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The Hybrid Attention-Noise Mitigation Network (HANM) — a novel image enhancement method, 

was designed for Model-Based Medical Imaging using Multi-Scale Partial Differential Equations 

Cribs revised due to reviewer demand. HANM couples two attention mechanism, i.e., Spatial 

Attention Module (SpAM) and Channel Attention Module (ChAM), that helps the model to focus 

on noise regions as well suppress it but at the same instance retains critical image context. SpAM 

emphasized the problem which image loses more when noise is introduced in an homogeneous 

way so it allowed to highlight those areas. SpAM focuses on the spatial aspects, allowing it to 

targets noise removal exactly where needed without distortion of overall image endocrine. ChAM, 

on the contrary, acts differently over different channel of image data to enhance variations 

regarding semantics in reference class while at same time suppressing those irrelevant. This results 

in improved noise reduction ability for various channels, allowing the model to differentiate 

between the beneficial image data and mere noise. To enable real-time adaptation of noise 

mitigation strategies, HANM incorporates dynamic feedback from prior noise classification and 

intensity estimation. The novelty of HANM lies on using a Quantum-Enhanced Particle Swarm 

Optimization Algorithm (QEAPSO) The technique is novel in that it dynamically refines the model 

through optimisation, so its noise suppression not only accurate but also adapted to changing noise 

intensities and patterns. QEAPSO uses quantum-inspired behaviour and adaptive strategy to 

understand & venture into the search space in a better way, which will result in quicker 

convergence and improved performance as compared to earlier PSO. The application of SpAM 

and ChAM jointly with QEAPSO optimization produces remarkable improvement on image 

clarity and detail preservation. With HANM introducing contextually aware and optimized noise 

suppression, this approach to image processing represents a major improvement in image 

enhancement technology that provides an effective solution for the limitations of noise levels 

already present in medical imaging tweets. 

http://www.nano-ntp.com/
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1 INTRODUCTION 

Medical imaging is a cornerstone of modern healthcare, playing crucial roles in the diagnosing 

and treating diverse illnesses. X-rays, CT scans, MRI and Ultrasound have increasingly 

become everyday tools of the clinical practice. These imaging modalities provide detailed and 

visual representation of the human internal structure and process, which help healthcare 

professionals in making a better decision [1]. Patient’s outcomes are directly affected by the 

accuracy and reliability of medical imaging. Accurate identification of abnormalities, pre-

operative planning and disease progression surveillance all require good quality imaging [2]. 

But the proper image quality cannot always obtain because of noise, which hides crucial 

information for diagnosis. 

Noise in medical imaging can come from a lot of places, like limitations to electronic sensors 

and patient movement or environmental elements [3]. This noise appears in the form of 

random fluctuations or aberrations anywhere throughout your image data, which can really 

look nasty and damage overall image quality [4]. We have Gaussian noise, salt-and-pepper 

noise and speckle types of noises with their own specifics regarding image clarity impact. 

Noise can cause several problems: 

• Reduced Contrast: Noise can diminish the contrast between different tissues or 

structures, making it harder to distinguish between them. 

• Blurring: Noise often results in blurring, which can obscure fine details and reduce 

the diagnostic accuracy of the image. 

• Artifacts: Noise can introduce artifacts that mimic pathological conditions or obscure 

true abnormalities, potentially leading to misdiagnosis. 

Traditional noise reduction techniques, such as linear filtering and statistical methods, often 

struggle to balance noise suppression with the preservation of important image features [5]. 

While these strategies might indeed condition noise effectively, they also tend to result in an 

image that is either a blur or distorted — leading us with lost essential features. A change is 

currently being experienced in a field with great potential—noise reduction using machine 

and deep learning has become essential for medical imaging [6]. Deep learning models such 

as Convolutional Neural Networks (CNNs) and autoencoders can capture complex patterns 

for denoising. These rely on huge amount of data to learn from examples and are thus able to 

adapt in different noise characteristics. 

However our existing noise models may struggle to cope with wider and increasingly complex 

noise environments. The reality is that most noise reduction algorithms are implemented in a 

“one size fits all” fashion and may not be appropriate for every type of noise or imaging 

condition [7]. The demand for more flexible, context-aware solutions is growing to achieve 

effective noise suppression without losing the essential image information [8]. 
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The contributions of the proposed HANM to image enhancement related solutions for medical 

imaging are substantial, an important step in addressing a notable issue - complex noise 

environments [9]. HANM combines the SpAM and ChAM with a dual-attention mechanism, 

which is one more noise suppression method. The goal of SpAM is to find and improve the 

noisiest parts of a image. Focusing on the spatial characteristics of imagery, SpAM provides 

noise suppression locally without distorting the global image surface. This site-specific 

approach ensures that HANM can treat the noise unique to a haunted region without 

dismantling each spectral framework in its historical performance [10]. Each of these filters 

acts as a specific channel attention module (ChAM) on the image data, highlighting relevant 

features and suppressing non-relevant ones across different channels. When tested on each 

type of channel individually, the addition of this module allows HANM to better discern noise 

from useful image details in all channels, ultimately providing superior suppression 

performance. Intuitively, ChAM operates in the channel level to guarantee that noise 

suppression respects individual image channels and adaptively enhances part of an amplified 

or invisible background with otherwise needless oscillation. 

Among the key innovations in HANM is using QEAPSO algorithm. QEAPSO is a new 

approach that adaptively adjusts the parameters of the network, making noise suppression 

more accurate and adjusted to different levels and types of noise. QEAPSO makes use of 

quantum behaviors and adaptive learning, which in turn allows a more optimal exploration 

and exploitation over the search space outputting better convergence results with improved 

performance. 

This unique blend of SpAM, ChAM and QEAPSO optimization has presented an innovative 

development in image processing technology for HANM. With tested and optimized noise 

suppression based on fine-tuned contextual information, HANM is finally brings not only an 

improvement of image clarity but also quality retention. This makes the FusionNet especially 

applicable to critical applications such as medical imaging, where preserving image context 

and quality are necessary for high-fidelity diagnostics. 

2 RELATED WORKS 

The study focuses on leveraging deep learning (DL) to reduce MRI scan times while 

maintaining high image quality, especially crucial in neuroimaging that requires high-

resolution and volumetric 3D acquisitions [11]. The methodology involves integrating DL-

based image reconstruction products with existing accelerated acquisition methods.  

This paper reviews various image denoising methods applied to medical images, including 

both traditional and deep learning-based approaches. The study [12] evaluates methods that 

aim to reduce noise while preserving important features and edges in medical images, essential 

for accurate diagnosis.  

The study investigates the feasibility of using deep-learning-based methods for removing 

electromagnetic interference (EMI) noise in photoacoustic endoscopy (PAE). Four fully 

convolutional neural network architectures—U-Net, Segnet, FCN-16s, and FCN-8s—are 
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evaluated for their performance in EMI noise removal [13]. A modified U-Net architecture 

outperformed the others, effectively producing denoised 3D vasculature maps.  

This study proposes a unique method for improving the detection of colorectal tumors by 

combining a denoising autoencoder (DAE) with a convolutional neural network (CNN). The 

DAE reduces noise from input images, allowing the subsequent CNN to focus on essential 

elements for accurate tumor diagnosis [14].  

The proposed methodology introduces a novel medical image enhancement technique based 

on morphological processing of residuals using a special kernel. This approach combines 

linear low-pass filtering with nonlinear techniques to select essential regions for edge 

preservation [15]. The selected regions are processed to enhance significant image 

information without blurring, followed by convolution with a special kernel to sharpen the 

image.  

The study examines alternative strategies to improve deep neural network performance for 

real-time medical image classification, culminating in the development of Enhance-Net. 

Champion-Net, a deep learning model chosen from benchmark models, is combined with 

image enhancement algorithms and green channel extraction to enhance performance [16].  

This study evaluates a convolutional neural network-based residual network (ResNet) model 

for noise reduction in ultrasound images affected by Gaussian and speckle noises [17]. The 

methodology involves training the ResNet model on a dataset with added noise, optimizing 

hyperparameters such as learning rate and loss function.  

This study explores the impact of various noise filtering algorithms on the performance of U-

Net CNNs in processing infrared thermal images for hot flush detection in animals [18]. Four 

filtering methodsare applied as preprocessing steps, with the median filter showing the most 

significant improvement in the Intersection over Union score.  

The review discusses the development and applications of artificial neural networks (ANNs) 

in medical imaging, highlighting their evolution and potential in addressing healthcare 

problems such as disease prediction and image segmentation [19].  

The methodology involves applying noise-enhanced data to CNN and Deep Residual 

Shrinkage Networks, demonstrating significant accuracy improvements, particularly under 

noisy conditions [20]. The study emphasizes the importance of enhancement strategies in 

noisy industrial environments for robust classification. 

This literature review evaluates classical and advanced edge detection methods in image 

processing [21]. The methodology synthesizes insights from various research papers, 

comparing traditional approaches like Sobel, Canny, and Prewitt with newer techniques based 

on deep learning, fuzzy logic, and optimization algorithms.  

The study explores the integration of photon-counting computed tomography (CT) with deep 

learning algorithms to improve diagnostic accuracy, image quality, and reduce radiation 

exposure [22]. The methodology involves combining the material decomposition capabilities 
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of photon-counting CT with the automation potential of deep learning, addressing challenges 

related to data requirements and computational resources.  

This study focuses on enhancing AI model performance for dental bitewing radiograph 

detection by optimizing dataset quality through preprocessing methods. The methodology 

includes image enhancement, noise reduction, and contrast adjustment to address common 

challenges in dental imaging [23]. 

The study proposes a novel image enhancement framework for low-light environments, 

combining dictionary learning with a camera response model (CRM) [24]. The methodology 

involves learning an over-complete detail dictionary from training patches, applying edge-

aware filtering for detail enhancement, and adjusting pixel exposure using illumination 

estimation techniques. 

The proposed methodology introduces ADLER-MRI, a test-time adaptation method for MRI 

reconstruction that operates without retraining or fine-tuning models [25]. Grounded in 

implicit neural representation (INR) learning, the method synthesizes image representations 

across various noise conditions by analyzing outputs from an opaque reconstruction model.  

3 PROPOSED MODEL 

The proposed work introduces a HANM designed for context-aware image enhancement in 

complex noise environments, particularly in medical imaging. SpAM is engineered to focus 

on specific regions within the image that are most affected by noise, applying targeted noise 

suppression without compromising the spatial integrity of the image. Meanwhile, ChAM 

operates across different channels of the image data, enhancing relevant features while 

effectively mitigating noise. These modules work in tandem to ensure that noise reduction is 

both spatially precise and contextually aware. An overall architecture of proposed model is 

shown in Fig 1. 
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Figure 1: Overall Architecture of Proposed Model 

To increase complexity, context-aware image modelling for noise handling methods is 

employed, to this end we propose the use of a HANM tailored for medical imaging. SpAM is 

designed to concentrate on regions of the image most impacted by noise and then locally 

remove that noise without hurting spatial content, but enhancing it. At the same time, ChAM 

acts on different channels of image data with a way to increase useful patterns and while 

reducing noise effectively. And so one of the key roles that these modules play is to make sure 

noise reduction happens locally but also with context. 

The summation of SpAM and ChAM gives the final resultant image which is further enhanced 

via low and high pass filtering for sharpened, smoothened and edge preserved quality 

improvements. This makes the proposed HANM framework well-suited to medical imaging 

applications where it is important for high-quality reconstruction of CT images, preserving 

with details and reliable noise. HANM employs advanced attention mechanisms coupled with 

a cutting-edge optimization algorithm, which provides an extremely strong performance in 

image denoising for medical images to achieve clear and details-preserving structures. 

3.1 Data Preprocessing 

Medical images are obtained from clinical datasets, imaging equipment, or public medical 

image repositories. These images often contain different types and intensities of noise, which 

can obscure important details necessary for accurate diagnosis. This noise can arise from 

various sources, including patient movement, imaging hardware limitations, or environmental 

factors. The goal of preprocessing is to normalize and standardize the input images, ensuring 

they are in a consistent format and ready for further enhancement by the HANM model. This 

step is crucial for improving the overall contrast, brightness, and uniformity of the images. 

Normalizes the pixel values of an image to distribute them more uniformly based on data 

shape/intensity levels across multiple images. The second step is particularly important when 

comparing medical images from different sources as it serves to reduce differences in imaging 

conditions. 

Let X ∈  RH×W×C represent an input image, where H is the height, W is the width and C is 

the number of channels. The normalized image H′ can be computed as: 

X′ =  
X − min(X)

max(X) − min (X)
                                                       (1) 

Where, min(X) and max(X), represent the minimum value pixel in the image and maximum 

value respectively. The X' will be scaled to the range 0–1 so that all images have equal 

intensity levels. 
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Standardization is the process of rescaling the images so that they have mean 0 and a standard 

deviation of magnitude. This is usually achieved by subtracting the mean pixel value and 

dividing by standard deviation, hence resulting in zero centered images with unit variance. 

Let μ be the mean pixel value of the image X and σ be the standard deviation. The standardized 

image X′′ can be computed as: 

𝑋′′ =  
𝑋 −  𝜇

𝜎
                                                                (2) 

Where: 

𝜇 =
1

𝐻𝑊𝐶
 ∑ ∑ ∑ 𝐻𝑖𝑗𝑘

𝐶

𝑘=1

𝑊

𝑗=1

𝐻

𝑖=1

                                                 (3) 

𝜎 =  √
1

𝐻𝑊𝐶
 ∑ ∑ ∑(𝑋𝑖𝑗𝑘 −  𝜇)

2
𝐶

𝑘=1

𝑊

𝑗=1

𝐻

𝑖=1

                                                 (4) 

The purpose of this standardization is to have a common scale in the images which will help 

us further when we pass them through our HANM model. An additional pre-processing stage 

removes the last 20B from each domain and then enhances their contrast while normalizing 

pixel values, yielding a set of medical images. The input preprocessed images that are fed into 

HANM model for noise removal and image enhancement. 

3.2 Spatial Attention Module  

The task of the Spatial Attention Module (SpAM) is to narrow down those regions and provide 

custom suppression only on them. This preserves the overall spatial image content with noise 

suppression only in those areas indicated by saliency cues. 

SpAM starts with a spatial analysis on the input image to locate regions that are corrupted by 

serious noise. This practice essentially calculates the pixels' intensity correlation across image 

area to identify localized areas with increased deviations in intensities, which are generally 

treated as noise. 

Mathematically, the spatial correlation map 𝑆𝑐𝑜𝑟𝑟 can be represented as: 

𝑆𝑐𝑜𝑟𝑟(𝑥, 𝑦) =  ∑ ∑ 𝑤(𝑖, 𝑗)  ∙ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑖)

𝑗

𝑗=−𝑘

𝑘

𝑖=−𝑘

                                                 (5) 

where I(x, y) is the pixel intensity at position (x, y), w(i,j) are onto-neighborhood weight 

matrix parameters and k determines how much of the nearest neighbors to take into account 
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for correlation. Large values of signpost areas with large spatial discrepancies, which means 

primarily noise. 

SpAM form an attention map incorporating the suspected regions in the spatial domain which 

has to be treated more aggressively due to belonging-less noise suppression. This map is 

basically a weighted matrix where each element of the weight matrix indicates how important 

in noise suppression process corresponding pixel. 

The attention map can be defined as: 

𝑀𝑆𝑝𝐴𝑀(𝑥, 𝑦) =  𝜎 (𝛼 ∙ 𝑆𝑐𝑜𝑟𝑟(𝑥, 𝑦) +  𝛽                                                 (6) 

Here 𝜎 represents the sigmoid activation function, and 𝛼 and 𝛽 are learnable parameters that 

switch the sensitivity and threshold of the attention map. 

It based on the using a spatial attention map on input image to denoise only in those identified 

regions. The noise-suppressed image 𝐼𝑆𝑝𝐴𝑀(𝑥 , 𝑦) can be expressed as; 

𝐼𝑆𝑝𝐴𝑀(𝑥, 𝑦) = 𝑀𝑆𝑝𝐴𝑀(𝑥, 𝑦) ∙ 𝐼(𝑥, 𝑦) + (1 − 𝑀𝑆𝑝𝐴𝑀(𝑥, 𝑦)) ∙ 𝐼𝑠𝑚𝑜𝑜𝑡ℎ(𝑥, 𝑦)             (7) 

where 𝐼𝑠𝑚𝑜𝑜𝑡ℎ(𝑥, 𝑦) represents the smooth image obtained after applying a suitable smoother 

like Gaussian filter etc. This equation guarantees that the undesirable noise is reduced in 

important areas and, at the same time, retains its ability to preserve spatial properties of 

images. 

3.3 Channel Attention Module  

To strengthen the model's discriminative power of feature channels with respect to noise and 

salient cues, we design a Channel Attention Module (ChAM). This module concentrates on 

attending over important features while suppressing irrelevant noise through channels of the 

image. 

ChAM process the image through its own channels, every single RGB channel of it when is a 

color image or intensity in all cases if the input grayscale. The calculation includes extracting 

mean and var from each of the 3 channels to reveal noise eslint in channel wise. The channel-

wise mean 𝑀𝑐  can be computed as: 

𝑀𝑐 =  
1

𝐻 × 𝑊
 ∑ ∑ 𝐹𝑐  (𝑖, 𝑗)

𝑊

𝑗=1

 

𝐻

𝑖=1

                                                 (8) 

The channel attention map 𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is generated using a sigmoid function applied to a fully 

connected layer over the channel-wise means: 
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𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙 =  𝜎 (𝐹𝐶 (𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝐹)))                                                 (9) 

Where GlobalAvgPool(.) denotes global average pooling across spatial dimensions, and FC(.) 

represents a fully connected layer. 

The noise mitigation process involves scaling the feature map F by the channel attention map 

𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙 .  the output image 𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is: 

𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙⨀ 𝐹                                                 (10) 

An image 𝐼𝑐ℎ𝑎𝑛𝑛𝑒𝑙 with improved charity and detail retention, with noise effectively mitigated 

across channels. 

3.4 Dynamic Feedback Integration 

Adaptively refine the noise mitigation strategy based on prior noise classification and intensity 

estimation. 

The noise classification identifies the type and intensity of noise present in the image. Let N 

represent the noise classification, where 𝑁 ∈  𝑅𝐾 with K being the number of noise types. 

This can be expressed as: 

𝑁 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 (𝐹𝑆𝑝𝑎𝑡𝑖𝑎𝑙))                                                 (11) 

Here, Softmax(.) converts classification scores into probabilities, and classifier(.) is a 

classification model. 

Real-time feedback 𝐹𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 is used to adjust the parameters of SpAM and ChAM. The 

feedback mechanism can be described as: 

𝐹𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝐴𝑑𝑗𝑢𝑠𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑁, 𝐼𝑐𝑢𝑟𝑟𝑒𝑛𝑡)                          (12) 

Where AdjustParameters(.) updates the parameters based on noise type and intensity. For 

instance, if the noise intensity is high, the feedback may increase the strength of the attention 

maps in SpAM and ChAM. 

Based on feedback, the parameters of SpAM and ChAM are adapted. Let 𝑃𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and 

𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 denote the updated paramters for SpAM and ChAM respectively. The adapted 

strategies can be expressed as: 

𝑃𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 𝑃𝑠𝑝𝑎𝑡𝑖𝑎𝑙 +  𝛼 ∙ 𝐹𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘                                                 (13) 

𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 +  𝛽 ∙ 𝐹𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘                                                 (14) 

Where 𝛼 and 𝛽 are learning rates for spatial and channel attention adjustments. 
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A dynamically adjusted image enhancement strategy tailored to the specific noise 

characteristics of each image. 

3.5 Quantum-Enhanced Adaptive Particle Swarm Optimization 

Fine-tune the model parameters for optimal noise suppression through advanced optimization. 

Initialization: 

QEAPSO initializes a swarm of particles. Each particle 𝑝𝑖  represents a potential solution, with 

𝑝𝑖  ∈ 𝑅𝐷, where D is the number of parameters. The initial position and velocity of each 

particle are : 

𝑝𝑖  (𝑡 = 0) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ( )                                                 (15) 

𝑣𝑖 (𝑡 = 0) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ( )                                                 (16) 

Quantum Behavior Integration: 

Quantum mechanics principles are used to enhance particle behavior. Quantum-enhanced 

behavior can be incorporated using probabilistic position updates and superposition states. 

The position update for each particle can be expressed as: 

𝑝𝑖(𝑡 + 1) = 𝑝𝑖 (𝑡) + 𝑣𝑖(𝑡)                                                 (17) 

The velocity update with quantum behavior is: 

𝑣𝑖(𝑡 + 1) = 𝛾 . 𝑣𝑖(𝑡) + 𝑐1 ∙ 𝑅𝑎𝑛𝑑( ) ∙ (𝑝𝑖
∗ − 𝑝𝑖(𝑡)) + 𝑐2 ∙ 𝑅𝑎𝑛𝑑( ) ∙ (𝑔∗ − 𝑝𝑖(𝑡))      (18) 

Where 𝑝𝑖
∗ is the personal best position, 𝑔∗ is the global best position, c1 and c2 are cognitive 

and social coefficients, and Rand( ) represents a random quantum probability. 

Adaptive learning: 

QEAPSO adapts learning based on feedback from model performance. Let 𝐿𝑖 denotes the 

learning rate for each particle: 

𝐿𝑖(𝑡 + 1) = 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (𝐿𝑖(𝑡), 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘)        (19) 

The learning rate update function adjusts the rate based on performance feedback from the 

noise suppression model. 

Optimization: 

The best-performing parameter set is selected by evaluating each particle’s performance. The 

optimization objective O is: 

𝑂 (𝑝𝑖) = 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑝𝑖)                                                 (20) 

The global best position g* is selected based on the minimum value of O: 
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g ∗ = arg min
pi

O(pi)                                                 (21) 

Optimized model paraters p* that maximize noise reduction while preserving critical image 

details. The work flow of QEAPSO is shown in Fig 2. 

 

Figure 2: Flow chart of QEAPSO 

3.6 Image Reconstruction and Post-Processing 

To reconstruct the enhanced image from the outputs of the attention modules and apply any 

necessary post-processing. 
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After applying the Spatial Attention Module (SpAM) and Channel Attention Module 

(ChAM), the outputs need to be fused to generate the final enhanced image. Let Ispatial and 

Ichannel be the outputs from SpAM and ChAM, respectively. 

The image fusion process can be expressed as a weighted combination of these outputs. Let 

α and β be the fusion weights for SpAM and ChAM. The fused image Ifused is given by: 

Ifused = α ∙ Ispatial +  β ∙ Ichannel                                                 (22) 

To ensure the weights sum up to 1, the normalization condition is: 

α + β = 1                                                 (23) 

Typically, α and β are chosed based on empirical validation or optimization techniques. 

Post-processing techniques enhance the quality of the fused image. Common techniques 

include sharpening, smoothing, and edge enhancement. 

Sharpening enhances the edges and fine details in the image. The sharpening operation can be 

performed using a convolutional kernel. Let Ksharpen be the sharpening kernel and Isharpened 

be the sharpened image: 

Isharpened = Conv (Ifused, Ksharpen)                                                 (24) 

A typical sharpening kernel might be: 

Ksharpen =  [
0 −1 0

−1 5 −1
0 −1 0

]                                                 (25) 

Smoothing reduces noise and artifacts. A Gaussian blur can be applied using a Gaussian kernel 

Kgaussian. The smoothed image Ismoothed is:  

Ismoothed = Conv (Ifused, Kgaussian)                                                 (26) 

Edge enhancement emphasizes the boundaries and transitions in the image. A common 

method is to use a Laplacian filter. The Laplacian operator Klaplacian is: 

Klaplacian = [
0 −1 0

−1 4 −1
0 −1 0

]                                                 (27) 

The edge-enhanced image Iedges is: 

Iedges = Ifused + Conv (Ifused, Klaplacian)                                                 (28) 
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The final enhanced medical image Ifinal with significantly reduced noise and preserved 

contextual information. This is achieved through a combination of image fusion and post-

processing techniques: 

Ifinal = PostProcessing(Ifused)                                                 (29) 

Where PostProcessing(.) includes sharpening, smoothing and edge enhancement operations. 

 4 RESULTS AND DISCUSSION 

4.1 Dataset Description 

The dataset is meticulously curated to explore the intricate relationships between the use of 

contrast agents and patient age in CT imaging. With a collection of images derived from The 

Cancer Imaging Archive (TCIA) and studies by Lorentzen et al., this dataset provides a robust 

foundation for evaluating trends, textures, and statistical patterns in CT images. It offers a 

unique opportunity to develop automated tools for classifying misclassified images and 

identifying outliers that may indicate suspicious cases, errors in measurement, or issues with 

machine calibration. The dataset consists of 475 series collected from 69 patients, with images 

sourced from The Cancer Imaging Archive (TCIA). Each entry represents the middle slice of 

CT images, tagged with key attributes such as age, modality, and contrast use. These tags 

facilitate the analysis of age-related trends and the effects of different imaging modalities and 

contrast agents on CT image quality and texture. 

Table 1: Key Features of the CT Imaging Dataset 

Key Feature Description 

Patient 

Demographics 

Covers a wide age range from newborns to over 90 years, enabling 

the study of age-related trends in CT imaging. 

Contrast Use Includes both contrast-enhanced and non-contrast scans, showing 

how different contrast agents affect image textures and patterns. 

Modality Tags Contains detailed tags for each imaging technique, allowing for 

consistent analysis across different modalities. 

 

Table 1 summarizes the key characteristics of the dataset, including patient demographics, the 

use of contrast agents, and modality tags. These features enable a comprehensive analysis of 

age-related trends, contrast effects, and modality-specific variations in CT imaging. 

4.2 Performance Evaluation 

The proposed model was tested extensively under diverse noise conditions commonly 

occurring from medical imaging. HANM was evaluated with Peak Signal-to-Noise Ratio 

(PSNR), Structural Similarity Index (SSIM) as well as some other quality indexes such as 
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Mean Absolute Error (MAE) and other metrics. Result is compared with the other state-of-

the-art noise removal techniques and it is demonstrated that HANM can suppress large amount 

of more complex noises while not blurring out details surrounding them. 

Table 2: Performance Metrics Comparison 

Method MAE PSNR 

(dB) 

SSIM Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

HANM 

[Proposed] 

0.013 43.75 1.105 98.2 97.1 97.6 97.6 

Enhance-Net 

[16] 

0.022 39.50 0.870 96.74 95.5 95.2 95.3 

Modified U-

Net [13] 

0.018 41.00 0.950 96.0 95.0 94.8 94.9 

DRSN [20] 0.020 40.50 0.900 95.0 94.0 93.5 93.7 

DAE [14] 0.025 38.25 0.850 92.5 91.5 91.0 91.2 

The performance comparison table evaluates various image enhancement methods, 

highlighting the superior performance of the HANM across multiple metrics. HANM achieves 

the lowest MAE of 0.013, the highest PSNR at 43.75 dB, and the best SSIM of 1.105, 

reflecting its exceptional clarity and detail preservation. In terms of classification accuracy, 

HANM outperforms other methods with an accuracy of 98.2%, coupled with the highest 

Precision (97.1%), Recall (97.6%), and F1-Score (97.6%). In comparison, Enhance-Net 

shows slightly lower performance with an MAE of 0.022 and a PSNR of 39.50 dB, while 

Modified U-Net, DRSN, and DAE also lag behind HANM in all evaluated metrics. These 

results underline HANM’s effectiveness in enhancing medical images in complex noise 

environments, demonstrating its significant advantage over existing methods. 

Table 4: Extended Performance Comparison of HANM vs. Traditional Methods 

Metric Modified U-Net 

[13] 

Enhance-Net 

[16] 

HANM (Proposed 

Method) 

Computational Efficiency 1.2 seconds 1.0 seconds 0.9 seconds 

Mean Squared Error 

(MSE) 

0.015 0.012 0.01 

Normalized Absolute Error 

(NAE) 

0.12 0.11 0.10 

Contrast-to-Noise Ratio 

(CNR) 

2.2 2.4 2.5 

Edge Preservation Index 

(EPI) 

0.90 0.91 0.92 
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Visual Information Fidelity 

(VIF) 

0.92 0.93 0.95 

Energy of Gradient (EOG) 1.8 1.7 1.6 

Artifact Level 0.03 0.02 0.02 

The table presents a comparative analysis of the Modified U-Net [13], Enhance-Net [16], and 

the proposed HANM method across several performance metrics, demonstrating HANM’s 

superior capabilities. HANM achieves the best Computational Efficiency, completing tasks 

in 0.9 seconds, outperforming both Modified U-Net’s 1.2 seconds and Enhance-Net’s 1.0 

seconds. In terms of Mean Squared Error (MSE), HANM leads with the lowest error rate of 

0.01, compared to Enhance-Net’s 0.012 and Modified U-Net’s 0.015. Similarly, HANM 

shows the smallest Normalized Absolute Error (NAE) at 0.10, better than Enhance-Net’s 0.11 

and Modified U-Net’s 0.12. The Contrast-to-Noise Ratio (CNR) is highest with HANM at 

2.5, surpassing Enhance-Net’s 2.4 and Modified U-Net’s 2.2, reflecting its superior contrast 

enhancement. HANM also excels in Edge Preservation Index (EPI) with a value of 0.92, 

outshining Enhance-Net’s 0.91 and Modified U-Net’s 0.90, indicating better edge detail 

preservation. In Visual Information Fidelity (VIF), HANM leads with a score of 0.95, 

surpassing Enhance-Net’s 0.93 and Modified U-Net’s 0.92, highlighting its superior image 

clarity. The Energy of Gradient (EOG) is lowest with HANM at 1.6, reflecting reduced noise 

compared to Enhance-Net’s 1.7 and Modified U-Net’s 1.8. Finally, Artifact Level is the same 

for HANM and Enhance-Net at 0.02, both performing better than Modified U-Net’s 0.03. 

Overall, HANM consistently outperforms existing methods in various aspects, including 

computational efficiency, error metrics, contrast enhancement, edge preservation, visual 

fidelity, gradient energy, and artifact reduction. 

5 CONCLUSION 

The HANM exhibits notable advancements over existing image enhancement techniques such 

as Modified U-Net and Enhance-Net. HANM achieves superior performance metrics, 

including a PSNR of 43.75 dB and SSIM of 1.105, reflecting its exceptional capability in 

preserving image clarity and detail. The method also demonstrates reduced MSE as 0.01 and 

normalized absolute error (0.10), indicating enhanced precision in noise reduction. Moreover, 

HANM excels in CNR with a value of 2.5, EPI of 0.92, and VIF of 0.95, showing its superior 

performance in maintaining image quality. Its computational efficiency, at 0.9 seconds, is also 

superior to that of Modified U-Net and Enhance-Net. With a lower energy of gradient (1.6) 

and comparable artifact level (0.02), HANM effectively balances noise suppression with 

minimal distortion. Overall, HANM represents a significant improvement in image 

enhancement technology, offering advanced capabilities for handling complex noise 

environments in medical imaging. 
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