by using other machine-
learning methods in conjunction with KNN to determine the best placement locations for DGs.
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