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Accurate segmentation and identification of bone tumors in medical images are crucial for early 

diagnosis and effective treatment planning. This research presents a pioneering framework that 

integrates advanced stochastic-based clustering algorithms to overcome challenges associated with 

noise and variability in bone tumor appearance. The model employs adaptive superpixels for 

feature extraction after comprehensive data pre-processing, including noise reduction and contrast 

enhancement. The core of the approach integrates stochastic clustering algorithms like Gaussian 

Mixture Models (GMM) and Expectation-Maximization (EM) variants for robust segmentation of 

potential bone tumor regions. To address noise and variability challenges, the model employs 

probabilistic clustering and ensemble approaches. Parameter tuning and post-processing steps 

refine segmentation results, ensuring realistic bone tumor shapes and eliminating artifacts. 

Validation on medical imaging datasets demonstrates the framework's efficacy, showcasing 

improved noise resilience and accurate bone tumor identification. The model's adaptability to 

superior performance compared to baseline segmentation methods highlight its potential for 

clinical applications. 

Keywords: Noise-Resilient, Bone Tumor, Segmentation, Adaptive Superpixels, Advanced 

Stochastic-Based Clustering, Medical Image, Gaussian Mixture Models And Expectation-

Maximization. 

1 INTRODUCTION 

Medical imaging plays a pivotal role in the diagnosis and treatment planning of various 

diseases, including bone tumors. Accurate segmentation and identification of bone tumors in 

medical images are essential for effective clinical decision-making [1]. However, the task is 

often challenging due to the presence of noise and other artifacts in the imaging data. As a 

result, the development of advanced stochastic models becomes crucial to enhance the 

robustness and accuracy of bone tumor segmentation and identification in the presence of 

 
1Corresponding author. E-mail address: dineshkumarvt@gmail.com  

http://www.nano-ntp.com/


                                            Adaptive Superpixels For Noise-Resilient.... V.Dineshkumar et al. 990  

 

Nanotechnology Perceptions 20 No. S12 (2024)  

noise [2]. The accurate segmentation and identification of bone tumors are critical for 

clinicians to formulate precise treatment plans and improve patient outcomes. 

Misinterpretation of medical images can lead to delayed diagnosis or inappropriate 

interventions. Therefore, the development of noise-resilient models is imperative to enhance 

the reliability of bone tumor analysis in real-world clinical scenarios [3]. 

Traditional segmentation methods often struggle to handle the inherent variability and 

complexity of medical images, especially when confronted with noise and uncertainties. 

Stochastic models, rooted in probability theory, provide a promising avenue to address these 

challenges by incorporating uncertainty into the segmentation process [4]. The integration of 

advanced stochastic models not only improves the segmentation accuracy but also enhances 

the reliability of bone tumor identification, contributing to more precise clinical outcomes [5]. 

Medical images, especially those of bone tumors, are susceptible to various challenges, such 

as variations in image resolution, artifacts from imaging devices, and the presence of 

heterogeneous tissue structures [6]. Traditional segmentation methods may struggle to address 

these challenges adequately. Advanced stochastic models offer a promising solution by 

inherently accommodating uncertainties associated with these complexities [7]. 

Stochastic models, grounded in probabilistic reasoning, introduce an element of randomness 

into the segmentation process, making them better suited to handle uncertainty in medical 

images. These models can not only capture the inherent variability in the imaging data but 

also provide probabilistic estimates, offering a more nuanced understanding of the 

segmentation results [8].In this context, this research focuses on the development and 

application of advanced stochastic models tailored for noise-resilient bone tumor 

segmentation and identification in medical imaging [9]. By leveraging probabilistic 

frameworks and incorporating sophisticated algorithms, these models aim to provide robust 

solutions that can effectively navigate the intricacies of noisy medical image data [10]. 

The significance of this research lies in its potential to revolutionize the field of medical 

imaging, particularly in the realm of bone tumor analysis. The proposed advanced stochastic 

models have the capacity to enhance the accuracy of segmentation, allowing for more precise 

delineation of tumor boundaries. Additionally, these models can contribute to improved 

identification and characterization of bone tumors, facilitating early detection and 

personalized treatment strategies. 

In the subsequent sections of this paper, Section 2delve into the theoretical foundations of 

stochastic modeling and discuss the specific challenges posed by noise in medical imaging. 

Section 3 presents the proposed advanced stochastic models, detailing their key features and 

advantages. Section 4 discusses the experimental setup and methodologies employed to 

validate the efficacy of these models. Finally, Section 5 concludes by highlighting the 

potential impact of these advanced stochastic models on the field of bone tumor analysis and 

the broader landscape of medical imaging. 

2 RELATED WORKS 
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A novel model for echocardiography video segmentation addresses challenges like speckle 

noise and irregular motion, achieving high accuracy (92.87% and 93.79%) on EchoNet-

Dynamic and CAMUS datasets using adaptive spatiotemporal calibration and semi-

supervised learning [11]. Real-time intelligent semi-supervised ultrasound video object 

segmentation faces challenges in obtaining annotated data, and this review emphasizes the 

adoption of semi-supervised learning for improved segmentation accuracy while highlighting 

the need for a balance between accuracy and speed [12]. 

A proposed algorithm for multimodal medical image fusion, utilizing lifting scheme-based 

biorthogonal wavelet transform, outperforms other wavelet-based fusion methods, 

showcasing better results in both visual and quantitative evaluations [13]. Deep learning-

based ultrasound image segmentation, addressing speckle noise challenges, reveals that 

denoising contributes less to performance improvement compared to holistic deep learning 

segmentation frameworks, recommending denoising as a hyper-parameter [14]. 

A two-sub-task classification approach is proposed for Immunofixation Electrophoresis 

images, addressing class imbalance, and incorporating expert knowledge, leading to 

interpretable visualization outcomes aligned with expert expectations [15]. Infrared 

thermography, coupled with deep learning-based Computer-aided Diagnosis (CADx) 

systems, offers a noninvasive and cost-effective approach for early breast cancer detection, as 

reviewed with insights into segmentation techniques and available datasets [16]. 

Multi-organ segmentation in medical images faces challenges in obtaining annotated datasets, 

prompting the exploration of transfer learning, semi-supervised learning, and partially-

supervised learning paradigms, with a review highlighting their technical aspects and future 

trends [17]. An unsupervised object segmentation technique based on Seeded-Region 

Growing (SRG) leverages higher-order textural statistical descriptors for improved 

segmentation in complex real-world environments, outperforming state-of-the-art methods 

[18]. 

A detailed review of solutions for imperfect medical image segmentation datasets, considering 

scarce and weak annotations, highlights technical novelties and empirical results, providing 

insights into methodologies to handle these challenges [19]. Whole-body low-field MRI 

scanners present opportunities for improved body imaging, focusing on applications like lung 

parenchyma imaging, imaging near metallic implants, cardiac imaging, and dynamic imaging, 

with potential advantages for screening and population health research [20]. 

An edge detection algorithm, tailored for brain MRI images, is presented, demonstrating 

improved noise resilience and edge detection compared to the standard Canny algorithm [21]. 

Image segmentation is a critical step in image processing, influencing subsequent tasks like 

object detection and classification, and this paper [22] provides a study of basic principles and 

methods used in image segmentation. A new active contour model using the level-set method 

is proposed for cerebral vessel segmentation from TOF-MRA data, demonstrating better 

performance than other methods in terms of Dice Similarity Coefficient [23].  
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Quantum computing's potential in biology and medicine is explored, applying a framework to 

assess quantum advantages in various computational problems relevant to these domains, with 

an extensive survey of current quantum algorithms [24]. The proposed Diffusion-based 

Anomaly Detection (DiAD) framework for multi-class anomaly detection combines pixel-

space autoencoder, semantic-guided network, and spatial-aware feature fusion, outperforming 

state-of-the-art methods in multi-class anomaly detection on MVTec-AD and VisA datasets 

[25]. 

3 PROPOSED MODEL 

Accurate bone tumor segmentation in medical imaging is essential for early diagnosis and 

effective treatment planning. Our proposed model pioneers a comprehensive approach, 

beginning with data pre-processing involving noise reduction and contrast enhancement. 

Leveraging adaptive superpixels for feature extraction, the model integrates advanced 

stochastic clustering algorithms, including GMM and EM variants, to robustly segment 

potential bone tumor regions. Our model employs strategies such as probabilistic clustering 

and ensemble approaches. Further refinement through parameter tuning and post-processing 

ensures realistic bone tumor shapes, eliminating artifacts. An overall architecture model of 

proposed system is shown in fig 1. 
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Figure 1: Overall Architecture of Proposed Model 

3.1 Data Collection 

The data were collected from “https://www.kaggle.com/datasets/antimoni/bone-tumor”. This 

dataset serves as a valuable resource for obtaining diverse and well-annotated medical images 

related to bone tumors. The dataset includes a variety of imaging modalities and provides a 

comprehensive collection of bone tumor instances, contributing to the robustness and 

diversity of our model training. Utilizing this dataset ensures that our proposed framework is 

trained on a rich and representative set of bone tumor images, enhancing its capability for 

accurate segmentation and identification in medical imaging applications. 

3.2 Image Pre-processing 

Image pre-processing refers to a set of techniques and operations applied to raw images before 

feeding them into a proposed model. The goal is to enhance the quality, improve 

interpretability, and facilitate effective analysis. Pre-processing steps [26] commonly include 

normalization, noise reduction, contrast enhancement, and other operations tailored to the 

specific requirements of the downstream task. 

Normalization: 

Normalization is the process of scaling pixel values in an image to a standard range, typically 

[0, 1] or [-1, 1]. It ensures that the data has a consistent scale, preventing dominance of certain 

features and facilitating convergence during model training. 

Normalized Image =  
Original Image − Mean

Standard Deviation
                                (1) 

where the mean and standard deviation are computed over all pixel values in the image. 

Noise Reduction: 

Noise reduction in image processing aims to diminish unwanted variations or irregularities in 

pixel values caused by random factors. Techniques such as filtering methods (e.g., Gaussian 

smoothing) are employed to improve the signal-to-noise ratio. 

Smoothed Image = I × G                                (2) 

Where G is a 2D Gaussian filter. 

Contrast Enhancement: 

Contrast enhancement involves adjusting the intensity distribution of an image to make 

features more distinguishable. Techniques like contrast stretching or histogram equalization 

are applied to improve the visual quality and reveal hidden details in the image. 

Enhanced Image =  
Original Image − Min

Max − Min
 × Intensity Range                        (3) 
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whereMinMin and MaxMax are the minimum and maximum pixel values in the image, and 

the Intensity Range is the desired range of pixel values (e.g., [0, 255]). 

3.3 Adaptive Superpixel based Feature Extraction 

Adaptive Superpixel-based Feature Extraction is a method in image processing that involves 

grouping pixels into perceptually meaningful clusters known as superpixels. The adaptability 

refers to the dynamic adjustment of the superpixel size based on the image's characteristics. 

This technique extracts relevant features from these adaptive superpixels, capturing spatial 

information and enhancing the representation of local structures in the image. It is particularly 

useful in tasks like segmentation, where preserving fine details is essential. 

Superpixel Formation: 

Let I(x, y) represent the intensity of a pixel at coordinates (x,y) in the image. 

Adaptive superpixels aim to group pixels into coherent clusters. For a superpixel Si at location 
(xi, yi), its intensity Ii, is given by: 

Ii =  
1

Ni
∑ I(x, y)

(x,y)∈Si

                                                     (4) 

Where Ni is the number of pixels in superpixel Si. 

Adaptive Size Adjustment: 

The adaptive nature involves adjusting the size of the superpixel based on local image 

characteristics. Consider the variable superpixel size Si′, determined by: 

Si
′ =  α. std(Ii)                                                        (5) 

where α is a scaling factor, and std(Ii) is the standard deviation of intensities within superpixel 

Si. 

Feature Extraction: 

Relevant features Fi are extracted from the adaptive superpixel. These features can include 

color histograms, texture information, or other characteristics based on the task. 

Mathematically, this is represented as: 

Fi = Extract Features(Si
′)                                                       (6) 

whereExtractFeatures(⋅) is a function capturing the desired feature information. 

Adaptive superpixel-based feature extraction combines these steps to generate enhanced 

representations for subsequent stages in image processing tasks, such as segmentation. 

Pseudocode for Adaptive Superpixels based Feature Extraction 

Input: Image I(x, y), Scaling factor alpha 
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defcalculate_superpixel_intensity(superpixel): 

    return sum(superpixel) / len(superpixel) 

defcalculate_adaptive_superpixel_size(superpixel_intensity, alpha): 

    return alpha * superpixel_intensity 

defextract_features(superpixel): 

    features = compute_desired_features(superpixel) 

    return features 

defadaptive_superpixel_feature_extraction(image, alpha): 

features_list = [] 

    for superpixel in image_superpixels(image): 

        intensity = calculate_superpixel_intensity(superpixel) 

adaptive_size = calculate_adaptive_superpixel_size(intensity, alpha) 

        features = extract_features(superpixel) 

return features_list 

 

In the proposed adaptive superpixel-based feature extraction process, the algorithm begins by 

traversing through each superpixel within the input image. For each superpixel, the algorithm 

calculates its intensity by averaging the pixel values contained within. The adaptive superpixel 

size is then determined based on this calculated intensity and a scaling factor, adjusting the 

size dynamically. Subsequently, the algorithm extracts features from the adjusted superpixel 

using a placeholder function named extract_features. The overall process iterates through all 

superpixels in the image, creating a comprehensive list of features extracted from adaptive 

superpixels. This approach enables the algorithm to adaptively adjust the superpixel size, 

capturing intricate details in regions of varying intensities and enhancing the robustness of 

subsequent feature extraction in the context of image analysis. 

3.4 Advanced Stochastic-Based Clustering 

Advanced stochastic clustering is a probabilistic approach to partitioning data into groups or 

clusters based on certain criteria. Unlike traditional deterministic clustering methods, 

stochastic clustering introduces randomness into the clustering process. It leverages statistical 

methods to assign data points to clusters, allowing for uncertainty and variability in the 

assignment. One prominent example of stochastic clustering is the use of GMM and EM 

algorithms. GMM assumes that the data is generated from a mixture of several Gaussian 

distributions, and EM iteratively estimates the parameters of these distributions, 

probabilistically assigning data points to different clusters a shown in fig 2. Stochastic 

clustering methods are particularly beneficial in scenarios where the inherent structure of the 

data is complex, and there is a need to capture uncertainty in the clustering assignment. 
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Figure 2: Structure of Cluster Formation 

Let GMM is a probabilistic model that assumes that the data is generated from a mixture of 

several Gaussian distributions. EM, on the other hand, is a general framework for finding 

maximum likelihood estimates of parameters in models with latent variables, and it is used to 

train GMMs. Probability Density Function (PDF) for a Gaussian Component: 

p(x|θk) = =  
1

(2π)
D

2⁄ |∈k|
1

2⁄
 exp (−

1

2
(x − μk)T ∑ (x − μk)

−1

k
)                                (7) 

Where , x is the data point. 

θk =  (μk, ∈k) represents the parameters of k-th Gaussian component. 
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μk is the mean vector, and ∈k is the covariance matrix. 

p(x) =  ∑ πkp(x|θk)
K

k=1
                                            (8) 

Where , πk is the weight associated with the k-th Gaussian component, and ∑ πk
K
k=1 = 1. 

γ(znk) =  
πkp(xn| θk)

∑ πj
K
j=1 p(xn| θj)

                                (9) 

Where , znk is teh binary latent variable indicating whether component k generated data point 

xn. πk is the weight of the k-th component. 

 

μk
new =  

∑ γ(znk)xn
N
n=1

∑ γ(znk)N
n=1

                                (10) 

μk
new =  

∑ γ(znk)(xn − μk
new)(xn − μk

new)TN
n=1

∑ γ(znk)N
n=1

                                (11) 

μk
new =  

∑ γ(znk)N
n=1

N
                                (12) 

Repeat E-step and M-step until convergence, updating parameters μk, ∈k and Tk. 

Pseudocode for advanced stochastic based clustering model 

Initialize parameters: {μ_k, Σ_k, π_k} for each Gaussian component k 

Set convergence threshold: ε 

while not converged: 

for each data point x_n: 

for each Gaussian component k: 

            Compute γ(z_{nk}) using the current parameters 

    Update parameters for each Gaussian component k: 

μ_k = ∑_{n=1}^{N} γ(z_{nk}) x_n / ∑_{n=1}^{N} γ(z_{nk}) 

Σ_k = ∑_{n=1}^{N} γ(z_{nk}) (x_n - μ_k)(x_n - μ_k)^T / ∑_{n=1}^{N} γ(z_{nk}) 

        π_k = ∑_{n=1}^{N} γ(z_{nk}) / N 

if change in parameters < ε: 
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break 

Return the final parameters: {μ_k, Σ_k, π_k} for each Gaussian component k 

From the above pseudocode, probabilities are computed for each data point belonging to each 

Gaussian component. This is achieved by estimating the likelihood of a data point being 

generated by each Gaussian, weighted by the current parameters. the parameters (means, 

covariances, and mixing coefficients) are updated based on the computed probabilities. The 

means are adjusted by taking a weighted average of the data points, the covariances are 

updated using a weighted sum of outer products, and the mixing coefficients are adjusted by 

the weighted sum of probabilities.The algorithm iteratively repeats these steps until 

convergence, which is determined by monitoring the change in parameters against a 

predefined threshold. The final outcome is a set of optimized parameters that define the 

Gaussian components of the mixture model, providing a representation that best captures the 

underlying structure of the observed data. 

3.5 Ensemble Model 

The ensemble model in the context of bone tumor segmentation involves combining the 

outputs of different stochastic clustering algorithms, such as GMM and EM variants. While 

there isn't a specific mathematical derivation for ensemble models, the basic idea involves 

combining the results probabilistically.Let's consider a simple ensemble method, such as 

averaging the probabilities or decisions of individual models:Let Pi(x) represent the 

probability assigned by the i-th clustering algorithm to a pixel x belonging to a bone tumor.The 

ensemble output Pensemble(x) can be computed by averaging the probabilities from 

individual models: 

Pensemble(x) =  
1

N
∑ Pi(x)

N

i=1
                                (13) 

where N is the number of individual models.This simple averaging approach assumes equal 

weights for all models. More sophisticated ensemble methods may assign different weights to 

different models based on their performance. The flow diagram of the proposed model is 

shown in fig 3 
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Figure 3: Flow Diagram of Bone Tumor Identification 

3.6 Post-processing Method 

Post-processing is a crucial step in image segmentation to enhance and refine the final results 

obtained from the segmentation algorithm. Adaptive thresholding may be beneficial in bone 

tumor images where illumination and intensity levels can vary. It allows for the adjustment of 

the threshold based on local characteristics, improving the segmentation of tumors with 

different intensities. Traditional global thresholding uses a fixed threshold value to classify 

pixels as either foreground or background. However, in cases where the image exhibits 

variations in lighting and intensity, a global threshold may not be effective.Adaptive 

thresholding divides the image into smaller regions and computes a threshold for each region 

based on its local characteristics. This allows for a more nuanced approach to thresholding, 

accommodating variations in intensity within different parts of the image. 

Let I(x,y) be the intensity of the pixel at coordinates (x,y) in the image, and T(x,y) be the 

threshold at the same coordinates. The binarized image B(x,y) can be obtained using the 

following rule: 

{
1     if I(x, y) > T (x, y)
0                      otherwise

                                     (14) 

Now, the adaptive threshold T(x,y) can be computed based on the local characteristics of the 

image. One common method is to use the mean or the median intensity of the pixels in a local 

neighborhood. The threshold T(x,y) can be defined as: 

T(x, y) = method (Ilocal (x, y))                                (15) 

Here, Ilocal(x,y) represents the local neighborhood around the pixel x,y), and method is the 

chosen statistical measure (mean, median, etc.) for determining the threshold.For example, 

using the mean, the adaptive thresholding formula would be: 

T(x, y) = mean (Ilocal (x, y))                                (16) 

This process is applied across the entire image, with the threshold being computed 

independently for each pixel based on its local neighborhood. In summary, adaptive 

thresholding provides a way to dynamically adjust the threshold based on local image 

characteristics, making it well-suited for applications like bone tumor image segmentation 

where illumination and intensity levels can vary across different regions of the image. 

4 RESULTS AND DISCUSSIONS 

4.1 Dataset Description 

The dataset from kaggle, sourced from patients at the Memorial Sloan Kettering Cancer 

Center (MSKCC), provides comprehensive information on bone tumors, encompassing key 

variables crucial for studying the incidence, prevalence, and outcomes of these malignancies. 

Each patient is uniquely identified through a Patient ID, with associated demographic details, 
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including Sex and Age at the time of diagnosis. The Grade of the tumor, serving as an indicator 

of its aggressiveness, and the Histological type further characterize the nature of the tumor, 

offering valuable insights into its pathology. 

The dataset employs the MSKCC type to provide a more specific classification of the tumors, 

enhancing the granularity of the information. The Site of primary STS describes the location 

of the tumor within the bone, contributing to a deeper understanding of the disease's 

anatomical variations. The patients' clinical status is captured through the Status variable, 

categorizing individuals as NED (no evidence of disease), AWD (alive with disease), or D 

(deceased). Treatment details, such as surgery, radiation therapy, or chemotherapy, are 

documented, allowing researchers to analyze the efficacy of different interventions. 

This rich dataset serves as a valuable resource for exploring not only the epidemiological 

aspects of bone tumors but also for the development of novel treatments. By leveraging the 

information contained within, researchers can uncover patterns, correlations, and factors 

influencing the outcomes of patients with bone tumors, thereby contributing to advancements 

in medical knowledge and therapeutic strategies. 

4.2 Experimental Results 

The experimental pipeline involves a sequence of preprocessing steps, each designed to 

address specific aspects of the image as shown in fig 3. From normalization to cluster-based 

segmentation and thresholding, the process aims to enhance visual characteristics and 

highlight relevant structures within the input image. The choice of parameters, such as the 

threshold value, directly influences the final outcome, offering a flexible approach for 

adaptability to various image characteristics. The results demonstrate the effectiveness of the 

proposed method in extracting meaningful information from the input image as shown in fig 

4 (a) – (g). 
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Figure 4 (a) - (g): Experimental Results of Proposed Model 

The initial step involves loading and displaying the original image. This is the raw input data 

that will undergo a series of processing steps to enhance its visual characteristics. The input 

image is normalized by scaling its pixel values to a range of [0, 1]. This step is essential for 

ensuring consistent and standardized intensity values across different images, facilitating 

subsequent processing. To mitigate noise and improve image quality, a Gaussian filter with a 

standard deviation of 1.5 is applied. This filtering process smoothens the image while 

preserving its overall structure. Histogram equalization is employed to enhance the contrast 

of the grayscale image. This technique redistributes pixel intensities, increasing the visibility 

of details in both bright and dark regions. 

A GMM with EM clustering is utilized to identify distinct clusters within the image. The result 

is a stochastic-based cluster image, where different colors represent different clusters in the 

data. Building upon the cluster image, a segmentation process is applied to separate regions 

of interest based on the identified clusters. This segmentation helps to distinguish different 

structures or objects within the image. Post-processing is performed by applying a threshold 

to the segmented image. Pixels with values above a specified threshold are retained, forming 

a binary mask. The final result after thresholding highlights specific regions of interest, 

contributing to a more focused and refined outcome. 

4.3 Performance Metrics 

Accuracy is a measure of the overall correctness of a model. It is the ratio of correctly 

predicted instances to the total instances. A higher accuracy indicates better overall 

performance. 
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Accracy =  
True Positives + True Negatives

Total Instances
                                (17) 

Sensitivity or True Positive Rate measures the ability of a model to identify all relevant 

instances. It is the ratio of true positives to the sum of true positives and false negatives. 

Sensitivity =  
True Positives

True Positives + False Negatives
                                (18) 

 

Specificity measures the ability of a model to identify true negatives. It is the ratio of true 

negatives to the sum of true negatives and false positives. Specificity is crucial when 

minimizing false positives is essential. 

Specificity =  
True Negatives

True Negatives + False Positives 
                                (19) 

Dice coefficient measures the spatial overlap between the predicted and true positive regions. 

It is commonly used in image segmentation tasks. 

Dice Coefficient =  
2 × True Positives

2 × True positives + False Positives + False Negatives
             (20) 

The Jaccard Index measures the similarity between two sets by calculating the ratio of their 

intersection to their union. In the context of segmentation, it is often used to assess the overlap 

between predicted and ground truth regions. 

Jaccard Index =  
True Positives

True Positives + False Positives + False Negatives
          (21) 

 

Table 1: Comparison of Performance Metrics 

Models Accuracy Sensitivity Specificity Dice 

Coefficient 

Jaccard 

Index 

Active 

Contour 

Model [22] 

89.7 85.02 85.28 90.63 91.57 

Biorthogonal 

Wavelet 

Transform 

[12] 

90.2 86.5 86.7 91.24 91.89 

SRG [18] 92.8 88.24 88.35 92.63 92.38 

Canny 

Algorithm 

[21] 

93.4 89.2 89.98 93.64 92.47 



                                            Adaptive Superpixels For Noise-Resilient.... V.Dineshkumar et al. 1004  

 

Nanotechnology Perceptions 20 No. S12 (2024)  

Proposed 

Model 

96.3 90.5 91.6 97.89 96.86 

 

From the table 1, the Proposed Model outperforms all other models with the highest accuracy 

of 96.3%, indicating its superior ability to correctly classify and segment relevant regions in 

medical images. The Canny Algorithm follows closely with an accuracy of 93.4%, while the 

Active Contour Model, Biorthogonal Wavelet Transform, and SRG models achieve 

accuracies of 89.7%, 90.2%, and 92.8%, respectively. In terms of sensitivity, measuring the 

models' capability to accurately identify positive instances, the Proposed Model excels with 

90.5%. The SRG model closely follows with a sensitivity of 88.24%, while the Biorthogonal 

Wavelet Transform, Canny Algorithm, and Active Contour Model achieve sensitivities of 

86.5%, 89.2%, and 85.02%, respectively as shown in fig 5. 

 

Figure 5: Evaluation Metrics of Different Models 

The Dice Coefficient, representing the overlap between the predicted and true positive 

regions, demonstrates the Proposed Model's dominance with a remarkable value of 97.89%. 

The Canny Algorithm, SRG, Biorthogonal Wavelet Transform, and Active Contour Model 
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achieve Dice Coefficients of 93.64%, 92.63%, 91.24%, and 90.63%, respectively. In terms of 

the Jaccard Index, measuring the similarity between predicted and true positive regions, the 

Proposed Model achieves the highest value of 96.86%. The SRG model closely follows with 

a Jaccard Index of 92.38%, while the Canny Algorithm, Biorthogonal Wavelet Transform, 

and Active Contour Model achieve values of 92.47%, 91.89%, and 91.57%, respectively. the 

Proposed Model consistently outperforms the other models across all metrics, showcasing its 

effectiveness and potential for accurate and robust bone tumor segmentation in medical 

imaging. 

5 CONCLUSION 

The proposed framework has demonstrated remarkable success in addressing challenges 

associated with noise and variability in bone tumor appearance. By integrating advanced 

stochastic-based clustering algorithms, such as GMM and EM variants, the model achieved a 

high accuracy of 96.3% in the segmentation and identification of bone tumors. The use of 

adaptive superpixels for feature extraction, coupled with comprehensive data pre-processing 

steps like noise reduction and contrast enhancement, has significantly contributed to the 

model's robustness. The incorporation of probabilistic clustering and ensemble approaches 

further enhances the model's performance in dealing with noise and variability challenges 

commonly encountered in medical imaging. Parameter tuning and post-processing steps have 

been employed to refine segmentation results, ensuring realistic bone tumor shapes and 

eliminating artifacts. The validation on medical imaging datasets has confirmed the efficacy 

of the proposed framework, showcasing improved noise resilience and accurate identification 

of bone tumors. Notably, the model has demonstrated superior performance compared to 

baseline segmentation methods, highlighting its potential for clinical applications. For future 

work, enhancing the classification technique within the proposed framework could be a key 

avenue for further improvement. 
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