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Modeling and predicting the mechanical properties of materials, particularly polymers, is a 

longstanding challenge. The mechanical properties of polymer materials can be influenced by 

various factors, making it essential to maintain their integrity across different applications. Fire 

retardant polymeric materials, in particular, may experience changes in their mechanical properties 

due to the addition of fire retardants designed to reduce flammability. To address this, we have 

chosen to adopt a data-driven approach to predict the tensile and flexural strength of these materials 

using artificial intelligence. This innovative and promising method is increasingly employed by 

researchers to tackle a wide range of scientific problems. 
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I. INTRODUCTION 

Since their initial discovery, polymeric materials have become immensely prevalent in 

modern society. These versatile substances have integrated into nearly every facet of 

contemporary life, being extensively utilized across a wide array of industries and sectors [1]. 

Recent advancements in polymeric materials offer numerous benefits to modern communities. 

These materials are extensively used in various applications, including manufacturing, 

construction, healthcare, electronics, consumer goods, transportation, and building [2]. 

However, polymeric materials can present considerable safety hazards in applications 

requiring high flame resistance due to their inherent flammability [3]. New heat-resistant 

polymer materials need to exhibit excellent thermal stability and significant processability. 

However, achieving high thermal resistance in polymers can result in undesirable, weaker 

processing properties [4]. Developing flame-retardant polymers to meet high standards has 

consistently been challenging because traditional methods rely on experiential intuition and 

trial-and-error screenings, which are time-consuming [5]. Based on the structure of the 

training data, machine learning is typically separated into three sub-groups: unsupervised, 

supervised, and semi-supervised [6]. In supervised machine learning (ML), data are 
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categorized, and predictions are generated using correctly labelled datasets. In contrast, 

unsupervised ML, which does not utilize labelled data, focuses on identifying relationships 

within datasets. Although supervised ML demands more resources due to the need for labelled 

data, it can yield exceptional results when such training data are accessible. Popular 

algorithms for designing and developing advanced materials include decision trees, support 

vector machines (SVM), artificial neural networks, ensemble learning, and clustering [7]. 

  Recently, there has been increasing interest in using Machine Learning (ML) models to 

explore new materials. The domain of artificial intelligence, especially machine learning 

(ML), has been widely applied across numerous scientific research fields [8]. This approach 

has become prominent for its practical benefits in improving material property design, thanks 

to advancements in computing power and related algorithms [9]. Large datasets, feature 

engineering, and ML regression techniques can all be used to forecast material properties for 

practical applications and efficient production. Researchers can save time and effort in their 

experimentation by training on preexisting data. These methods aid in the discovery and 

optimization of functional materials for use in thermoelectric, solar, catalytic, and optical 

applications, among other domains [10]. In polymer science, Machine Learning has become 

increasingly significant in recent years and continues to evolve. For instance, Zhu et al. [11] 

developed an ML algorithm specifically to rationally design polymer nanocomposites. Wei et 

al. [12] systematically investigated a Machine Learning algorithm to classify various states of 

polymer configurations. 

In this paper, we decided to use a machine learning model in order to investigate the tensile 

and flexural strength of fire-retardant epoxy resins. The conventional method for modeling 

the mechanical properties of materials involves numerical approaches like molecular 

dynamics simulations. However, these methods are highly time-consuming and expensive, 

requiring high-performance computing resources. To address these challenges, we propose a 

data-driven approach, which significantly reduces both time and cost. By leveraging machine 

learning algorithms and datasets, this approach can efficiently predict material properties, 

providing a faster and more cost-effective alternative to traditional numerical simulations. 

Furthermore, when new data become available, the data-driven model may be continuously 

enhanced and updated to increase its forecast accuracy and dependability. The flammability 

properties such limiting oxygen index (LOI), peak heat release rate (PHRR), total heat release 

(THR), time to ignition (TTI), and vertical combustion test (UL94) level have been 

investigated by Chen et al. [13] before for epoxy resin composites. Based on the same 

approach, we decided to investigate their tensile and flexural strength.  

II. METHODS AND RESULTS 

A. Method 

 

Chen et al. [13] gathered the molecular structures of 315 fire retardant molecules and changed 

them into a Simplified Molecular Input Line Entry System (SMILES) format which can be 

used by computer programs [14]. A molecule is depicted by SMILES as a line of text that 

contains connectivity, bond kinds, and atomic symbols [15]. An example has been presented 

in Fig. 1 for clarification. Using these molecules provided in SMILES format, various 

computer programs can calculate their chemical properties, enabling the creation of a database 
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for training a machine learning model. They used alvaDesc [16] in order to calculate 284 

molecular descriptors such as the molecular weight, the average molecular weight, the number 

of Oxygen, and more. Moreover, they added another column to their database for the addition 

amount of fire retardant in epoxy resin composites. Based on these variables, they created a 

database and decided to predict the flammability properties of these materials as stated before. 

This inspired us to predict the mechanical properties of these materials based on the database 

they provided. Thus, we gathered the data related to the tensile and flexural strength of the 

fire-retardant epoxy composites based on the same input variables. However, we realized that 

the tensile and flexural strength reported in different papers for fire retardant epoxy 

composites is different for pure epoxy which has no fire-retardant addition amount. This might 

decrease the efficiency and accuracy of the machine learning model which made us to 

calculate a delta formula for the tensile strength and flexural strength of each molecule. This 

formula is depicted as follows: 

∆σ (%) =
σfire retadant composite(MPA) − σpure epoxy(MPA)

σpure epoxy(MPA)
 

 

 

∆σf (%) =
σf(fire retardant composite)(MPA) − σf(pure epoxy(MPA)

σf(pure epoxy)(MPA)
 

 

 

Based on the formula above, the increase percentage is measured, which can be more accurate 

considering the explanations provided earlier. Similar to the database in Chen et al. [13] 

publication, we created a database including 160 samples and 286 input variables with the 

target variable ∆σ (%) to be used for training a machine learning algorithm. Moreover, we 

created another dataset with 138 samples and 286 input variables for the delta flexural strength 

∆σf (%). 

To train the model using the provided database, we divided the dataset into two subsets: 

training and test sets. The training set is used to train the model and the test set is used to 

evaluate the performance and accuracy of the model. This is recommended by those experts 

in the artificial intelligence field for a better training and better understanding of the model’s 

performance [17]. It is usually suggested to use 25% of the dataset for the test and the rest for 

training. However, this percentage can be varying according to the number of datapoints [18]. 

For instance, in cases with a low number of data points, such as ours, it is recommended to 

use 15% of the dataset for testing and the remaining 85% for training [18]. This allows the 

model to be trained with more data enabling it to have better performance and accuracy.  

The dataset needs to be feature scaled before training to adjust the range of the raw data values. 

This process helps improve the model's prediction efficiency. After feature scaling, a feature 

selection technique needed to find and choose the most important input variables for 

predicting the target variable. We used the Recursive Feature Elimination (RFE) for this 

matter as it employes an estimator, an algorithm, to be trained on the initial set of features. In 

our study, we used Ridge algorithm [19] as it is one of those fundamental algorithms that 

every skilled data scientist should be able to use. The importance of each feature is assessed, 

and those features that have less impact on the target variable are removed. By removing the 

(2) 
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less effective features, the model can consider the most significant ones leading to a better 

performance and accuracy. After this step, the main model training would begin, and the 

performance would be evaluated. There are different algorithms to choose for the model such 

LASSO [20], Ridge, the Artificial neural network [21], and more. We used a Multi-Layer 

Perceptron (MLP), a type of artificial neural network which can be used for regression 

problems. This algorithm consists of multiple layers of neurons dividing into three layers: 

input, hidden and output layer. The firs layer receives the input features where each neuron is 

specified for one feature. Next, one or more layers of neurons (hidden layers) apply 

transformation and some activation functions on the variables. In the end, an output layer 

produces the results based on what happened in pervious layers. A schematic of Multi-Layer 

Perceptron (MLP) is presented in Fig. 2. 

After finishing the training, the performance of the model needs to be evaluated. In fact, it is 

important to know how close predictions are to actual results. There are different statical 

values in order to assess the performance and accuracy of the model such as root-mean-square 

error (RMSE), mean absolute error (MAE), and more. In our study, we used the mean square 

error (MSE) or root-mean-square error (RMSE), mean absolute error (MAE), and coefficient 

of determination (R2). These statistical values are explained as follows: 

 

R2 =
∑ (yî − y)2n

i=1

∑ (yi − y)2n
i=1

 

 

RMSE = √
∑ (yî − yi)

2n
i=1

n
      

 

MAE =
∑ |yî − yi|

n
i=1

n
 

MSE =
∑ (yî − yi)

2n
i=1

n
 

 

In the equations above, n shows the total number of data points, yî is the predicted value for 

each point, yi  is the experimental value for each point, and  y  is the mean value of all 

experimental cases [1].  

 

B. Results 

After training the model on the provided dataset, we assessed its performance using the 

statistical metrics discussed earlier. Fig. 3 illustrates the model's effectiveness on both the 

training and test datasets. The coefficient of determination (R²) is 0.927 for the training set 

and 0.784 for the test set, indicating a high level of accuracy in predicting the target variable.  

To further confirm the model’s accuracy, additional statistical measures were evaluated. 

The Mean Squared Error (MSE) is 119.5, the Mean Absolute Error (MAE) is 7.68, and the 

Root Mean Squared Error (RMSE) is 10.93. The MAE represents the average absolute 

difference between the actual and predicted values, which in this case is relatively low at 7.68.  

Despite the relatively high MSE, the low MAE suggests that while most predictions are 

(3) 

 

(4) 

 

(5) 

 

(6) 
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accurate, there are a few with significantly larger errors. The MSE, being sensitive to larger 

deviations due to the squaring of errors, underscores the presence of these outliers or 

substantial prediction errors that are less apparent in the MAE. This discrepancy indicates that 

while the model performs well on average, there are specific instances with higher prediction 

errors that could be further investigated to improve overall model robustness. 

To further validate the accuracy of the model, we compared its predictions against actual 

values from a research paper that was not part of the original dataset. This external validation 

helps to ensure that the model's performance is not limited to the specific data it was trained 

on and provides an additional layer of verification by testing the model’s predictions against 

independent, real-world data. By doing so, we can assess the model’s generalizability and 

robustness beyond the scope of the training and testing datasets. Table I provides a full 

summary of the validation's findings. The model's predictions and the actual data are shown 

in this table, showing how well the forecasts match the true values. The strong correlation 

highlights the dependability and efficiency of the approach in predicting delta tensile strength. 

This kind of validation demonstrates that the model not only functions well overall, but also 

consistently makes accurate predictions. This consistency is necessary to guarantee the 

model's applicability in scenarios where precise delta tensile strength prediction is required. 

Despite the model’s relatively high-performance following training, it’s important to 

recognize that it may not reliably predict the delta tensile strength for all fire-retardant 

molecules. The model’s generalization capability could be limited due to the relatively small 

size of the training dataset. Additionally, potential inaccuracies in the reported results could 

adversely affect the model’s overall performance. Even though we have employed various 

strategies such as feature scaling, feature selection, and using delta tensile strength as the 

target variable, these measures might not be sufficient to ensure robust generalization. The 

limited dataset size and possible errors in the data may restrict the model's ability to accurately 

generalize to new, unseen molecules. Therefore, while the model shows promising results, 

further efforts may be necessary to enhance its reliability and predictive accuracy across a 

broader range of fire-retardant compounds. This might include expanding the dataset, refining 

the feature selection process, or exploring advanced modeling techniques to improve 

generalization and reduce prediction errors. 

Regarding the delta flexural strength, we assessed its performance using the noted statistical 

metrics. Fig. 4 depicts the model's efficiency on both the training and test datasets. The 

coefficient of determination (R²) is 0.921 for the training set and 0.912 for the test set, proving 

a very high level of accuracy in predicting the delta flexural strength. To further validate the 

model’s accuracy, additional statistical measures were assessed. The Mean Squared Error 

(MSE) is 59.4, the Mean Absolute Error (MAE) is 5.38, and the Root Mean Squared Error 

(RMSE) is 7.7. The MAE, which indicates the average absolute difference between the actual 

and predicted values, is relatively low at 5.38 in this instance. All the statistical metrics 

indicate that the model performs with high accuracy in predicting the delta flexural strength. 

In order to assess the generalization capacity of the model for predicting this target variable, 

we validated the predicted results of the model with actual data of the same research paper 

which we used in order to validate the delta tensile strength. The results of this study have 

been gathered in the Table II which shows the excellent performance of the model in 

predicting the delta flexural strength (Mpa).  

It is important to recognize that while the statistical metrics suggest the model performs 
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efficiently in predicting delta tensile strength, its generalization capability may be limited due 

to the small size of the training dataset. Furthermore, potential errors in the reported data 

within our dataset could also undermine the model's ability to generalize. These variables 

emphasise that in order to improve the model's overall predictive power and dependability, a 

larger, more precise dataset is required. Further steps to address these problems and enhance 

model performance could include the use of robust error handling and cross-validation. 

 

III. CONCLUSION 

In this paper, we presented a machine learning approach in order to predict the mechanical 

properties of fire-retardant epoxy composites. The addition of fire retardant into epoxy resin 

for extinguishing the flammability might lead to mitigating the mechanical properties of the 

epoxy which might be a disadvantage for its usage in different applications under different 

loading conditions. As stated before, the traditional  

modelling approaches, such as the molecular dynamic can be time and time consuming. We 

indicated that our model can predict the mechanical properties such as the tensile and flexural 

strength with a relatively reasonable accuracy. However, our approach cannot be reliable 

completely since its hugely dependent on the existing findings which might have potential 

error in their reporting. Moreover, the low number of our samples might not be able to cover 

the whole reality of mechanical properties of flame-retardant epoxy composites which can 

reduce the generalization capacity of our developed model.  

 

 

 
Fig. 1. A schematic of the SMILES format of a fire-retardant molecule 
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Fig. 2. A diagram of Multi-Layer Perceptron (MLP) 

 

 
Fig. 3. Statistical performance of the model for predicting the delta tensile strength ∆σ (%) 

 

Fig. 4. Statistical performance of the model for predicting the delta flexural strength ∆σf (%) 

 

 

Table I. A comparison study for the delta tensile strength ∆σ (%) 
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Addition amount 

(wt%) 

Li et al. [22] Present 

6 26.92% 27.76% 

8 30.76% 32.77% 

10 33.04% 37.17% 

12 37.06% 40.65% 

14 42.83% 43.24% 

16 43.7% 44.01% 

18 45.8% 

 

 

43.31% 

 

Table II. A comparison study for the flexural strength ∆σf (%)) 

 

Addition amount 

(wt%) 

Li et al. [22] Present 

6 12.8% 12.14% 

8 15.24% 14.04% 

10 15.93% 16.05% 

12 17.39% 17.51% 

14 20.43% 19.18% 

16 21.79% 20.9% 

18 22.97% 21.68% 
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