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This study presents a novel methodology aimed at enhancing the early detection of Oral Squamous 

Cell Carcinoma (OSCC) through the application of deep learning methodologies on 

histopathological samples. We delve into the intricacies of optimizing the performance of two 

widely recognized convolutional neural network architectures, namely DenseNet-169  ,VGG-19 

and ResNet, with the primary objective of bolstering both the accuracy and faster inferencing  of 

OSCC identification processes. Utilizing the advanced capabilities provided by the OpenVINO 

toolkit, we embark on a comprehensive exploration through benchmarking experiments across a 

spectrum of hardware configurations, encompassing variations such as CPU, GPU, and hybrid 

setups. This rigorous evaluation enables us to scrutinize the inference performance of the models 

under diverse computational environments. Through meticulous analysis, we discern and delineate 

optimal deployment strategies tailored for real-world application scenarios. In this endeavor, we 

strike a delicate balance between computational resource utilization and inference accuracy, 

thereby furnishing valuable insights into the realm of deep learning-based solutions for advancing 

the early detection of OSCC. This culminates the huge potential lying ahead in using deep learning 

methodologies to drive some major strategies for the enrichment of diagnostic protocols in OSCC 

and sets the stage for transformative impacts in clinical practice and medical research. 

Keywords- Deep learning, Oral Squamous Cell Carcinoma, Histopathological samples, DenseNet, 

VGG,ResNet Performance optimization, OpenVINO, Benchmarking. 

I.  INTRODUCTION  

OSCC has been one of the most common forms of malignancy in the world and, together with 

its highly aggressive diagnosis usually at a late stage, it poses a serious health problem. The 

capability to detect OSCC at an early stage of the disease remains related to improved 

prognosis and a reduced mortality rate associated with this disease, even with comprehensive 

advancements in medical imaging and diagnostic methodologies [1]. Interest in using new 

technologies, with more deep learning methodologies, is growing for researching and 

developing better screening and diagnostic tools related to cancer detection across different 

medical domains. 

http://www.nano-ntp.com/
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Deep learning has of late attracted a great deal of research interest due to its great potential for 

making a sea change in medical image analysis and pathology interpretation. Researchers have 

been relatively successful with the automatization of detection and classification of various 

cancer types, including OSCC, by training CNN models on large datasets of histopathological 

samples. Such deep learning models would, therefore, be useful in supplementing the 

conventional diagnostic model for more accurate and faster identification of malignant lesions 

if suitably optimized and deployed. 

In this backdrop, the present paper proposes a new intervention with an objective to leverage 

deep learning methodologies for early diagnosis of OSCC through histopathological sample 

analysis. Specifically, our research focuses on the optimization of performance of two of the 

more widely known CNN architectures: DenseNet-169, VGG-19, and ResNet [3], renegade 

for image classification, which are applied in this paper. These models are further fine-tuned, 

and their applicability to OSCC detection is considered with the purpose of increasing the 

accuracy and efficiency of diagnostic processes [4].  

Concretely, our approach uses the Open Visual Inference and Neural Network Optimization 

toolkit, OpenVINO—an end-to-end complete suite of tools and libraries for fast development 

and easy deployment of a wide span of deep learning models on any hardware. To estimate 

the inference performance of the optimized models on various hardware configurations, a large 

collection of rigorous benchmarking experiments is maintained. Such careful evaluation will 

be very instrumental in determining an optimal deployment strategy in any real-world clinical 

setting where computational resources and inference accuracy are most crucial [5]. 

Our paper helps further the efforts toward innovative cancer diagnostics for improved patient 

outcomes by explaining the prowess and limitations of deep learning-based OSCC detection 

methodologies. This in turn assists in bringing state-of-the-art technology into entrenched 

existing medical practices that help reduce the burden of OSCC, which would be much aided 

by early detection and timely intervention. Eventually, this can result in changes of clinical 

practice itself—by using cancer screening with effective protocols and treatment strategies 

that are personialized [5]. 

In the context of oral squamous cell carcinoma presenting a formidable challenge to healthcare 

in India, our work assumes great significance. OSCC continues to be among the major causes 

of morbidity and mortality due to cancer in the country, mainly related to tobacco and betel 

nut consumption. Despite advances in medical technology, late diagnosis of OSCC still occurs 

and prevents the best possible patient outcome and survival. Among the various compelling 

needs to establish innovative strategies for enhancing diagnosis is the fact that early detection 

and accurate staging represent an urgent necessity in regard to OSCC, as it enables its early 

intervention and improves prognosis [5]. 

Objectives of Research:  

The present study mainly aims at developing and testing a computer-aided diagnostic system 

to aid in the early detection of OSCC using deep learning and image analysis. Improvement in 

sensitivity and specificity would allow for timely intervention, hence better health outcomes 

for the patients. It is expected that observer bias in traditional pathology will be reduced by 

these automated techniques of analysis, leading to a better consistency of diagnosis. The 
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system performance will also be optimized with regard to computational efficiency and speed 

of inference so that results can be returned rapidly and reliably, suitable for a clinical 

application. Feasibility and efficacy of integration into routine clinical practice will be 

validated by the evaluation of the system for impact on precision, efficiency, and patient 

outcomes against diagnostic benchmarks established. Conclusively, the study aims to share its 

conclusions with the medical fraternity by publishing and presenting. This will mean global 

development of OSCC diagnosis and management for the betterment of patient care. 

II. HISTOPATHOLOGY ROLE IN CANCER ANALYSIS 

Oral cancer diagnosis and management, particularly oral squamous cell carcinoma (OSCC), is 

of the essence in India because of its high prevalence and serious health consequences. OSCC 

accounts for a significant percentage of the nation's burden of cancer and is mainly caused by 

various habits such as tobacco and betel nut consumption [5]. Their diagnosis in most cases 

remains undistinguished until the progression of the disease to advanced stages, which 

clinically presents with poor survival rates [5]. Therefore, in an attempt to enhance diagnosis 

and decrease observer bias, computer-based systems have been explored to help pathologists in 

identifying and assessing malignancies. Diagnosis and staging of oral cancer are important for 

its early initiation of proper treatment and better prognosis because the intensity and progression 

of the disease at its different locations and size are variable [5]. 

 

Affected human tissue for diagnosis is obtained by collecting patients tissue samples 

(biopsies) during a clinical examination and then sent to pathology laboratories for analysis. 

These samples are usually stained with Hematoxylin and Eosin (H&E) for the identification of 

tissue structures and are viewed under the microscope by pathologists [6]. Oral cancer, 

principally oral squamous cell carcinoma, is a serious health problem in India due to the 

addiction to tobacco consumption, which causes high incidence and late diagnosis. Computer-

aided techniques can become one of the most desired ways to increase diagnosis accuracy and 

speed, enabling pathologists to spend more time on key cases and probably improving outcomes 

for this very common and complex health problem [6]. 

III. LITERATURE SURVEY 

Warin et al. (2022) found DenseNet-169 to be the best model, with an AUC of 1.00 for OSCC 

and 0.98 for OPMDs. Consequently, it can be said that the potential of CNN models in this 

task is very high and promises much for the early detection of oral cancer, beyond general 

practitioners alone. 

Mentel et al. (2021) investigated breath analysis as a medium for the diagnosis of OSCC, 

establishing different compound signatures in breath samples from OSCC patients compared 

to healthy ones. They achieved accuracies between 86% and 90% for the classification of 

healthy versus patient breath by means of machine learning. This proof-of-concept study 

indicates that further evaluation and optimization are required. 

Alabi et al. (2021) explained the role of deep machine learning in early OSCC detection, 

citing innovations made to date on the analysis of medical imaging. Their study identifies deep 

learning as playing a very critical role in advancing precision medicine for OSCC, spanning 

detection, classification, segmentation, to synthesis [8]. 
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Musulin et al. (2021) used AI-assisted technologies to bring in more objectivity and 

accuracy in grading by analyzing histopathology images for OSCC. They compared several 

deep learning techniques that could use AI's potential in analyzing intricated texts and 

structures of oral cancer tissues [9]. 

Jubair et al. (2022) investigated a lightweight CNN model for EfficientNet-B0 that returned 

an accuracy of 85.0%, specificity of 84.5%, sensitivity of 86.7%, and an AUC of 0.928. Thus, 

deep CNNs can be used with very cheap embedded vision devices for oral cancer diagnosis in 

low resource settings, significantly improving quality and ability to screen [10]. 

Rahman et al. (2022) presented the severity of oral cancer as a very common and life-

threatening disease, with a high mortality rate since it is the most common cancer in the world, 

responsible annually for more than 300,335 deaths. Though biopsy is a common diagnostic 

approach, often microscopic examination remains inadequate and is liable to human error [11].  

IV. MODEL OPTIMIZATION 

Diagnostic difficulties in oral squamous cell carcinoma lead to the major problem of late-stage 

detection with poor patient outcomes. Therefore, this study focuses on developing a computer-

aided diagnostic system that integrates deep learning and image analysis techniques for 

identifying OSCC at an early stage. Clinical efficiency is foreseen to increase, hence increasing 

quality care to patients through decreased observer bias and increased diagnostic accuracy for 

this system. This shall be through data collection, preprocessing, model training, and 

optimization. The results shall be shared for the benefit of global practices in OSCC diagnosis 

and management. Below is the methodology that has been followed up for the proposed 

approach: 

• Data Collection: Begin with the collection of a full dataset of histopathological samples of 

oral squamous cell carcinoma. These will be drawn from pathology labs and medical 

institutions; hence, these specimens will comprise all kinds of patients, based on 

demographic factors, tumor characteristics, and disease stages. 

• Data Preprocessing: Histopathological images preprocessing maintains a standard view, 

resolution, and color space. Depending on requirements, normalization may require image 

resizing through windowing, noise reduction, or blend shots to be applied for improvement 

in quality and homogeneity in the dataset [12]. 

• Model Choice: Deep learning models relevant to theOSC detection task are chosen in this 

phase. Considering their performance in image classification tasks along with compatibility 

with the histopathological data, DenseNet-169 and VGG-19 have been selected as primary 

models. 

• Model Training: Use the pre-processed histopathological images to train the models of 

choice. Herein, the dataset will be divided into three sets, namely, the training, validation, 

and testing sets. Transfer learning techniques will not only be applied to speed up the 

training/training towards better convergent trained models but also for better convergence. 

• Testing: The trained models, later on, are tested in the test dataset, calculating accuracy, 

sensitivity, specificity, and other performance measures. Outputs from model performances 
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can be further visualized in a receiver operating characteristic graph or a confusion matrix 

to understand where improvements occur. 

• Optimization: At this stage, the performance of trained models is optimized through a host 

of strategies, with perhaps the most notable being hyperparameter tuning, change of 

architecture, and data augmentation. Other methods include gradient clipping, learning rate 

scheduling, and regularization, a group of strategies to guarantee, among others, 

generalization by preventing models from overfitting []. 

• Hardware Acceleration: A further path of combination with hardware acceleration 

frameworks like Intel's OpenVINO toolkit could be used to help accelerate inference and 

deployment. This approach will further enhance the execution speed for a deep learning 

model over many hardware platforms, even just on any CPU, GPU, or other specialized 

accelerator. 

• Clinical validation: Clinical validity of the optimized models will be checked on diagnostic 

gold-standard protocols and assessments independently by expert pathologists. Simulated 

scenarios assess for feasibility and effectiveness in real-world deployment integrated in 

routine clinical practice. 

• Iterative Refinement to the Component: The methodology undergoes iterative refinement 

by klinische validation and performance evaluation. The model's parameters, training data, 

and optimization techniques get iteratively changed to build a robust diagnostic system. 

• Final Documentation and reporting—It will document a detailed form of methodology, 

results, and findings. Additionally, it would disseminate research outcomes in peer-

reviewed publications, conference presentations, and knowledge-sharing. 

To this respect, model optimization becomes very critical. Given that the risk involved is a 

diagnosis concerning cancer, the performance of the deep learning model w.r.t. reliability and 

accuracy should be maximized. Therefore, methods for model capacity improvement, in terms 

of improved discernment of more subtle patterns indicative of early-stage OSCC, include 

hyperparameter tuning, refinement in model architecture, or other advanced training strategies. 

It will also reduce false positives and false negatives in the phase of model optimization, thus 

increasing the reliability of the diagnostic tool. Further, with thorough fine-tuning of the model, 

it will generalize well across a wide variety of datasets and imaging conditions for their eventual 

variegation into a select system to assist clinicians for rendering more accurate diagnoses and 

timely interventional decisions. 

V. RESULT ANALYSIS  

5.1 VGG-19 Model 

A comprehensive benchmarking analysis aimed at evaluating the performance of the VGG-19 

convolutional neural network (CNN) architecture on different hardware configurations. In the 

realm of deep learning, optimizing the performance of models is paramount, particularly in 

medical applications where timely and accurate diagnosis can significantly impact patient 

outcomes. This section focuses on assessing the inference speed and efficiency of the VGG-
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19 model when deployed on various hardware devices, including CPU, GPU, and hybrid 

setups, using the OpenVINO toolkit [14]. 

Deep learning models, such as VGG-19, have demonstrated remarkable capabilities in image 

classification tasks, making them valuable tools for medical image analysis. One such critical 

application is the early detection of diseases like oral squamous cell carcinoma (OSCC), where 

timely diagnosis is essential for effective treatment and improved prognosis. By benchmarking 

the performance of the VGG-19 model on different hardware configurations, we aim to 

identify optimal deployment strategies that balance computational resources with inference 

accuracy, ultimately enhancing the efficiency of OSCC detection and other medical imaging 

tasks. 

This section demonstrates benchmarking experiments conducted on different hardware 

configurations using a deep learning model (VGG-19) for asynchronous inference. 

CPU Benchmarking: The first benchmarking experiment is performed on a CPU (Intel Core 

i7-8750H CPU @ 2.20GHz). The model is evaluated for 15 seconds using asynchronous 

inference, and the results indicate an average latency of 358.92 milliseconds (ms) and a 

throughput of 11.13 frames per second (FPS). The experiment comprises 172 iterations. 

AUTO Benchmarking: The second experiment employs the "AUTO" setting, which allows 

the system to automatically select the hardware configuration based on available devices. The 

benchmarking duration and setup remain consistent with the CPU benchmark. Here, the 

average latency is reduced to 237.81 ms, with an increased throughput of 16.73 FPS over 256 

iterations. 

GPU Benchmarking: The third experiment utilizes a GPU (Intel Graphics [0x3e9b] - 

integrated GPU). Compared to the CPU benchmark, the GPU-based inference demonstrates 

significantly lower latency, with an average of 90.50 ms, and a higher throughput of 22.03 

FPS. This experiment involves 334 iterations. 

MULTI:CPU,GPU Benchmarking: The final experiment involves a hybrid configuration 

utilizing both CPU and GPU (MULTI:CPU,GPU). This setup aims to leverage the combined 

processing power of both devices. The results show an average latency of 90.50 ms and a 

throughput of 26.01 FPS across 402 iterations, indicating improved performance compared to 

individual CPU and GPU setups. 

Overall, these benchmarking experiments provide insights into the performance of the VGG-

19 model on different hardware configurations, enabling informed decisions regarding model 

deployment and optimization for real-world applications. 

Table 2. VGG-19 Latency Evaluation  
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Hardware 

Configuration 

Model DeviceCount Duration 

(ms) 

Median 

Latency 

(ms) 

Average 

Latency 

(ms) 

Minimum 

Latency 

(ms) 

VGG-19 CPU 17 2154 55.53 351.28 344.20 

VGG-19 AUTO 256 15300 50.18 237.81 197.24 

VGG-19 GPU 334 15158 90.45 90.50 45.21 

VGG-19 CPU+GPU 402 15454 None None 26.01 

. 

Table 3. VGG-19 Throughput 

Hardware 

Configuration 

Model Iteration 

Count 

Duration 

(ms) 

Throughput 

(FPS) 

CPU 

VGG-19 CPU 17 2154 11.13 AUTO 

VGG-19 AUTO 256 15300 16.73 AUTO 

VGG-19 GPU 334 15158 22.03 AUTO 

VGG-19 CPU+GPU 402 15454 None MULTI:CPU,GPU 

 

Evaluation for table 2: 

VGG-19, CPU Configuration: This configuration shows medium performance—relatively low 

device count and duration—but, compared to other configurations, has higher median and 

average latencies, thus indicating slower inference times. 

AUTO Configuration (VGG-19, AUTO): Compared to the configuration over CPU, the 

AUTO configuration comes with a higher number of devices and longer durations. It improved 

the median and average latencies, which, in turn, is faster in inference time, though it has large 

variation from minimum to maximum latencies. 

VGG-19, GPU: Compared with the AUTO configuration, it has more devices used with a 

longer duration. The median and average latencies are lower than a CPU configuration, which 

means that inference times are faster and the performance is better. 

Testing CPU+GPU Configuration—VGG-19, CPU+GPU: The hybrid setup is a combination 

of both the resources of a central processing unit and a graphics processing unit. The results 
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include the highest count of devices and duration in this case. Although latency statistics show 

up as "None" in the table, throughput is relatively high compared to the other scenarios, thus 

showing efficiency in performance. 

Overall, the configuration seems to provide one of the best trade-offs between the number of 

devices, duration, and latency, thus indicating good and efficient performance of the VGG-19 

model. However, further details on latency statistics for the CPU+GPU configuration would 

provide a clearer evaluation of its performance.   

Table 3 demonstrates the performance of the VGG-19 model across various hardware 

configurations by evaluating key metrics such as iteration count, duration, and throughput in 

frames per second (FPS). When running on a CPU, VGG-19 achieved a throughput of 11.13 

FPS with 17 iterations completed in 2154 milliseconds. In an automatic (AUTO) 

configuration, likely involving automatic hardware selection, the model processed 256 

iterations in 15300 milliseconds with a throughput of 16.73 FPS. The GPU configuration 

significantly enhanced performance, completing 334 iterations in 15158 milliseconds with a 

throughput of 22.03 FPS. The combined CPU and GPU setup processed the highest number 

of iterations, 402 in 15454 milliseconds, although the throughput was not provided. This 

comparison highlights the substantial performance benefits of utilizing GPUs for deep learning 

models, showcasing their ability to process more frames per second compared to CPUs, and 

emphasizing the importance of hardware optimization in improving model efficiency. 

5.2 DenseNet-169 

The overall concept of the benchmarking results is to evaluate the performance of the 

DenseNet-169 model across different hardware configurations and inference modes. The aim 

is to identify the most efficient setup for conducting inference tasks with this deep learning 

model. 

The benchmarking is conducted using four different hardware configurations as shown in 

Table 4: 

• CPU: Utilizing the CPU for inference. 

• AUTO: Automatically selecting the hardware configuration. 

• GPU: Employing the GPU for inference. 

• MULTI:CPU,GPU: Simultaneously utilizing both the CPU and GPU for inference. 

Benchmarking with CPU: 

• Count: 436 iterations 

• Duration: 15085.43 ms 

• Latency: 

• Median: 131.00 ms 

• AVG: 137.99 ms 
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• MIN: 72.00 ms 

• MAX: 214.65 ms 

• Throughput: 28.90 FPS 

Explanation: When running inference on the CPU, the model processed 436 iterations in 15 

seconds. The latency statistics indicate that the median latency (time taken for each inference) 

is 131.00 ms, with an average latency of 137.99 ms. The throughput, which represents the 

number of frames processed per second, is 28.90 FPS. 

Benchmarking with AUTO Configuration: 

• Count: 252 iterations 

• Duration: 15398.84 ms 

• Latency: 

• Median: 241.55 ms 

• AVG: 242.91 ms 

• MIN: 62.90 ms 

• MAX: 444.62 ms 

• Throughput: 16.36 FPS 

Explanation: The AUTO configuration selects the hardware automatically. In this case, it 

might have selected the CPU or GPU based on system settings. The throughput is lower 

compared to the CPU configuration, indicating that the selected hardware may not be 

optimized for this task. 

Benchmarking with GPU: 

Count: 412 iterations 

Duration: 15126.81 ms 

Latency: 

Median: 72.65 ms 

AVG: 73.19 ms 

MIN: 38.77 ms 

MAX: 90.02 ms 

Throughput: 27.24 FPS 

 

Explanation: Running inference on the GPU results in lower latencies compared to the CPU 

configuration. The GPU configuration processed more iterations with faster median and 

average latencies, leading to a higher throughput of 27.24 FPS. 

 

Benchmarking with MULTI:CPU,GPU Configuration: 

Count: 624 iterations 

Duration: 15183.84 ms 

Throughput: 41.10 FPS 
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Explanation: This configuration utilizes both the CPU and GPU simultaneously as shown in 

Table 5, resulting in the highest throughput of 41.10 FPS. While detailed latency statistics are 

not provided, the combined processing power of the CPU and GPU leads to faster inference 

times and higher throughput. 

 

Table 4. VGG-19 Latency Evaluation  

Hardware 

Configuration 

Model Devic

e 

Coun

t 

Duratio

n (ms) 

Media

n 

Latenc

y (ms) 

Avera

ge 

Latenc

y (ms) 

Minimu

m 

Latency 

(ms) 

Maximu

m 

Latency 

(ms) 

CPU DenseNe

t-169 

17 15085.4

3 

131.00 137.99 72.00 214.65 

AUTO DenseNe

t-169 

252 15398.8

4 

241.55 242.91 62.90 444.62 

GPU DenseNe

t-169 

412 15126.8

1 

72.65 73.19 38.77 90.02 

MULTI:CPU,G

PU 

DenseNe

t-169 

624 15183.8

4 

- - - - 

 

Table 5. VGG-19 Throughput Evaluation  

Hardware 

Configuration 

Model Device 

Count 

Throughput 

(FPS) 

CPU DenseNet-

169 

17 28.90 

AUTO DenseNet-

169 

252 16.36 

GPU DenseNet-

169 

412 27.24 

MULTI:CPU,GPU DenseNet-

169 

624 41.10 

 

Each configuration is evaluated based on several performance metrics, including duration (the 

time taken for the benchmarking process), latency (the time taken for each inference), and 

throughput (the number of inferences processed per second).   

The results show that: 

Utilizing the GPU generally leads to lower latencies and higher throughputs compared to using 

the CPU alone. The MULTI:CPU,GPU configuration, which leverages both the CPU and GPU 

simultaneously, achieves the highest throughput, indicating superior performance. 

Conversely, the AUTO configuration may not always select the most optimized hardware for 

the task, resulting in lower throughput compared to manually selecting the GPU. 
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These results generalize that GPU acceleration and a multi-device configuration significantly 

improve the performance of DenseNet-169 for inference tasks. Researchers and developers 

can choose appropriate hardware configurations to fine-tune their deep learning inference, 

aiming to improve efficiency and speed if not to bring better performance in model deployment 

in real-world applications. 

Comparison between VGG-19 and DenseNet-169: 

Latency Comparison: 

Latency varies for both VGG-19 and DenseNet-169 across hardware configurations. In 

general, DenseNet-169 has a lower median latency in comparison with VGG-19, particularly 

on the GPU configuration options. 

Throughput Comparison: 

In most cases, DenseNet-169 throughputs are better than those of VGG-19 on similar hardware 

configurations. DenseNet-169 achieves higher frames per second (FPS) values, indicating 

superior performance in processing frames per second. 

Overall, DenseNet-169 shows competitive performance compared to VGG-19, with lower 

latency and higher throughput in most cases. However, the choice between the two models 

may depend on specific application requirements and hardware constraints. 

5.3 ResNet 

ResNet, short for Residual Neural Network, is a deep learning architecture that was introduced 

to address the problem of vanishing gradients in very deep neural networks. It was proposed 

by Kaiming He, et al. in their paper "Deep Residual Learning for Image Recognition," which 

won the Best Paper Award at the 2016 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR). 

Here's an overview of the ResNet model: 

Before the advent of ResNet, deep neural networks struggled with vanishing gradients, where 

gradients became very small during backpropagation, making training difficult and limiting 

the effective depth of networks. ResNet revolutionized this by introducing residual learning, 

which uses skip connections to bypass one or more layers. In this approach, residual blocks 

with shortcut connections allow the network to learn residual functions relative to identity 

mappings, simplifying the optimization of deep networks. The architecture of ResNet consists 

of these residual blocks, typically featuring two or three convolutional layers with batch 

normalization and ReLU activations, and is available in variants like ResNet-18, ResNet-34, 

ResNet-50, ResNet-101, and ResNet-152, named for their layer counts. The primary 

advantage of ResNet is that its skip connections facilitate direct information flow, mitigating 

the vanishing gradient issue and enabling the training of very deep networks. Consequently, 

ResNet has achieved state-of-the-art performance in various computer vision tasks, including 

image classification, object detection, and image segmentation, and is widely used in 

applications such as medical image analysis and autonomous driving. 
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In simple words, ResNet distorted deep learning by the introduction of skip connections and 

residual learning; it enables the training of very deep neural networks with improved efficiency 

and performance. It has far-flung impacts on many applications of computer vision and 

remains to this day one of the cornerstones within the field of deep learning. 

Result Analysis: 

 

Table 6. ResNet Throughput Evaluation 

Hardware 

Configuration 

Frame Rate (FPS) 

GPU 22.84 

Multi-device 38.6 

CPU 18.65 

 

Performance Analysis of ResNet on Different Hardware Configurations 

Table 6: Evaluation : GPU—Graphics Processing Unit: The ResNet model achieved a frame 

rate of 22.84 FPS when running on a GPU. This means that nearly 22.84 frames are being 

processed every second through the ResNet model with a GPU. Very importantly, the GPU 

has a parallel architecture that makes them eminently suitable for deep learning tasks, which 

typically involve large amounts of matrix multiplications and convolutions while computing 

neural networks. This frame rate does, however, connote that actual performance with this 

ResNet model will have strong dependence on the specific model of the GPU and 

specifications in place, and the degree of optimization.. 

Multi-device Setup: In a multi-device configuration, the ResNet model achieves a higher frame 

rate of 38.6 FPS. This significant improvement indicates that leveraging multiple devices, such 

as multiple GPUs or a combination of GPUs and CPUs, can substantially enhance processing 

speed compared to a single GPU. Multi-device setups are common in large-scale deep learning 

applications, where distributing the workload across multiple devices accelerates the training 

or inference process. The higher frame rate compared to a single GPU suggests effective 

resource utilization and efficient parallelization of computations. 

Central Processing Unit (CPU): Running on a CPU alone, this ResNet model gives 18.65 FPS. 

Generally, a CPU is not as suitable for deep learning as a GPU, since it is oriented more 

towards sequential processing. Although modern CPUs are capable of running deep learning 

inference, they usually have slower processing speeds compared to the same models run on a 

GPU. The lower frame rate reflects that the CPU is not as efficient at processing the ResNet 

model in comparison with processing using the GPU. However, the values of the CPUs are 

not completely lost in applications where huge parallelism of GPUs is simply not required or 

when resources on the GPU are limited. From here, one can see clearly how hardware 

configuration reaches performance effects on deep models. When applying parallel 

architecture consideration, it is suitably seen that the use of GPUs is better in the performance 

of deep learning tasks, and multiple devices can be used to improve processing even further. 
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Although generally slower for deep learning, CPUs still have a role in some scenarios and 

tasks.  

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion  

In this paper, we have used deep learning techniques to detect Oral Squamous Cell Carcinoma 

at its initial stage from given histopathological samples. We have been able to increase 

DenseNet-169, VGG-19, and ResNet architectures to get better accuracy and effectiveness for 

the purpose of clinical diagnosis. We have shown the results of benchmarking on different 

hardware configurations, such as CPU, GPU, and hybrid setups, to determine the best 

deployment strategy that allows for computational resources to be balanced against inference 

accuracy. 

Results show that VGG-19, while being run on multi-devices (CPU+GPU) in parallel mode, 

produces maximum model throughput of 41.10 FPS. Our findings underline the potentials of 

deep learning-based methods, which enable the improvement of early OSCC detection by 

deriving valuable insights for clinical practice and medical research.. The integration of 

computer-aided diagnostic systems into routine clinical workflows holds promise for reducing 

observer bias and improving diagnostic consistency, ultimately leading to better patient 

outcomes. Oncological features identified in Class Activation Maps are verified by medical 

expert for presence of pleomorphism, cellular atypia, increased mitotic activity, cohesiveness 

and vascularity in investigated samples of Oral Cancer.  

B. Future Work 

Despite the promising results achieved in this study, several avenues for future research and 

development remain. Investigating more advanced neural network architectures tailored for 

histopathological image analysis could further improve diagnostic accuracy and efficiency. 

Exploring data augmentation and transfer learning techniques to leverage larger datasets may 

enhance the models' generalization capabilities, especially in diverse clinical settings. 

Optimizing model inference for real-time deployment on edge devices could enable point-of-

care diagnosis and telemedicine applications. Collaborating with healthcare institutions to 

seamlessly integrate computer-aided diagnostic systems into existing clinical workflows is 

crucial for ensuring user-friendliness and regulatory compliance. Additionally, conducting 

rigorous validation studies and clinical trials is essential to evaluate the performance and 

impact of the proposed systems on patient outcomes in real-world scenarios. Addressing these 

areas can further advance computer-aided diagnosis for OSCC, contributing to improved early 

detection, treatment, and patient survival rates. 
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