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In recent years, a great deal of doctored and altered photos have been created and disseminated 

through the Internet and media because of the accessibility and simplicity of image manipulation. 

Several methods have been suggested for determining whether an image is genuine and, in certain 

instances, for identifying where the image has been manipulated or fabricated. This study provides 

a comprehensive overview of current image forgery detection systems that utilize Deep Learning 

(DL), focusing on techniques that may detect copy-move and splicing attacks. In the same vein as 

splicing, the image-targeting uses of DeepFake-generated content are also examined. This survey 

couldn't come at a better moment, as deep learning-powered techniques are currently dominating 

the market, delivering top-notch results across all benchmark datasets. The methods are described 

along with the datasets used for training and validation, and we go over their main features. Their 

performance is also examined and compared (to the best of our ability). Our discussion of potential 

avenues for further study in the areas of deep learning architecture and evaluation, as well as dataset 

construction for straightforward technique comparison, builds upon this work.  
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1. Introduction 

Digital images are an integral aspect of many modern-day disciplines, including scientific 

study, medical imaging, diplomatic justice, and news reporting. The general public takes 

pictures with the expectation that these digital images will faithfully capture actual events as 

they unfold in the actual world. But as picture processing and multimedia technologies 

advance, processing digital photographs becomes easier. A major crisis of trust will ensue as 

a consequence of the hidden risks associated with image security, which will surely have 

detrimental impacts on society as a whole. The "bear riding image" was widely distributed 

online in 2018, and Russian President Vladimir Putin formally commented to it in an interview 

with NBC: If you look at Figure 1 on the left, you can see that Putin altered the real horse 

image on the right to make it look like he's riding a bear. The ability to alter images in order 
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to convey incorrect information has grown increasingly subtle and even fabricated as 

technology has progressed. For this reason, it is crucial that sectors where digital images are 

used extensively, such news media, forensics, security detection and others, improve their 

ability to determine if an image is real and promptly identify any signs of digital image 

manipulation. 

 

Figure 1. Untrue and actual images of “Putin riding a bear” 

According to [1] Following deep learning's success in computer vision, an increasing number 

of researchers have sought to apply the technique to picture forensics since 2016 [2-4]. But 

there are major differences when compared to the typical computer vision tasks: 1) The goal 

of identification is different; in image forensics, the model must be able to spot the reformed 

area of the image. 2) The statistical traits are distinct: when doing picture forensics, it is crucial 

to pay close attention to the minute alterations linked to the boundary of tampering. 3. Post-

processing has different effects; specifically, post-processing image cleaning technology is 

awful at masking manipulation artifacts.  

So far, forensic tools have been greatly improved by the abundance of deep learning-based 

picture forgery detection algorithms that have emerged.  

There are primarily two tasks in digital picture forensics that rely on deep learning [5]: 1) 

Detecting methods of tampering: It is important to determine the methods used to manipulate 

image material, which can include splicing, copying and relocating, computer-generated, and 

multiple 2) Finding the manipulated area: Finding the manipulated area in the fake image is 

essential. You can export the material in two ways: either as a bounding box or as a binary 

mask. 

While there are a few prior evaluations on digital forensics [6-8], our paper's classification 

viewpoint and emphasis are significantly different: 1) The study skips over a number of 

forensic techniques, such as picture traceability forensics and image tampering geolocation, in 

favor of concentrating on the issue of detecting tampered images. 2) Rather of putting a lot of 

effort into conventional tampering detection approaches, this research focuses on a deep 

learning-based approach. 3) This research is motivated by the need for tampering targets and 

aims to organize solutions for different tampering detection jobs rather than classifying deep 

network topologies. 
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2. Literature Review 

A new approach to detecting picture forgeries was suggested in the paper [9]. This method 

does not involve the installation of digital watermarks in the photographs, nor does it involve 

the comparison of the images for the purposes of training and testing. It was claimed by the 

authors that the individual picture features that were extracted during the acquisition phase 

represent proof in and of themselves that the image is genuine. In many cases, these 

characteristics can be observed with the naked eye. In particular, it employs picture artifacts 

that are brought about by a variety of anomalies as markers in direction to ascertain the validity 

of the image. Also proposed a technique for detecting cases of picture alteration by means of 

a color filter array. It has the ability to compute a basic threshold-based classifier as well as a 

single feature. The researchers verified their methods using manipulated photos, CG graphics, 

and real images. The error rates were found to be low in the experimental examination. 

       Image forgery detection was the goal of a research survey in [10], which relied on deep 

learning approaches. The methods used to spot the reality of pictures on openly available 

databases were also analyzed.  

In [11], the authors introduced a deep learning-based design for detecting copy or move image 

fraud using the end – to - end trainable technology BusterNet. The architecture that BusterNet 

employs is a two-branch architecture. The first subset aims to locate manipulable parts by 

analyzing visual artifacts, while the second subset uses visual similarities to locate copyable 

or movable parts. In order to train BusterNet efficiently, they recommended a step-by-step 

process and simple procedures for datasets unrelated to the study's subject. Their thorough 

research examination shown that compared to conventional copy/move algorithms, BusterNet 

performed far better. To evaluate the proposed architecture, the CASIA and CoMoFoD 

datasets were used.  

The article [12] explored the significance of identifying instances of image manipulation by 

employing deep learning-based methods on datasets that are accessible to the general public, 

such as CASIA, UCID, MICC, and other similar datasets. They discussed the approach of 

passive picture forensic analysis and brought attention to the obstacles that lie ahead in the 

process of building a mechanism for the detection of images that have been altered.  

In a different piece of research, [13] developed a novel IDF method that took a CNN as its 

foundation. One of the objectives of this method is to acquire an automatic understanding of 

how picture modification might be carried out. As input, the image-altering features that are 

formed after the contents of a picture are destroyed are utilized by the IDF technique that has 

been discussed. This approach disregards the visual and sensory aspects of the image in favor 

of studying the local operational linkage among pixels, as manipulation can alter some resident 

connections. 

 As a result, it is able to identify instances of forgeries inside an image.  

For the purpose of identifying instances of digital image counterfeiting, a CNN-based 

architecture was proposed in a different research study [14]. It was proposed by them that the 

preprocessing stage is intimately connected with the primary layer of the CNN method. In this 

process, it looks for problems that arise as a result of manipulation. They used trial photos to 
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train the CNN model, while the support vector machine was employed to identify any 

alterations that were present.  

An RRU-Net, which stands for ringed residual U-Net, was introduced in [15] for the purpose 

of detecting forgeries in picture slicing. They suggested an architecture that makes use of an 

end-to-end image segmentation link in order to detect instances of counterfeiting with 

increased accuracy. The RRU-Net study aimed to establish an approach that makes use of 

RRU-Nets and is capable of detecting manipulations without the need for pre- and post-

processing. This was accomplished by utilizing human brain principles. Generally speaking, 

the human brain is responsible for systems that involve recollection and consolidation. As a 

result, the objective of this method is to maximize the capacity for learning of a CNN, which 

is modeled after the characteristics of the human brain. With their invention, which uses 

residual propagation to help a CNN remember its input feature information, they were able to 

overcome gradient deterioration. Because the response feature is combined with the remaining 

answer, it can distinguish between the actual and fake regions. In contrast to the traditional, 

state-of-the-art procedures, the experimental results showed that the suggested approach 

yielded better results. Another study used the steganalysis model to suggest a transfer learning-

based methodology that benefits from prior knowledge. This study is referred to as [16]. When 

applied to the BOSSBase and BOW datasets, this approach yielded an average accuracy rate 

of 97.36 percent. 

         An approach that relies on transfer learning was introduced in [17]. This method utilizes 

the AlexNet methods pre-trained weights, which aids in training reduction. In this method, the 

support vector machine (SVM) serves as the classifier. The overall performance of the vehicle 

was satisfactory.  

According to [18], a fully connected network with multitasking capabilities should be used. 

Given that the output of a standard single-task fully linked network is unpredictable, the 

suggested method outperformed it by a significant margin. In order to accomplish numerous 

jobs at once, the authors suggested a network with multiple output streams. In this case, the 

surface label will be acquired by one of these streams and the interface area's edge by the 

succeeding one.  

The article [19] presented a novel method for the identification of picture splicing that makes 

use of an algorithm that is based on features. For the purpose of computing local features, this 

method makes use of the combination of images that occur together. Following that, the local 

features are utilized in order to retrieve the feature parameters. Combining the segmentation 

procedure with the expectation-maximization method allows for learning to take place. This 

is because there are ways in which spliced and host photos can look different.  

 

3. Traditional Passive Forgery Detection Methods 

A number passive, so-called "conventional" procedures for detecting image fraud have been 

proposed since the turn of the millennium, and we'll touch on them briefly here. This is by no 

means an all-inclusive or even thorough examination of these techniques; we acknowledge 

that. In order to conduct a more thorough evaluation. Commonly known as "classic" or 
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"traditional" methods, conventional passive ones draw on statistical, geometric, signal 

processing, and physics and statistics, among other disciplines. In reality, they date back to 

before the DL age in which we currently find ourselves, and as a result, they need very little 

data to carry out their training phase. Common examples of classic machine learning methods 

used by those that still need training data include clustering, SVMs, linear and logistic 

regression, random forests, and many more. We still classify those as standard methods in this 

case since they use models with a minimal number of parameters and don't necessitate a 

mountain of data for training. Both of these factors lead us to believe that a brief overview of 

some of the more conventional methods might be helpful:  

1. The amount of data needed for training is usually minimal, if any at all, as indicated before. 

Naturally, this is helpful in cases when gathering a sufficient number of tagged photos to train 

a deep learning technique with a huge number of parameters is challenging or impossible. 

Most of these techniques also don't require as much processing power, making them ideal for 

use on commercially available, low-power devices like tablets and smartphones. 

2. Deep learning models can also benefit from utilizing some of the fundamental ideas and 

principles upon which these approaches are based, either to hasten the training period or to 

improve performance. As an example, the output of a CNN is subjected to an SVM model as 

the last step of the classification process in reference [20]. This case uses a DCT transform 

and a YCbCr color space conversion as pre-processing steps prior to a CNN. A CNN takings 

the Laplacian filter residuals (LFR) that were calculated on the input images as input instead 

of the pictures themselves. is pixel-dependent.  

These methods work on the premise that by producing anomalies, some alterations can alter 

the picture's statistical information right down to the pixel level.  

These outliers can manifest in a variety of ways; some are spatial, some are frequency, and yet 

others are a mix of the two. It would be computationally difficult to investigate every potential 

combination of shape and size for copied portions because they can be of any size. But during 

copy-move attacks, it's communal to see a lot of overlap between the duplicated parts of the 

picture.  

In [21], the Discrete Cosine Transform (DCT) is suggested by the writers as a possible 

approach. Specifically, a DCT was applied to each of the image's overlapping blocks. Each 

block was described using the DCT coefficients as a feature vector. After that, we grouped the 

most comparable DCT block coefficients and ordered them lexicographically to find duplicate 

regions. The second strategy suggested using a Principal Component Analysis (PCA) on the 

characteristics of picture blocks before comparing the blocks' representations in the resulting 

space with decreased dimensions. When little changes are made to the cloned regions, such as 

adding noise or using lossy compression, these methods remain stable. Geometric 

modifications, such as scaling or rotation, are typically beyond the capabilities of these 

approaches. Thus, let's think about a scenario where a geometric transformation is employed 

to bolster the credibility of a copy-move attack. Interpolation between nearby pixels is a typical 

component of geometric transformations; bilinear and cubic interpolation are the two most 

popular methods. A distinct correlation pattern is generated between these pixels by means of 

the selected approach. The next step is to use statistical approaches to identify these patterns, 
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which will help in locating areas that have been manipulated geometrically. In [22], we see an 

example of this method in action.  

3.1 Format based 

Digital camera photos are typically saved in JPEG format. In other words, the picture is 

subdivided into 8 × 8 pixel sections, which are subsequently subjected to DCT transformation 

and quantization. Therefore, near the boundary of adjacent blocks, certain artefacts are 

produced. Image modifications such as copy-move or splicing modify the JPEG artefact 

pattern. To approximation the JPEG quantization table, the authors of [23] suggested using a 

sample region (which is intended to be legitimate) of the target image. After that, we separated 

the picture into slabs and determined a "slab artefact" measure for each one. Manipulated 

blocks are identified when this metric's score considerably differs from the average value 

across the full image. 

3.2 Camera based 

All digital cameras produce images with their own unique "footprint" or "signature," and these 

techniques capitalize on this fact. This information might also be helpful when trying to 

identify the camera used to take a picture. The authors of [24] estimated the parameters of the 

previously stated PRNU using a series of images captured by a known camera. This term is 

camera specific and models the outcome of processing activities performed in-camera. The 

target image, which should have been captured using the same camera, is also used to extract 

these PRNU parameters, which are then compared with the ones that were calculated before. 

The basic premise is that the estimated parameters will be different if a merging operation 

using a diverse kind of camera has been performed. 

3.3 Lighting based 

It is usually difficult for an attacker to guarantee that the forgery's lighting is consistent with 

the surrounding image when they execute a copy-move or splicing operation. It can be 

challenging, even with expert software like Adobe Photoshop, to compensate for this effect. 

To prove authenticity, lighting (or physics) based methods first construct a worldwide lighting 

method using the mark image, and then look for local discrepancies. 

3.4 Geometry based 

The geometry-based approach takes advantage of the fact that when a 3D scene is copied or 

spliced, the resulting image often has some strange geometric qualities. The so-called main 

point is typically located close to the image's center, as noted by the authors of [25], who 

presented a method to estimate it by analyzing known planar objects. They also demonstrated 

that the principal point shifts when an item is translated in the picture plane, which can be used 

as proof of fraud.  

In [26], an additional intriguing strategy was put out. The original concept was to use a 

perspective change to flatten down certain recognizable things, such license plates or billboard 

signage. Using a camera calibration, one can take measurements of the reference objects on a 

flat surface; these data can be used to determine whether or not the objects in the image are 

real.  
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4. Deep Learning Based Methods 

In the last ten years, deep learning techniques have become increasingly popular and have 

found useful applications in solving a wide range of scientific challenges. Their exceptional 

performance in classification, regression, and segmentation issues is the main reason behind 

this. These algorithms can get better results than people on some jobs. Another important 

reason why deep learning techniques have become so popular is that, unlike traditional 

machine learning methods, they do not necessitate domain-specific expertise or the researcher 

to manually construct meaningful features to feed into the learning algorithm. Deep learning 

models such as Convolution Neural Networks (CNNs) can automatically extract descriptive 

features from the input data that capture qualities unique to a certain task. 

 

Figure 2. A matching technique based on classical features to identify copy-move 

manipulation. 

Conventional, physics-based approaches to IFD problem solving were common prior to the 

broad use of DL in many domains. Discrete cosine transform (DCT) and discrete wavelet 

transform (DWT) [27] are examples of frequency domain conversion procedures that might 

be applied to the input images during preprocessing. Alternatively, YCbCr or another color 

space could be used. Using either block-based or keypoint-based approaches, a variety of 

picture characteristics were recovered. Producing identified heatmaps often involves the last 

steps of feature matching and filtering. Classical methods for copy-move picture recognition, 

as shown in Figure 2, involve feature matching by extracting SIFT keypoints from the source 

and target regions. Features generated by DL models outperform features created by humans 

in many computer vision tasks, especially when dealing with massive amounts of data [29]. 

To illustrate the current trend in this area of study, Figure 3 shows the history of prominent 

DL-based IFD methods along with their respective backbone networks. 
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Figure 3. The colourful circles represent the DL backbone networks that correlate to the DL-

based IFD findings found in the literature. 

A series of consecutive For splicing detection, CNN C2RNet was suggested in [30], which 

includes Coarse-CNN and Refined-CNN. The Coarse-CNN, which consists of 13- 

convolutional layers, 5-max pooling layers, and 2-fully connected layers, was trained with the 

input copy in order to identify potentially suspicious areas of coarse splicing by comparing the 

original and spliced versions of the image. To further improve the detected results, the 

Refined-CNN—which consists of 16-convolutional layers, 5-max pooling layers, and 3-fully 

connected layers—was fed the output feature map of the Coarse-CNN. In addition, the 

discovered splicing findings utilizing C2RNet were refined using post-processing operations 

such as morphological procedures, and convex-full filling. The convex-full filling approach 

may miss non-simply linked spliced regions, and the adaptive filter may not effectively 

eliminate falsely detected edges of real regions. In [31], the encoder-decoder network is built 

using SegNet. In this study, the latent representation was not derived from a single encoder-

decoder but rather from the encoder's outputs in conjunction with the LSTM network that was 

taken from [32].  

Long short-term memory, decoder-encoder, and skip connections are the 3-primary 

components of the image-splicing localization network suggested by [33]. This approach's 

LSTM component is comparable to what's found in [34] and [35]. This method's encoder-

decoder differs from the one in [36] due to its inspiration from U-Net. A rectified linear unit 

(ReLU) served as the initiation function for the encoder component, which also had 

convolutional layers, max-pooling, and batch normalization. The encoder's residual blocks 

employed a combination of long and short skip connections to acquire The decoder received 

input from both the long short-term memory (LSTM), and the encoder, since this was a hybrid 

strategy.  
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5.  Implementation 

Visual media is essential for forming public opinion, spreading information, and influencing 

societal attitudes in the current digital era. However, the proliferation of sophisticated image 

editing tools and the rise of malicious image manipulation techniques pose significant 

challenges to the transparency and integrity of visual content. Image forgery, the act of varying 

images to deceive viewers or misrepresent reality, undermines the credibility of visual media 

and erodes public trust. To address these challenges, advancements in image forgery detection 

have become essential. This document presents an indication of the implementation of 

advancements in image forgery detection to enhance transparency in visual media. The 

implementation encompasses various stages, including data collection, preprocessing, 

analysis, augmentation, modelling, training, and evaluation. The implementation begins with 

data collection, where a diverse dataset comprising authentic and forged images is gathered. 

This dataset represents various types of manipulations and forgeries encountered in real-world 

scenarios. The collected data undergoes preprocessing, involving normalization, resizing, and 

noise reduction, to prepare it for analysis. 

 

Figure 4. Flow of the System 

5.1 Algorithm VGG-16 

    Input_image function VGG16: # Convolutional layers 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=64)(image_input) 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=64) 

    Pool_size=(2,2), strides=(2,2); MaxPooling2D 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=128 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=128 

    Pool_size=(2,2), strides=(2,2); MaxPooling2D 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=256) 
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    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=256) 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=256) 

    Pool_size=(2,2), strides=(2,2); MaxPooling2D 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=512) 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=512) 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=512) 

    Pool_size=(2,2), strides=(2,2); MaxPooling2D 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=512) 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=512) 

    Conv2D(activation='relu', padding='same', kernel_size=(3,3), filters=512) 

    Pool_size=(2,2), strides=(2,2); MaxPooling2D 

    # Flatten the layer and all of the linked layers. 

    Dense(units=4096, activation='relu') Flatten() 

    Dropout percentage (0.5) 

    Dense (activation='relu', units=4096) 

    Dropout percentage (0.5) 

    Dense(activation='softmax, units=num_classes) 

    revert output_logits 

 

6. Results and Analysis 

 

Figure 5. Random sample FAKE images and its corresponding MASK 

After performing the process of exploratory data analysis, it displays the output in the form of 

MASK for the FAKE image which is shown in Figure 5. 
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Figure 6.  Input image, accuracy, its ground truth mask along with predicted mask 

 

 

Figure 7:  Input image, its ground truth mask along with predicted mask 
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Finally pass the corresponding MASK as input to Modelling and the Above Figure 6 and 7 

prints the input image, its ground truth mask along with predicted mask as output after 

undergoing through the process of modelling, segmenting Train, Test and Validation splits 

with size = 128 using stride = 32. 

 

7. Conclusion 

This study delivers a concise overview of the deep learning-based approach to localizing 

picture forgeries. Our primary criterion for selecting these solutions is the network architecture 

they employ. There is a wide range of options for the creation of tamper location approaches 

for dissimilar specialized challenges due to the fact that dissimilar network topologies have 

their own features and advantages. The location of image forgeries is fraught with both 

possibilities and threats as deep learning technology continues to evolve. Along with 

addressing present concerns and potential future research areas, this article provides an 

overview of datasets and performance evaluation measures frequently utilized in picture 

forgery localization. Readers can better understand the current state of research regarding the 

location of picture forgeries because of this. In the future, we will keep researching ways to 

combat picture manipulation and forgery, and we will update our digital image forensics 

toolkit often to ensure the safety of multimedia files. 
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