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This paper presents an analysis of boundary layer flow for a Casson fluid model, accounting for 

thermal radiation and convective heating effects near a stretching sheet with variable thickness. The 

heat transfer process is examined using the Cattaneo-Christov heat flux model, an improved version 

of Fourier's law. To simplify the problem, the governing partial differential equations are 

transformed into nonlinear ordinary differential equations through appropriate similarity 

transformations. The numerical solution is derived using the Keller-Box method. The study focuses 

on various physical quantities of interest with respect to key influential parameters. It is observed 

that the velocity profile decreases as the Casson fluid parameter increases. Additionally, the results 

show that the temperature distribution diminishes with increasing thermal relaxation factor values, 

while it rises with greater thermal radiation factor values. 

 

Keywords: Thermal radiation, Casson fluid, Cattaneo- Christov Heat flux model, convective 

heating, Keller box method. 
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1. Introduction 

In the production of polymer sheets, achieving the desired thickness involves stretching the 

melted sheet emitted from a slit. This process is intricate and requires careful consideration of 

multiple parameters to optimise the final product's quality and properties. Researchers and 

engineers delve into understanding the dynamics of boundary layer flow to enhance the 

efficiency and effectiveness of these manufacturing processes. The cooling rate during 

stretching plays a crucial role in determining the molecular structure and mechanical properties 

of the polymer sheet. A controlled cooling process ensures that the sheet maintains the desired 

characteristics, such as strength and flexibility. Additionally, the stretching rate, which 

influences the orientation and alignment of polymer chains, directly affects the sheet's 

mechanical and thermal properties. 

In the realm of glass fibre manufacturing, metallic sheet cooling, polymer sheet extraction 

from dye, paper production, and petroleum resource improvement, advancements in the 

assessment of boundary layer flow contribute to more efficient and sustainable engineering 

practices. This interdisciplinary approach, combining fluid dynamics, thermodynamics, and 

material science, fosters innovation and progress in diverse industrial applications. Crane [9] 

explained for the first time that the boundary layer flow is provoked by a linearly stretching 

sheet. Gupta and Gupta [13] extended the classical problem by Crane [9] to a porous stretching 

surface and assumed that the velocity of the sheet may not conform to be linear, which leads 

to the investigation of the problem of stretching sheet. Ali [1] inspected viscous fluid boundary 

layer flow upon non-linearly stretching sheet. Cortell [8] carried out the effort of Ali [1] by 

considering both prescribed surface temperature and constant surface temperature through the 

sheet. Kechil and Hashim [19] investigated a chemical reaction effect over a viscous fluid past 

a non-linearly stretching sheet around a porous medium. 

Constitutive equations of differential type fluids are simple about velocity components. The 

literature survey designates that slight focus has been given to the flow of fluids of rate type. 

The Fluid model by Casson is one among the non-Newtonian fluid models which disclose the 

features of yield stress. Further Casson fluid moves if the applied shear stress is greater than 

the yield stress and behaves like a solid when the shear stress is less than the yield stress [11, 

24, 25, 23 and 35]. Honey, jelly, tomato sauce, vigorous fruit juices, soup are some of the 

examples of Casson fluid. 

One of the essential mechanisms in the investigation of boundary layer flow of Newtonian and 

non-Newtonian fluids is the convective boundary condition at the boundary wall. Aziz and 

Makinde [23] scrutinise numerically boundary layer flow of nanofluid convince by stretching 

sheet along convective boundary condition and brought to a conclusion that, Biot number 

increases the thermal boundary layer thickness remarkably. Ishaket al. [18] examined the 

consequence of thermal radiation over boundary layer flow of viscous fluid on a moving plate 

with the help of convective boundary condition. Nadeem et al. [27] and Shaw and Mahanta 

[22] explored three dimensional hydromagnetic flow of Casson nanofluid and Casson fluid 

mechanism of convective boundary condition originated by linearly and nonlinearly stretching 

sheet, respectively. Recently, Oyelakinet al. [30] studied the transfer of heat feature in unstable 

Casson nanofluid flow by stretching a sheet along convective boundary conditions. 
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Study of heat transfer is a very essential field of research because its wide range of applications 

in various engineering and industrial processes such a heat pumps, nuclear reactors cooling, 

materials processing, rocket thermal ablation and energy production, electronic devices 

cooling, thermoplastic fabrication, biophysical conduction of heat conduction in tissues. The 

major disadvantage of the Fourier model [12], is that it cuts down the conservation heat 

formulation to the energy parabolic equation which displays the medium surveillance as the 

earliest disturbance. In order to get the better of this difficulty, the term called relaxation time, 

Cattaneo developed [4] Fourier’s law of heat conduction. Christov [6] with finite speed 

conduction of heat introduced an indifferent formulation for the Maxwell–Cattaneo model. 

Starzewski- Ostoja [28] characterised the Maxwell–Cattaneo equation of heat flux 

mathematically by using material time derivatives. Zampoli and Tibullo [37] scrutinised the 

stability and uniqueness of solutions of incompressible fluid achieved by Cattaneo–Christov 

heat flux model. Straughan [36] examined numerically the incompressible thermal convection 

flows. Haddad [14] was examined in detail using a heat flux model with Brinkman porous 

medium about thermal instability consolidated fluid inertia. Straughan and Ciarletta [7] studied 

Cattaneo–Christov heat flux equations regarding structural stability and uniqueness. They 

reported that the solution to a backward in time problem depends continuously on relaxation 

time. Yilbas and Al-Qahtani [2] employed the Laplace transform method and closed form 

solution for stress and Cattaneo equation. Papanicolaou et al. [31] examined Cattaneo– 

Maxwell equations and the impact of thermal relaxation. Han et al. [15] used the Cattaneo– 

Christov heat flux model for the Maxwell fluids boundary layer flow against the stretching 

sheet. Mustafa [26] investigated numerically and analytically non-Fourier convection in 

turning Maxwell fluid flow. He conferred both numerical and analytical solutions and exhibits 

results of both are in very good concurrence. Bissell [3] applied Cattaneo– Christov heat flux 

model instead of parabolic Fourier law oscillatory convection flow in a classic Bernard 

problem to improve the possibility of oscillatory convection. Khan et al. [20] examined HAM 

procedure for Maxwell fluid boundary layer flow which is reactive chemically with the 

influence of heat flux model. Raju et al. [32] numerically examined the effect of magneto 

hydro dynamics over boundary layer flow of a Maxwell non fluid past cylinder underneath 

heat flux model. They concluded that the coefficient of skin friction is comparatively more in 

permeable flow on cylinder case in comparison to impermeable flow on cylinder case. Shahid 

et al. [34] investigated Cattaneo-Christov’s heat flux model on radiative Maxwell viscoelastic 

magnetic flow on stretching permeable sheet. Khan et al. [21] examined upper-convected 

Maxwell micro polar fluid flow upon semi-infinite stretching surface. 

Here, in this work, the evaluation of the effects of boundary layer flow of a Casson fluid along 

changeable thickness is originated by a stretching sheet by using Cattaneo-Christov heat flux 

model along with the effects of convective heating and thermal radiation. The more precise 

numerical solution is obtained by using Keller Box method. These results are discussed 

graphically for different miscellaneous variables. 

 

2. Mathematical formulation 

Consider the two-dimensional incompressible boundary layer flow of Casson fluid over 

stretching sheet with variable thickness. The velocity of the sheet is supposed to be 
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0 

 
Um=U0(x+b)m and it is assumed that the wall thickness of the stretching sheet may increase or 
decrease with the power index m of the distance from the slot. For m = 1 the problem reduces 

to flat stretching sheet. The viscosity of the fluid is μ=μe
ζ(T−T)

. We used Cattaneo- 

Christov heat flux model instead of Fourier’s law to investigate the heat transfer 

characteristics. 

Physical model of the problem is shown in figure 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have 
 

.U = 0, 

Fig. 1 Stretching sheet variable thickness.  

 

 

(1) 

 

(2) 

 
 

 
 

Where U , ρdenotes the velocity field, the density of the flow respectively and b = J Bis 

the body force. The Cauchy stress tensor is 
 

 

 

 

 

 

Here Pz , 

(3) 

μB ,ψ are the yield stress of the field, a plastic dynamic viscosity of non- 

Newtonian fluid, the product of the components of rate deformation respectively. And 

ψ= eijeji , eij is the (i ,j) component of the deformation rate and ψc is the critical value of ψ 

based on non-Newton model. Adding temperature equation to the reformed equations we get 

Variable thickness sheet 
Slot 
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r , 

r 

 

the following equations 

 
u v 

x
+ 

y
=0, 

(4) 

 

 

(5) 

 

(6) 

Here u and v are the velocity components respectively along x and y-directions,ν and μ 

are the kinetic viscosity and the variable viscosity, q and q

 are the heat flux and the radiative 

heat flux, and cp , T  , β , the specific heat, the temperature of the fluid, the Casson parameter 

respectively. From Eq. (3.2.6) 

 

(7) 

 

Where λis denotes the thermal relaxation time and k is the thermal conductivity of the fluid. 

Eqs. (6) and (7) together give the following equation 

 

 

 

 

 

 

 

 

(8) 

The boundary conditions are: 
 

 

 

The Rosseland approximation for q
 
is 

 

(9) 

 

 

 

 

(10) 
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Here σ* is the Stefan-Boltzmann constant and k *is the mean absorption coefficient. 

Using Taylor series expansion for T  , we have 

 

From (10) and (11) 
 

Considering the following transformations: 

(11) 

 

 

 

(12) 

 

 
 

 
Let G=1+

 1 
, 1+

4 
=A 

(13) 

Rd 
β 3 

The governing equations are reduced to the following equations: 
 

 

The boundary conditions become 

 

 

 

(14) 

 

(15) 

 

 

 

 

(16) 

 

 

Where denotes the plat surface. In order to make non-dimensional 

equations, we define  which gives 

(17) 
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The boundary conditions become 

(18) 

 

 

 

 

(19) 

 

 is  the  variable  viscosity  parameter,  is  the  Prandtl  number, 

is the thermal radiation parameter, is the Biot number and 

is the thermal relaxation parameters. 

The wall shear stress at the sheet is given by 

 

 

 

The skin friction can be defined as 
 

The dimensionless forms of skin friction is defined as 
 

(20) 

 

 

 

 

(21) 

 

 

 

(22) 

 

3. Numerical Solution of the Problem 

The Equations (17) and (18) with the boundary conditions (Eq. (19)) are solved by using 

Keller-box method, a very appropriate method for non linear parabolic problems. By 

substituting new dependent variables, these equations are converted into first-order equations, 

then central difference expressions are used later Newton’s method is applied to linearize this 

system of nonlinear equations, then transformed into matrix-vector form and then the system 

is solved by Tri diagonal Block-elimination method. MATLAB software is used for graphical 

illustrations and tabular values. The grid size is chosen for η as 0.01 and the convergence 

criterion is less than 0.5×10−5, which is accurate up to four decimals. For different values of 

η
 , dual solutions are obtained and they are dependent on the involving parameters. Table.1 

shows that the present results are valid and accurate with some restricted cases of Salahuddin 

et.al. [33] and Wang [39]. 
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We assumed f ' = v, v' = r , s =θ', t = s ' And Eqs. (17) and (18) become, 
 

 
 

Boundary conditions are 

 (32) 
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Newton’s method: 

 

 

Similarly, for v, r , s 

 

 

and t, we get 

(33) 

 

 

here 
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δ 

 

 

Aδ= l 

Here 

 l 1    δ  
 
 

l =  
 

 
2   ' 
'  , δ =   

  '  

 

 

(46) 

 '  

 l J  

  
 J  

 

 

 

 

 

(47) 

And 

l 
1 

 
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4. Results and Discussions 

Numerical examinations are done comprehensively to analyse the temperature distribution 
and velocity field within the boundary layer by considering both the wall temperature gradient 

and wall velocity gradient. We can see their changes for different parameters like Bi, β, Pr , 
γ, B , Rd , m , α from the Figures 2 – 11. The values of these parameters are chosen as Bi 

= 0.2, β= 2, Pr =0.71, γ= 0.2, B = 0.4, Rd = 0.5, m = 0.1, α=0.1. 

Fig. 2 explores the influence of Casson factor β on fluid velocity f  . It’s observed 

that there is an inverse relationship highlighting the impact of β on the physical system, 

demonstrating how an increase in β leads to a reduction in f  

The Casson factor is demonstrate as  . Here ψc is the critical value of ψ it is 

the product of rate of deformation with itself, μB is dynamic viscosity, and Py is fluid’s yield 

stress. It’s easy to understand from the equation that Casson parameter, dynamic viscosity is 

directly proportional to each other. Hence, increase in the value of β implies an increase in 

plastic dynamic viscosity μB , which indicates more resistance to the flow of fluid hence the 

result. 

Figure 3, highlights how Casson fluid factor β influences the heat transfer 

characteristics, it is directly proportional to temperature distributions. The reason behind such 

increase is that the movement of Casson factor leads to decrease in the fluid velocity, 

Consequently, when the fluid is further dragged against physical boundaries, energy is lost, 

leading to an increase in the fluid temperature within the boundary layer. This enhancement 

in temperature is a direct result of the viscous dissipation of energy as the fluid flows. 

Figures 4 and 6, shows that for m<1, an increase in the wall thickness factor leads to 

a decrease in the velocity at any point near the plate. However, for m>1, the situation is 

reversed, where an increase in the wall thickness factor results in an increase in velocity near 

the plate. Furthermore, it is evident from the figures that for larger values of α, when m<1, the 

boundary layer thickness becomes thinner, while for larger values of α when m>1, the 

boundary layer thickness becomes thicker. 

Figures 5 and 7 display the wall thickness factor reduces the thermal boundary layer 

thickness and increases the heat transfer rate when m<1, but the opposite effect is observed 

when m>1. Physically, increased value of α when m<1 reduces the velocity of the flow. This 

occurs because when the wall thickness varies, not all of the pulling force from the stretching 

sheet is transmitted to the fluid, leading to a reduction in both the temperature distribution and 

the friction between fluid layers. However, when m>1, the velocity of the flow layers 

increases, which raises the frictional forces between the layers and consequently increases the 

temperature. Moreover, for higher values of α, the thermal boundary layer becomes thinner 

when m<1 compared to m>1. 

In fig (8) shows the impact of Bi on temperature profile. perceive that temperature enhances 
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when Bi increases. Aziz and Makinde [93] explored the similar outcome like Biot number 

describe that the ratio of hot fluid side to the cold fluid side convection resistances upon the 

surface. Furthermore, the hot fluids thermal resistance is proportional to hf, hence increasing 

Bi values leads to increase side convection of hot fluid. Consequently, thickness of thermal 

boundary layer increases. 

Fig 9 displays the consequences of non-dimensional thermal relaxation time γ over 

temperature profiles. It is noticed that temperature and thermal relaxation time are inversely 

proportional to each other. Furthermore, it is observed that. In both cases Maxwell and 

Newtonian, change in temperature by thermal relaxation of time is of same magnitude. For 

γ = 0 the temperature profile is greater for Fourier’s law with respect to Cattaneo–Christov 

model. 

Figure 10 illustrates the temperature distributions of the variable η for dissimilar 

values of the thermal radiation factors. From figure, it is clearly noticed that by increasing the 

value of the thermal radiation factor, the surface temperature θ (0) , thickness of thermal 

boundary layer, temperature distribution all increases. The reason behind this is the radiative 

heat flux increases when Rosseland radiative absorptive decreases which further, displays an 

increase radiative heat transfer rate to the fluid, results the rise in fluid temperature. With this 

certainty, the influence of radiation becomes greater noteworthy as Rd→∞ and the influence 

of radiation ignored when Rd = 0. 

Figure 11 shows the effects of the Prandtl number (Pr) on the temperature profile. It 

is evident that as the Prandtl number increases, the temperature near the wall decreases. An 

increase in the Prandtl number leads to a reduction in the thermal boundary layer thickness, 

indicating that heat diffuses more rapidly than momentum. Consequently, thermal diffusivity 

exceeds momentum diffusivity. As Pr increases, the temperature profile is compressed closer 

to the wall. This behavior is particularly pronounced when Pr << 1, where the fluid is more 

conductive, allowing heat from the sheet to transfer more rapidly compared to fluids with 

higher Pr values. Therefore, the Prandtl number is essential for enhancing the rate of cooling 

in conductive flows. 

Figure 12 -15 illustrate the effects of wall thickness factor, magnetic factor, variable viscosity 

factor, and Casson fluid factor on the coefficients of skin friction and Nusselt number. It is 

evident that an increase in the Casson fluid factor results in a decrease in both the coefficient 

of local skin friction and the Nusselt number. Similarly, while increasing the magnetic factor 

leads to a decrease in the local Nusselt number but the coefficient of skin friction increases. 

Furthermore, an enhancement in the variable viscosity parameter causes a reduction in both 

the coefficient of skin friction and the Nusselt number. Conversely, increasing the wall 

thickness factor results in an enhancement of both the coefficient of skin friction and the 

Nusselt number. 

 

5. Conclusions: Key Findings of the present study: 

➢ Casson Fluid Parameter Impact: An increase in the Casson fluid parameter leads to a 

deceleration of the fluid over the sheet. 
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➢ Cattaneo-Christov Model Comparison: The behaviour of factors in the Cattaneo- 

Christov model aligns qualitatively with those in Fourier’s heat conduction law. 

➢ Effect of Relaxation Time and Velocity Power Index: The thickness of the thermal 

boundary layer and temperature exhibits a decreasing trend with relaxation time. Similarly, an 

increase in the velocity power index parameter causes the fluid to slow down over the 

stretching sheet. 

➢ Influence of Prandtl Number and Radiation: Both the thickness of the thermal 

boundary layer and temperature decrease with Prandtl number, while the radiation factor acts 

oppositely. 

➢ Casson Fluid Factor Impact: Increasing the Casson fluid factor results in a 

simultaneous decrease in both the coefficient of drag skin friction and heat transfer values. 

➢ These findings provide valuable insights for researchers in diverse fields, serving as a 

reference for understanding the physics of flow past a stretching sheet and contributing to 

advancements in scientific and engineering applications. 

 

  

Figure 2 & 3 Dimensionless velocity and temperature distributions 

different values of β 

 

 

Figure 4 & 5: Dimensionless velocity and temperature distributions 

different values of α for m <1. 
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m = 3 

 = 0.1, 0.5, 1, 1.5, 2 
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Figure 6 & 7: Dimensionless velocity and temperature distributions 

different values of α for m>1. 
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Figure 8 & 9: Dimensionless temperature distribution θ(ζ) for different values of Bi, γ. 

 

 

Figure 10 & 11: Dimensionless temperature distributionθ(ζ) for different values of Rd, Pr. 
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