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Across an extensive number of fields dealing with computer vision, including medical imaging and 

autonomous cars, classifying textures is an important part that plays a crucial role. This paper 

derived a magnitude relation between textons with three and two identical pixels with non textons 

on a 2x2 grid. This is named as Complete Magnitude-based Texton (CMT), a novel texture 

descriptor that aims to improve texture classification performance. The co-occurrence matrix (CM) 

is derived on the proposed CMT image. The GLCM features on CMT-CM derive characteristics of 

texture, and changes in magnitude. Various machine learning classifiers are used for classification, 

and their accuracies are compared. In this study, we assessed how well the CMT-CM descriptor 

performed on a number of standard datasets, including the Brodatz, MIT-Vistex, UIUC, Outex, 

STex, and FMD datasets, and we compared its performance with that of cutting-edge approaches. 

The results of our research clearly demonstrate that the CMT-CM descriptor is capable of achieving 

a greater degree of accuracy in texture classification tasks when compared to both conventional 

methods and other advanced descriptors.  The findings emphasize, the proposed CMT-CM can 

enhance texture classification accuracy in different fields. The proposed technique provides a 

resilient and effective solution for precise and dependable texture analysis, with notable 

implications for both practical implementations and theoretical investigations in texture 

categorization.  

Keywords: Texture Classification, Feature Extraction, Complete Magnitude based Texton Co-

occurrence Matrix. 

 

 

1. Introduction 

The field of computer vision has seen texture analysis rise to prominence in recent years. 

Texture constitutes a fundamental element in many pattern recognition and computer vision 

applications, aiding in the classification process by examining the content of image textures. 

Texture’s properties, such as roughness, irregularity, uniformity, and smoothness, are crucial 

in differentiating various qualities. Texture classification is essential in critical fields such 
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satellite or aerial imaging analysis [1], industrial inspection [2], biological image analysis [3], 

face analysis [4] and biometrics [5-6], image compression [7], object recognition [8], and 

image retrieval based on content [9]. Recognizing and understanding surfaces rely heavily on 

it. 

Feature-extraction and classification are two subproblems that can be taken into consideration 

while attempting to solve the texture classification problem. The calculation of the attributes 

that constitute texture is the most significant component of texture classification. This is 

because texture is a defining characteristic.  Although the extraction of robust texture attributes 

is crucial for the overall efficacy of a texture classification system, most research emphasizes 

the feature extraction aspect of the process. However, it is still challenging to develop texture 

characteristics that are resistant to the imaging environment, provide a high level of 

discrimination and effectiveness, and is computationally efficient. This competence 

encompasses the ability to endure fluctuations in illumination, rotation, point of view, scale, 

occlusion, and noise levels.  Research that has been conducted in this field on a consistent 

basis over the course of a number of years has contributed in the development of a considerable 

number of different theories and algorithms. There is no guarantee that the characteristics that 

are derived from one classification application are applicable to the other applications in the 

course of the classification process. 

Deriving texture features from grayscale images is a standard practice. The approaches for 

texture feature extraction are categorized into five distinct types depending on the specific 

texture components they aim to identify: i) statistical, ii) model, iii) transform, iv) structural 

[10],  and v) learning-based methods. The analysis of the spatial arrangement of grey-level 

values adjacent to a pixel in an image serves as the basis for the development of statistical 

approaches. Comprehensive information about the targeted region may be obtained using first-

order statistical variables, such as mean, variance, maximum, minimum, and histogram-based 

representations of grey-level distributions. These properties are invariant to translation and 

rotation, necessitating reduced computational cost.  Matrices such as the grey-level co-

occurrence matrix (GLCM) [11] and the grey-level run-length matrix (GLRLM) [12] are used 

to construct second-order statistical characteristics, which display local grey-level intensity 

associations. Higher-order statistical features, such as local binary patterns (LBP) [13], 

emphasize intensity transition patterns within specific sub-regions and exhibit greater 

resilience to image noise.  

During the period 1980-90, methods based on frequency and models were the main focus of 

texture analysis research. Laws filter-banks [14], fourier transform [15], and wavelets 

transform [16] were among the frequency-based approaches that were widely used during this 

time period. Model-based methods, such as fractal models [17] and Markov random fields 

[18], became more important at the same time.  In the early 2000s, statistical descriptor, local 

binary patterns became potential descriptor for local textures. Subsequently, other versions of 

local binary patterns were presented. LBP-based algorithms and its modifications have been 

significant in numerous image processing applications, including feature classification, age 

classification , recognition of faces, image retrieval based on content, and medical imaging 

applications. The search for textural characteristics that do not change over time inspired the 

development of local invariant approaches such as the scale-invariant feature transform [19] 

and the histogram-of-orientated gradients [20]. Texture analysis strategies have evolved from 
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early frequency-based and model-based approaches to the present focus on local and invariant 

texture descriptors.  Bag-of-textons [21] and bag-of-words [22] techniques were the first to be 

used in 2001, marking the beginning of the transition from manual to automated approaches. 

In these methods, an image dictionary is created, and then, using that dictionary as a basis, 

images are represented as histograms. Since 2012, deep learning methods garnered 

momentous attention in research, and their applications have expanded to include texture 

analysis among other computer vision issues [22-23]. This time represents a turning point in 

the direction of using deep learning to improve texture analysis results and other computer 

vision domains even more. 

The Local Binary Pattern (LBP) played a major role and influenced many researchers to work 

beyond and proposed many variants to LBP.  The original Local Binary Pattern (LBP) [13] 

texture descriptor encodes local patterns by comparing neighbourhood pixel values to define 

a binary code based on whether neighbouring pixels are larger or smaller than the central pixel. 

Classifying local textures is computationally efficient and effective. LBP is sensitive to noise, 

lacks scale and rotation invariance, has poor discriminative capacity in complicated scenes, 

and ignores global spatial information. Moreover, neighbourhood and fixed pattern size 

matter.  Numerous variations of LBPs have been created by the researchers. In order to inhibit 

the operator's sensitivity to rotation, rotation-invariant (LBPri r,p) [23] was proposed. With 

the goal of improving the performance of computing and lowering the dimensionality, uniform 

LBP (LBPu2 r,p) [23] is proposed. To enhance the representation of texture patterns and 

structures in images, center symmetric-local binary pattern (CS-LBP) [24] was proposed. 

Another variant, Local Directional Pattern (LDP) [25-26] is designed to capture directional 

information in local image neighborhoods, making it suitable for textures with distinct 

directional features.  In the recent years the robust LBP variations have been suggested by the 

scholars. The Multi Direction- Local Binary Pattern (MD-LBP) [27] method captures intricate 

texture characteristics in several directions, but it also introduces complexity and can be 

susceptible to noise. Multi-Level Directional Cross Binary Patterns (MLD-CBP) [28] 

combines several radial and orientation data, improving the acquisition of texture details, 

nonetheless, it does make the feature space more complicated. Local Triangular Coded Pattern 

(LTCP) [29] enhances noise resistance by examining triangular pixel correlations, although at 

the expense of increased implementation intricacy. The Gabor Contrast Patterns (GCP) [30] 

method integrates Gabor filters with Local Binary Patterns (LBP) to analyze macro and micro 

textures, however it incurs significant computing expenses. The Neighbourhood influenced 

Local Binary Pattern (NLBP) [31] improves texture classification accuracy by analyzing 

correlations between neighboring pixels, declines when applied to scaled images, despite its 

use of overlapping submatrices to improve LBP. Two Dimensional-Cooccurrence Local 

Binary Pattern (2D-LCoLBP) [32] efficiently gathers information from several neighborhoods 

and scales, ensuring scale invariance. However, this approach requires significant 

computational resources. Directional Magnitude Local Hexadecimal Patterns (DMLHP) [15] 

method captures both the orientation and magnitude of texture in 16 different directions. 

However, it has a tendency to overfit the data and may face difficulties in generalizing to new 

examples. The Directional Binarized Random Features (DBRF) [14] approach provides 

efficient texture classification by extracting gradients; however it is susceptible to noise and 

lacks adaptation for complicated datasets. The LBP, LDP and other variants are integrated 

with GLCM and texton features for an efficient methodology. 
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Statistical methods are intuitive, straightforward to implement, and somewhat flexible and 

resilient. , while also making the feature space more intricate. The above discussed statistical 

descriptors offer diverse solutions for texture analysis, providing researchers and practitioners 

with a rich set of tools for various applications. 

 

2. Literature Review  

The textons are essential building blocks for describing basic patterns in a local 2x2 microgrid. 

For the purpose of representing more complicated patterns, these straightforward patterns 

capture crucial textural information. Julesz [33-34] introduced the concept of textons, marking 

a significant advancement in understanding how the human visual system discerns textures. 

Textons, represent fundamental micro-structures within images (and videos), essentially 

serving as the elemental units of pre-attentive human visual perception. These textons manifest 

as blobs characterized by color, length, and orientation, taking the form of lines, elongated 

blobs, and dots [33–35]. For a more in-depth exploration and mathematical models of textons, 

further details can be found in [36]. A brief survey of texton methods is given as follows: 

texton cooccurrence matrix (TCM) [37], multi texton histogram (MTH) [38], complete texton 

matrix (CTM) [39], and the noise resistant fundamental units of complete texton matrix 

(NRFUCTM) [40] are some examples of works that are closely related to one another in this 

particular field. The texton cooccurrence matrix (TCM) [37] was initially developed with the 

purpose of determining the degree of spatial correlation that exists between textons that are 

contained inside a particular texture image. By utilizing a co-occurrence matrix, it is able to 

encode information regarding the spatial correlation that exists between textons. Haralick's 

work on the gray-level cooccurrence matrix (GLCM) served as the source of inspiration for 

this method. TCM has a focus on the appearance frequency of distinct edges and textons, in 

contrast to GLCM, which performs calculations to determine the frequency of appearance of 

different grey levels. An improved version of the TCM, which is referred to as the multi texton 

histogram (MTH) [38], was proposed by Lie et al. two years after their initial work on the 

TCM [37]. In contrast to TCM, which was designed to depict texture, MTH has been proposed 

as a method for representing images that contain a variety of different textures. Because it 

stores information on the spatial correlation of colours and texture orientations, it possesses 

the benefits of both the co-occurrence matrix and the colour histogram. 

The following drawbacks of TCM and MTH have been identified by this study:                        i) 

TCM identify texton patterns that consist solely of three or four identical pixels, disregarding 

patterns that contain two identical pixels. ii) Production of the ultimate texton image via TCM 

requires an exhausting fusing operation. iii) The MTH technique selectively detects a restricted 

set of texton patterns characterized by two identical pixels. iv) In situations where three or 

more pixels possess an identical intensity level, MTH introduces ambiguity into the process 

of texton identification. This ambiguity results from the fact that MTH disregards texton 

patterns consisting of three identical pixels. v) Full texton patterns on a 2x2 grid are not 

precisely defined by either the TCM or MTH methods. vi) Texton indexes are not substituted 

for 2x2 texton microgrids in the majority of texton-based approaches. As a result of deriving 

only a few or partial texton patterns, these methods have this limitation. In addition, the fusing 

operation of TCM precludes it from supporting substitution with texton indexes. Figures 1 and 
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2 depict the TCM and MTH frameworks, correspondingly. The CTM addressed the above 

issues. 

 

Figure 1: Five Texton types used in TCM (a) 2 ×2 grid (b) T1 (c) T2 (d) T3 (e) T4 and (f) T5 

 

Figure 2: Four Texton types defined in MTH (a) 2x2 grid (b) T1 (c) T2 (d) T3 and (e) T4 

Expanding upon earlier research such as TCM and MTH, Kumari et al. [39] proposed a texton 

based approach for encoding heterogeneous images. By taking a wider range of textons into 

consideration than earlier techniques, their approach known as complete texton matrix (CTM) 

aimed to improve information representation. Eleven textons are included in CTM, as opposed 

to TCM and MTH with 5 and 4 textons respectively, giving a more thorough depiction. 

Nevertheless, CTM is limited to textons and does not provide edge or gradient location 

information. The image is converted to grayscale, divided into non-overlapping 2x2 grids, and 

each grid is matched with a unique texton as a consequence of the CTM method, producing 

eleven texton maps. The framework of CTM is shown in figure 3&4 on an image patch of 6x6. 

The image is divided into 2x2 micro grids and on each micro grid the CTM indices are 

computed. The 2x2 grid is replaced with CTM index.  In the literature other variations to these 

basic approaches are proposed. 

 

Figure 3: The Texton types defined in CTM: (a) 2x2 grid (b) T0 – T11 
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Figure 4: CTM on a 2x2 grid 

 

3. Methodology  

The local neighborhood approaches have become the popular approaches for many computer 

vision applications for the last 30 years. The methods derived on a 2x2 microgrid, textons and 

motifs [6] have become popular in texture classification, content based image retrieval and the 

other applications of image processing. The proposed method is based on the textons, and it is 

an extension to the previous texton methods derived for the texture classification. The existing 

texton methods TCM [37], MTH [38], CTM [39], FTM [41] and CHFTiCM [42] achieved 

good results in CBIR and texture classification. These methods derived textons based on the 

number of pixels exhibiting the same intensities on a 2x2 grid. The research discovered one 

significant fact that, the earlier texton-based methods didn’t derive a relationship between the 

textons and the non-textons of the 2x2 microgrid. The above fact is addressed in this paper by 

deriving the magnitude relationship among textons and non-textons of a 2x2 microgrid. The 

proposed framework of proposed Complete Magnitude based Texton Co-occurrence Matrix 

(CMT-CM) is shown in figure 5. 

 

Figure 5: Framework of proposed method CMT-CM 

The proposed Complete Magnitude based Texton Co-occurrence Matrix (CMT-CM) initially 

considered the following textons of two cases: i) textons with two identical pixels as shown in 

figure 6.a (T20, T21, T22, T23, T24, T25) ii)  textons with three identical pixels as shown in figure 

6.b. (T30, T31, T32, T33). These textons are denoted as Tsi where s indicates the number of 

identical pixels considered and i indicate the texton index with s-type. Further this research 

established the proposed magnitude relationship between textons and non-textons of the above 
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two cases. 

 

Figure 6.a: Textons with two identical pixels 

 

Figure 6.b: Textons with three identical pixels 

In the above figures W, X and Y represent three different grey level intensities. The textons 

with 3-identical pixels of figure 6.b exhibits only two different grey levels W and X on a 2x2 

grid, where W and X represents the texton and non-texton pixels respectively. This research 

derived two magnitude relationships between the grey level values of W and X for each of the 

textons of figure 6.b.  

The magnitude relation between W and X is derived as follows:  

Case: H: W > X;  

Case: L: W < X;  

Case: E: W == X.  Not possible with the three identical pixels. In this case, results a       

                             texton with square pattern, where all four pixels exhibit the same  

      grey level value. 

The case H, L and E represents the grey level values of texton pixels are higher, lower and 

equal to the non texton pixels respectively. 

The above two cases of relationships (H and L) derive two new structural patterns for each of 

the above texton patterns T30, T31, T32, and T33. The T30 of figure 6.b is split into two different 

textons by the present research, based on magnitude relation between W and X. These textons 

are named as Magnitude Texton (MT) with ‘H and L’ indicating the texton grey level ‘W’ is 

high and low respectively with respect to non texton pixel X, (figure 7). In the same way, the 

textons T31, T32, and T33 are split into MT31H, MT32H, MT33H (W>X), and MT31L, MT32L, MT33L 

(W<X) i.e., six textons are derived with different magnitudes by the present research.  Thus 
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the four texton patterns of three identical pixels derive a total of eight MTs as shown in figure 

7 and they are indexed from MT0 to MT7. 

 

Figure 7: Complete Magnitude Textons (CMT) with three identical pixels 

The textons with two identical pixels of figure 6.a exhibits three (T20 to T25) and two (T26 to 

T28) different grey levels termed as case1 and case2 respectively. This paper established the 

magnitude relationship between three identical pixels of figure 6.a as given in case1.  

Case 1:  When X! =Y   (This case derives interestingly four major magnitude relations between 

the intensity levels W, X and Y of figure 6.a) 

Case: HH: W>X & W>Y  

Case: HL: W>X & W<Y 

Case: LH: W<X & W>Y 

Case: LL: W<X & W<Y  

The above case1 (when X!=Y) derive new magnitude based structural patterns or magnitude 

textons (MT) for each of the above texton patterns with two identical pixels  T20, T21, T22, T23, 

T24 and T25. For example, texton T20 is re-designed by the present research as MT20HH, MT20HL, 

MT20LH and MT20LL (figure 8). The MT20HH, MT20LL indicates the patterns or textons when W 

> X && W > Y and W < X && W < Y respectively. The MT20HL, MT20LH indicates the patterns 

or textons when W > X && W < Y and W < X && W > Y respectively. In the same way, the 

textons T21, T22, T23, T24 and T25 lead into MT21HH, MT22HH, MT23HH, MT24HH and MT25HH (W > 

X && W > Y), MT21HL, MT22HL, MT23HL, MT24HL and MT25HL (W > X && W < Y), MT21LH, 

MT22LH, MT23LH, MT24LH and MT25LH (W < X && W > Y), and MT21LL, MT22LL, MT23LL, MT24LL 

and MT25LL (W < X && W < Y)  respectively. That is the present research derives four 

different magnitude based textons (MT) on each of the textons from T20 to T25. Thus the six 

textons with magnitude relation derives the 24 micro textons by the present research and they 

are indexed from MT8 to MT31.  
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Figure 8: Complete Magnitude Textons (CMT) with two identical pixels when X!=Y 
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The textons T26 to T28 derives multiples of two identical pixels (W != X) shown in Figure 6.a.  

The case 2 compares the magnitude relations between intensity values of W and X and thus it 

derives two sub cases. 

Case 2: 

Case H:  W>X 

Case L:  W<X 

Thus this research derived six different MTs for T26, T27 and T28 i.e., each of the texton pattern 

derives two MTs and these are indexed from MT32 to MT37. 

 

Figure 9: The Magnitude Textons for the textons with two identical pixels (case2) 

The combinations of textons from figure 7 to figure 10 are named as Complete Magnitude 

Textons (CMT) by the present paper. Thus the textons with three grey levels derived eight 

magnitude based textons (MT) namely MT0 to MT7, the textons with two identical pixels with 

case 1 derives 24 MTs represented from MT8 to MT31 and the same with case2 derives 6 MTs 

denoted from MT32 to MT37. Further this research considered the texton with all identical pixel 

and no identical pixels as shown below and represented them as MT38 and MT39. 

 

Figure 10: The Magnitude Textons for the textons with four identical pixels and zero 
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identical pixels 

The MT38 texton does not derive any magnitude relation since all four pixels of 2X2 grid 

exhibit the same grey level. The MT39 does not form any texton thus the magnitude relation is 

not derived i.e. the magnitude relationship is derived between the texton patterns and non 

texton patterns. Thus the present research derived a total of 40 magnitude textons (MT0 to 

MT39). 

This paper derived co-occurrence matrix (CM) on CMT and named this as CMT-CM. The 

GLCM features derived on CMT-CM are homogeneity, contrast, entropy, correlation, and 

inverse difference moment.  

 

4. Database Description: 

To illustrate the efficacy of the proposed Complete Magnitude based Texton Co-occurrence 

Matrix (CMT-CM) descriptor, comprehensive research is conducted on six prominent texture 

databases, namely the Colored Brodatz Texture (CBT), MIT-VisTex, Outex, University of 

Illinois Urbana-Champaign (UIUC), Salzburg Texture (Stex), and Flickr Material Database 

(FMD). The example pictures from these datasets are presented in figures 11, 12, 13, 14, 15, 

and 16, respectively. 

The well-known CBT texture dataset includes natural texture photos captured in studio 

lightening. It consists of 112 texture image classes. Transforming the Brodatz texture database 

into a color version is what the CBT database is all about.  

 

Figure 11: Sample Colored Brodatz Textures 

The MIT-VisTex dataset was developed by the MIT Media Laboratory. Images created using 

VisTex, in contrast to Brodatz, look more natural because they were not created in a lab. It 

comprises 167 colorful reference textured pictures, each measuring 786 by 512 pixels, 

contingent of the scene's orientation (other sizes are also available).  
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Figure 12: Sample VisTex Textures 

The Outex dataset is the most extensive dataset about texture categories. The collection 

comprises 320 categories of texture photos, each captured under 3 lighting circumstances and 

9 rotation angles, devoid of perspective and size variations. The two expanded Outex datasets 

(Outex TC00010 and Outex TC00012) are extensively utilized in texture classification to 

evaluate the rotation and illumination invariance of texture characteristics.  

 

Figure 13: Sample Outex-TC-00010c Textures 

The Salzburg Texture database (Stex) has a substantial collection of 476 color texture images 

obtained from Salzburg, Austria. STex is offered in three distinct packages: i) stex-1024.zip 

comprises 476 color pictures, each with dimensions of 1024x1024 pixels. ii) stex-512.zip 

comprises 476 color pictures, each measuring 512x512 pixels, which have been downsampled 

from 1024x1024 images. iii) stex-512-split.The 512x512 photos were divided into 16 non-

overlapping tiles to create the 7616 color, 128x128 images that are included in the zip file. Our 

research utilized the stex-512 split dataset. Sample Stex texture pictures are depicted in figure 

14. 
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Figure 14: Sample STex Textures 

The University of Illinois Urbana-Champaign (UIUC) collection has 25 texture classes, each 

containing 40 uncalibrated, unregistered pictures with dimensions of 640x480. It has less 

severe lighting fluctuations than CUReT, but it still exhibits considerable perspective and scale 

changes along with non-rigid deformations. Sample textures from UIUC are depicted in figure 

15. 

 

Figure 15: Sample UIUC Textures 

The Flickr Material Database (FMD) comprises color photographs of surfaces categorized into 

10 common material types:  foliage, fabric, leather, glass,   paper, metal, stone, plastic, water, 

and wood. Every category has 100 photos, comprising 50 close-ups and 50 standard views, 

with dimensions of 512x384 pixels. Each image features surfaces from a singular material 

category in the foreground and was meticulously chosen from over 50 possibilities to 

guarantee a diversity of illumination situations, compositions, colors, textures, surface forms, 

material sub-types, and item connections. Figure 16 presents some textures of FMD. 
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Figure 16: Sample Flickr Material Database Textures 

Table 1 Database summary for images 

S.No. Database 

True 

Image 

Size 

Image 

Size 

Considered 

Classes Taken 
into Account 

Class-wise 
Images 

Overall 
image count 

1 CBT 640X640 128X128 112 25 2800 

2 VisTex 51X512 128X128 40 16 640 

3 Outex- TC10 128X128 128X128 24 180 4320 

4 Stex 128X128 128X128 476 16 7616 

5 UIUC 640X480 640X480 25 40 1000 

6 FMD 512X384 512X384 10 100 1000 

 

5. Results and Discussions: 

The study conducted extensive research on texture analysis to assess the effectiveness of the 

proposed descriptor “Complete Magnitude based Texton Co-occurrence Matrix (CMT-CM)”. 

For each of the databases listed, this study used the proposed CMT-CM descriptor to calculate 

the GLCM features: homogeneity, contrast, entropy, correlation, and inverse difference 

moment and derived feature vector for each database mentioned.  In order to evaluate the 

performance of the proposed CMT-CM descriptor, the feature vectors of the databases were 

fed into the five different classifiers: Support Vector Machine (SVM), K-nearest neighbours 

(KNN), Decision Tree (DT), Random Forest (RF) and Naive Bayes (NB).  

This paper initially converted the image into a CMT image with index values ranging from 0 

to 39. The second step involves deriving the matrix of co-occurrences from the CMT, which 

transforms the CMT image into CMT-CM. The above mentioned GLCM features are derived 

on CMT-CM. These features are fed to above five machine learning classifiers. The 

classification accuracies obtained with the proposed CMT-CM descriptor for the above 

mentioned classifiers are shown in the table 2 and figure 17. 

Table 2 Classification Accuracies obtained with the proposed CMT-CM descriptor for 

different classifiers on various databases 

Database 
Naive Bayes 

(NB) 

Decision 

Tree 

(DT) 

Random Forest 

(RF) 

K-nearest neighbors 

(KNN) 

Support 

Vector 

Machine 

(SVM) 

Colored Brodatz Texture (CBT) 85.37 90.58 92.65 87.42 96.47 

MIT Vision Texture (Vistex) 87.44 88.76 90.84 84.68 94.63 

Outex TC-00010 87.53 85.36 88.62 91.21 95.37 

Salzburg Texture (Stex) 82.69 87.62 92.13 86.58 93.65 

University of Illinois Urbana-

Champaign (UIUC) 
84.53 91.47 90.74 92.31 92.58 
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Flickr Material Database (FMD) 74.65 77.24 81.35 75.93 83.79 

Average 83.70 88.64 89.39 86.36 92.75 

 

Figure 17: Classification accuracies obtained with the proposed CMT-CM descriptor for 

different classifiers 

This paper conducted experiments on the datasets given in table 1. The proposed               CMT-

CM method has given high accuracy on Brodatz followed by Outex TC-00010, Vistex, Stex, 

UIUC and FMD datasets.  The improved accuracy in classifying the Brodatz dataset can be 

due to its well-defined and high-quality texture patterns, which offer obvious and identifiable 

characteristics for analysis. By providing a dataset with a wide range of textures that are well 

regulated, classifiers are able to generalize more efficiently, resulting in improved 

performance. Moreover, having a large number of training examples for each class greatly 

facilitates the development of a strong and resilient model.  

Support Vector Machine classifier has achieved high classification rate followed random 

forest, decision tree, k-nearest neighbours and naive bayes using the proposed CMT-CM 

method. Support Vector Machines excel at achieving high accuracy on texture databases 

because they can optimize the margin between classes, efficiently handle high-dimensional 

spaces, and leverage the kernel technique to manage non-linear interactions. Support Vector 

Machines have regularization settings that stop them from overfitting and set decision limits 

based only on the support vectors. This makes them resistant to noise. The precisely 

formulated convex optimization problem guarantees convergence to the global optimum, and 

their flexibility with varied kernel functions enables them to adjust to diverse datasets. The 

properties of Support Vector Machines make them highly successful for difficult texture 

classification problems that involve a large number of dimensions. As a result, SVMs 

outperform other classifiers in terms of performance. The classification accuracy of the 

proposed CMT-CM descriptor is compared with other existing methods and these are shown 

in table 3 and figure 18. 
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Table 3 Classification accuracies of proposed method and different texture descriptors on 

various databases 

State-of-art-methods and 

Proposed method 

Databases 

Colored 
Brodatz 

Texture 

(CBT) 

MIT Vision 

Texture 
(Vistex) 

Outex TC-

00010 

Salzburg Texture 

(Stex) 

University of 
Illinois Urbana-

Champaign 

(UIUC) 

Flickr Material 

Database (FMD) 

Local Directional pattern 

(LDP) [35] 

[ 2010] 

90.52 91.35 91.58 
 

89.74 86.43 72.6 

Local Directional Gradient 
Pattern (LDGP) [9] 

[2017] 

92.73 87.33 91.24 90.64 88.67 77.68 

Complete Texton Matrix 
(CTM) [27] 

[ 2017] 

91.56 69.93 92.46 90.21 91.18 65.46 

Directional Magnitude Local 

Hexadecimal Patterns 
(DMLHP) [12]  [2021] 

88.25 93.25 89.64 84.53 82.86 76.19 

Gabor Contrast Patterns 

(GCP) [39] [2023] 
92.65 94.38 91.63 86.64 84.15 78.62 

Neighbourhood influenced 
Local Binary Pattern (NLBP) 

[40 ] 
[2023 ] 

87.77 82.19 86.74 85.57 81.3 76.19 

Proposed method 

CMT-CM 
96.47 94.63 95.37 93.65 92.58 83.79 

 

Figure 18: Classification accuracies of proposed CMT-CM and different texture descriptors 

on various databases 

This paper compared the classification results of the proposed descriptor CMT-CM with the 

existing local neighborhood descriptors, Local Directional Pattern (LDP), Local Directional 

Gradient Pattern (LDGP), Directional Magnitude Local Hexadecimal Patterns (DMLHP), 

Gabor Contrast Patterns (GCP), and Neighbourhood influenced Local Binary Pattern (NLBP), 

as well as the texton-based method Complete Texton Matrix (CTM). 

The Local Directional Pattern (LDP) improves upon the Local Binary Pattern (LBP) by 

encoding edge responses in eight directions using Kirsch masks, making it more robust to 

noise and illumination changes.  While LDP offers better accuracy and robustness, it has the 
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drawbacks: i) doesn’t consider the center pixel; ii) finding the K value is difficult;                             

iii) increases computational complexity and storage requirements due to the directional edge 

response calculations. The Local Directional Gradient Pattern (LDGP) enhances face 

recognition by encoding pixel relationships in four directions, reducing feature length and 

computational complexity. While it offers good accuracy and noise robustness, it has the 

disadvantages: i) reliance on gradient calculations can be computationally expensive, 

especially for large-scale applications; ii) struggle with textures that lack clear directional 

patterns; iii) sensitive to noise and illumination variations. The Directional Magnitude Local 

Hexadecimal Patterns (DMLHP) analyzes texture orientation and magnitude in 16 directions 

to provide a complete feature collection. Although it excels in texture classification, it suffers 

from several disadvantages. i) may struggle with color, shape, or semantics; ii) 

computationally intensive; iii) overfits various datasets; iv) unsuitable for large-scale or real-

time applications; v) limits generalization across different image categories.  The Gabor 

Contrast Patterns (GCP) combines Gabor filters and Local Binary Patterns (LBP) to capture 

both macro- and micro-texture features, resulting in a robust texture descriptor. While it excels 

in texture classification with high discriminative power, it has the disadvantages:                    i) 

higher computational cost and complexity; ii) limited validation across diverse datasets. The 

Neighbourhood influenced Local Binary Pattern (NLBP) enhances traditional LBP by 

analyzing correlations between neighboring pixels using overlapping submatrices of various 

sizes (3x3, 5x5, 7x7) and applying statistical thresholding methods like mean, mode, median, 

and max to extract more precise texture features. NLBP demonstrated improved accuracy and 

robustness, particularly in noisy conditions. However, It has the disadvantages: i) struggle to 

capture local information at a microgrid level in larger submatrices (5x5, 7x7); ii) accuracy 

drops slightly with scaled images. 

  The proposed method (CMT-CM) consistently ranks at or near the top in accuracy 

across a variety of texture and material classification datasets, demonstrating outstanding 

performance, after comparison with the above-listed methods in the table 3. It exhibits 

versatility and robustness by achieving maximum accuracies of 92.58% and 83.79% on the 

UIUC and FMD datasets, respectively. In comparison to other algorithms, CMT-CM 

outperforms Gabor Contrast Patterns (GCP), which also performs well but trails on UIUC and 

FMD datasets with 84.15% and 78.62%, respectively. This is due to similarity of textures in 

different classes of images in UIUC and lot of textural variations in the images of same class 

in the FMD dataset. The Complete Texton Matrix (CTM) method performs well on the Outex 

TC-00010 (92.46%) and Stex (90.21%) datasets, but it fails to meet expectations on the FMD 

dataset (65.46%) due to textural variations in the images of same class in the FMD dataset. 

The CMT-CM has achieved better accuracy on FMD dataset. The Directional Magnitude 

Local Hexadecimal Patterns (DMLHP) has shown competitive results (93.25%) on VisTex 

dataset, but proposed method has outperformed on all the datasets. Local Directional Gradient 

Pattern (LDGP) and Neighbourhood influenced Local Binary Pattern (NLBP) both 

demonstrate acceptable accuracy results; however, the proposed method CMT-CM 

consistently outperforms both of these methods. 

All things considered, the proposed method CMT-CM seems to be a very successful strategy, 

constantly attaining better results on a variety of datasets, demonstrating its resilience and 

ability to generalize in texture and material classification tasks. The proposed method CMT-
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CM achieved a superior classification rate as a result of the following operations. 

The research contributions are: 

1. Derivation of all conceivable textons with two and three identical pixels with 

magnitude relations thus deriving a new direction over the existing methods on textons. 

2. More local information can be obtained significantly by deriving all likely textons on 

a 2x2 grid by taking into account the magnitude relationship between the pixels that make up 

and do not make up a texton.   

3. There is a reduction in the overall size of the CM as a result of replacing the 2 x 2 grid 

with MT indexes, which makes it possible to interface with other frameworks when it is 

required. 

The proposed framework possesses significant value due to its thorough experimental research 

on six natural databases and its systematic and comprehensive comparison of classification 

findings with current descriptors. 

 

6. Conclusion 

The proposed research introduces the CMT-CM, a novel feature descriptor that enhances 

texture classification by capturing spatial relationships and texture variations in images. By 

establishing relationships between texton and non-texton elements in a 2x2 grid and generating 

GLCM features, the CMT-CM effectively differentiates various texture classes. The 

evaluation using several classifiers, particularly the SVM, highlights its ability to handle high-

dimensional feature spaces efficiently, especially when sample sizes are relatively small 

compared to feature complexity. The results demonstrate that CMT-CM consistently achieves 

high accuracy across multiple datasets, underscoring its robustness and versatility. The 

findings emphasize the proposed CMT-CM can enhance texture classification accuracy in 

different fields.  Its simplicity in feature extraction and computational efficiency make it a 

practical and powerful tool for texture recognition tasks, suggesting significant potential for 

broad applications in texture-based datasets. The proposed technique provides a resilient and 

effective solution for precise and dependable texture analysis, with notable implications for 

both practical implementations and theoretical investigations in texture categorization. 
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