Synthesis Of Novel Materials Using Waste/Recycled Materials As Substitutes In Concrete: A Study Of Sustainable Green Building Material

Abhishek Arya¹, Dr. R.L. Sharma²

¹Research Scholar' School of Civil Engineering, Lovely Professional University,
Phagwara, Punjab, India
Orcid ID - https://orcid.org/0000-0001-8427-3601.

²Professor, School of Civil Engineering, Lovely Professional University,
Phagwara, Punjab, India

The construction industry plays a pivotal role in global development, but its environmental impact is profound due to resource consumption and waste generation. This study investigates the viability of integrating marble dust and rice husk ash (RHA) as partial replacements for cement in concrete production, aiming to mitigate environmental burdens while enhancing sustainability. The research evaluates mechanical properties, durability, and sustainability advantages of the resultant green concrete. Utilizing waste materials not only addresses environmental concerns but also aligns with the industry's evolving sustainability agenda. The study employed a comprehensive methodology, adhering to established standards and protocols. Ordinary Portland Cement (OPC), natural sand, crushed stone aggregates, marble dust, and RHA were utilized as materials. Various tests, including compressive strength, water absorption, permeability, and slump, were conducted to assess concrete properties. Concrete samples were fabricated, cured, and tested according to Indian Standard specifications. The investigation revealed promising outcomes regarding the mechanical properties of green concrete. Compressive strength tests demonstrated improvements with the inclusion of marble dust and RHA, particularly at a 15% replacement level. Durability assessments indicated reduced water absorption and permeability, suggesting enhanced resistance to environmental factors. Slump tests revealed varying workability across replacement levels, emphasizing the importance of careful mix design. The findings of this study hold significant implications for sustainable construction practices. Integrating waste materials like marble dust and RHA into concrete production not only enhances performance but also reduces reliance on virgin resources. The sustainability benefits extend to environmental conservation, resource efficiency, and carbon footprint reduction. Implementing these findings in construction projects can contribute to a more sustainable built environment, aligning with global sustainability goals.

Key Words: Sustainable construction, Green concrete, Waste materials, Marble dust, Rice husk ash **and** Environmental sustainability

1. Introduction

The construction industry is a cornerstone of economic development worldwide, playing a critical role in infrastructure development, urbanization, and housing. However, it is also one

of the largest consumers of natural resources and a significant contributor to environmental degradation. Traditional concrete production is heavily dependent on cement, which involves the extraction of raw materials such as limestone and clay, followed by an energy-intensive manufacturing process that generates substantial carbon dioxide (CO₂) emissions. The cement industry alone accounts for approximately 8% of global CO₂ emissions, highlighting the urgent need for more sustainable construction practices (Mehta and Pirtz, 2000). In response to these challenges, researchers and industry professionals are increasingly exploring alternative materials that can reduce the environmental impact of concrete production. Among these alternatives, the utilization of waste materials such as marble dust and rice husk ash (RHA) has garnered significant attention. These materials not only offer a sustainable solution for waste management but also hold the potential to enhance the properties of concrete, thereby contributing to more durable and resilient structures.

Despite the promising potential of using waste materials in concrete production, there are several research gaps that need to be addressed. While numerous studies have investigated the individual effects of marble dust and RHA on concrete properties, comprehensive studies that examine the combined use of these materials are limited. Furthermore, most existing research focuses on the mechanical properties of concrete, such as compressive strength and workability, with less emphasis on durability aspects and long-term performance. There is also a need for standardized methodologies to evaluate the environmental benefits and sustainability impacts of incorporating these waste materials into concrete. For instance, studies like those by Muthadhi and Kothandaraman (2013) have demonstrated the performance characteristics of RHA-blended concrete, and Oblilade (2014) has examined the feasibility of using RHA as a partial replacement for cement. Similarly, research by Pathan and Pathan (2016) has highlighted the need for waste marble powder in concrete production. However, a holistic approach that integrates the findings from these individual studies to provide a comprehensive understanding of the benefits and limitations of using both marble dust and RHA in concrete is still lacking.

The primary objectives of this study are

- To assess the compressive strength of concrete incorporating marble dust and RHA as partial substitutes for cement.
- To evaluate the durability of the modified concrete by examining its resistance to water absorption, permeability, and other environmental factors.
- To evaluate the workability of concrete mixes by examining the consistency and flowability.
- To promote sustainable construction practices by demonstrating the feasibility and advantages of using waste materials in concrete.

The significance of this study lies in its potential to contribute to the development of more sustainable and environmentally friendly construction materials. By incorporating marble dust and RHA into concrete, this research aims to address several key issues like waste management, reduction of co₂ emissions, resource conservation, enhanced concrete properties, and economic benefits. The marble and rice industries generate substantial amounts of waste, posing significant disposal challenges. Utilizing marble dust and RHA in concrete production offers a practical solution for waste management, reducing the environmental impact of these

industries. By partially replacing cement with waste materials, this study aims to reduce the carbon footprint of concrete production. Cement manufacturing is a major source of CO₂ emissions, and any reduction in its usage can significantly mitigate these emissions. The construction industry is a major consumer of natural resources. By substituting traditional materials with waste products, this research promotes the conservation of valuable natural resources such as limestone and clay. Previous studies have shown that marble dust and RHA can improve the mechanical properties of concrete, such as compressive strength and durability. This study aims to further investigate these benefits and optimize the mix proportions for the best performance. Utilizing locally available waste materials can reduce the cost of concrete production, making it more affordable for various construction projects. This can be particularly beneficial in developing regions where construction costs are a major concern.

2. Literature Review

Marble Dust in Concrete

Marble dust is a byproduct of the marble industry, which generates significant waste during the cutting and polishing processes. Disposing of marble dust poses environmental challenges due to its fine particulate nature, which can cause air and water pollution. However, marble dust is rich in calcium carbonate, making it a potential supplementary material in cement production.

Research by Aruntaş et al. (2010) found that incorporating marble dust in cement production improved the compressive strength of concrete. Similarly, Moriconi et al. (2010) demonstrated that marble powder enhances the mechanical properties of mortar and concrete, including increased compressive strength and durability. Studies by Revathi and Suresh (2019) further support these findings, indicating that marble dust can enhance both the mechanical and durability properties of cement. Rahmouni et al. (2019) also explored the combined use of marble powder and glass powder, showing improved physical and mechanical behavior of composite cement.

Rice Husk Ash in Concrete

Rice husk ash has been widely studied for its pozzolanic properties and its potential as a cement replacement material. Kartini (2011) examined the sustainability of RHA, highlighting its benefits in enhancing concrete performance. Mehta and Pirtz (2000) discussed the use of RHA to reduce the temperature in high-strength mass concrete, emphasizing its role in improving mechanical properties and durability. Other studies, such as those by Marthong (2012) and Maurice et al. (2012), have shown that RHA can significantly improve the compressive strength and durability of concrete. These findings suggest that RHA is a viable option for producing more sustainable concrete. Additionally, research by Oblilade (2014) supports the use of RHA as a partial replacement for cement, demonstrating its positive impact on concrete properties.

Combined Use of Marble Dust and RHA

The combined use of marble dust and RHA in concrete production has shown promising results. Studies indicate that the synergistic effects of these materials can lead to significant

improvements in concrete properties. For example, combining marble dust and RHA can increase compressive strength, reduce permeability, and enhance overall durability.

Research by Khatri et al. (2014) and Manju Pawar et al. (2014) supports the use of waste marble powder in concrete production, highlighting its feasibility and benefits. Similarly, Vyas et al. (2018) demonstrated the utilization of marble powder as a fine aggregate in mortar mixes, further supporting its potential in sustainable construction. Habib and Habib (2020) also emphasized the sustainable recycling of marble dust as a cement replacement, indicating recent advances and trends in this area.

3. Methodology

3.1 Materials

The materials used in this study include Ordinary Portland Cement (OPC), natural sand, crushed stone aggregates, marble dust, and rice husk ash. Each of these materials was selected based on its availability, cost-effectiveness, and potential contribution to enhancing the properties of concrete. The experiments were conducted in India, utilizing local resources to ensure the findings are relevant to the Indian construction context.

3.1.1 Ordinary Portland cement (OPC) used in this study conforms to IS 4031-1968 standards. OPC is the most widely used type of cement in concrete production due to its consistent quality, reliable performance, and availability. It acts as the primary binding material in concrete, providing necessary strength and durability.

Table 1: Key properties of OPC

S.No	Name	Properties	
1	Chemical	OPC primarily consists of lime (CaO), silica (SiO ₂), alumina	
	Composition	(Al ₂ O ₃), and iron oxide (Fe ₂ O ₃). These components ensure the	
		cement's hydraulic properties, allowing it to set and harden	
		when mixed with water.	
2	Physical	OPC should have a specific surface area of around 225-375	
	Properties	m²/kg, ensuring adequate reactivity. The initial setting time	
		should be at least 30 minutes, while the final setting time should	
		not exceed 600 minutes, providing ample workability time	
		during construction.	
3	Strength	The compressive strength of OPC should be at least 33 MPa	
		after 28 days of curing, as per IS 4031-1968 standards. This	
		ensures the concrete mix will achieve the necessary strength for	
		structural applications	

3.1.2 Fine Aggregate: Natural Sand conforming to BIS (IS: 383-1970) standards was used as the fine aggregate. Fine aggregate is crucial for filling voids in the concrete matrix, enhancing its density and strength

Table 2: Key Properties of Natural Sand

Nanotechnology Perceptions **20 No. 6** (2024)

3.1.3 Coarse Aggregate: Crushed Stone Aggregates conforming to IS 383-1970 standards were used as the coarse aggregate. Coarse aggregates provide volume stability and contribute significantly to the concrete's compressive strength.

S.No	Name	Properties
1`	Particle Size Distribution	The sand should have a well-graded particle size distribution, ranging from fine to coarse particles, with a fineness modulus of 2.6-3.0. This ensures proper packing and reduces voids in the concrete.
2	Specific Gravity	The specific gravity of natural sand typically ranges from 2.5 to 2.7, indicating its density relative to water.
3	Cleanliness	The sand should be free from impurities such as silt, clay, and organic matter, which can adversely affect the bonding and strength of the concrete.

Table 3: Key properties of crushed stone aggregates

S.No	Name	Properties
1	Size and	The aggregates should be well-graded, with sizes ranging
	Grading	from 10 mm to 20 mm. Proper grading ensures a dense and
		compact concrete mix, minimizing voids and enhancing
		strength
2	Shape and	Aggregates should have an angular shape and a rough texture
	Texture	to improve the bond with the cement paste. This enhances the mechanical interlock and overall strength of the concrete.
3	Specific	The specific gravity of crushed stone aggregates typically
	Gravity and	ranges from 2.6 to 2.9, and the bulk density is around 1500-
	Bulk Density	1700 kg/m^3 .

3.1.4 Marble Dust is a byproduct generated during the cutting, shaping, and polishing of marble stones. For this study, marble dust was collected from local marble processing units in India. The use of marble dust not only reduces waste but also utilizes a readily available material to enhance concrete properties.

Table 4: Key properties of marble dust

S.No	Name	Properties
1	Chemical Composition	Marble dust is primarily composed of calcium
		carbonate (CaCO ₃), with minor amounts of silica

		(SiO ₂), alumina (Al ₂ O ₃), and iron oxides (Fe ₂ O ₃). The high calcium carbonate content contributes to the pozzolanic activity in concrete.
2	Physical Properties	Marble dust has a fine particle size, typically ranging from 45 microns to 150 microns. This fine particle size helps in filling the voids in the concrete matrix, improving its density and strength.
3	Pozzolanic Activity	When used as a partial replacement for cement, marble dust reacts with the calcium hydroxide produced during cement hydration to form additional calcium silicate hydrate (C-S-H) gel, enhancing the concrete's strength and durability.

3.1.5 Rice Husk Ash (RHA) is obtained from the combustion of rice husks, an agricultural waste product. India, being a major producer of rice, generates substantial quantities of rice husks, making RHA a readily available and cost-effective material. The rice husks are burned at controlled temperatures to produce ash with high silica content

Table 5: Key properties of RHA

S.No	Name	Properties
1	Chemical Composition	RHA is rich in silica (SiO ₂), typically comprising 85- 95% of its composition. The high silica content makes RHA a highly reactive pozzolan, capable of enhancing the properties of concrete
2	Physical Properties	RHA particles are fine, with a specific surface area ranging from 20,000 to 50,000 m²/kg. This high surface area contributes to the pozzolanic reactivity and enhances the bonding in the concrete matrix.
3	Pozzolanic Activity	RHA reacts with the calcium hydroxide released during cement hydration to form additional C-S-H gel, similar to marble dust. This reaction improves the concrete's compressive strength, reduces permeability, and enhances durability.

- **3.2 Material Collection and Preparation:** All materials, including OPC, fine aggregate, coarse aggregate, marble dust, and RHA, were sourced from verified suppliers in India. Marble dust was collected from local marble processing units, while RHA was obtained from rice husk combustion facilities.
- **3.3 Mix Design :** Concrete mix designs were prepared based on IS 10262-2009 guidelines. Various proportions of marble dust and RHA (0%, 5%, 10%, 15%, and 20%) were used to

replace cement in the concrete mix. The water-cement ratio was maintained at 0.45 for all mixes to ensure consistency in workability and hydration. The mix proportions are detailed in Table 5. The dry materials (OPC, fine aggregate, coarse aggregate, marble dust, and RHA) were thoroughly mixed to ensure uniform distribution. Water was then added gradually while continuing to mix until a homogenous concrete mix was achieved. The concrete mix was poured into standard molds (cubes for compressive strength tests, cylinders for tensile strength tests, and beams for flexural strength tests) and compacted to remove air voids. The specimens were then cured in water for 28 days at a temperature of 25°C to ensure proper hydration and strength development.

Table 5: Mix Proportions

Material	Control Mix (0%)	5% Replaceme nt	10% Replaceme nt	15% Replaceme nt	20% Replaceme nt
Cement (kg)	350	332.5	315	297.5	280
Marble Dust (kg)	0	8.75	17.5	26.25	35
RHA (kg)	0	8.75	17.5	26.25	35
Fine Aggregate (kg)	750	750	750	750	750
Coarse Aggregate (kg)	1200	1200	1200	1200	1200
Water (L)	175	175	175	175	175

3.4 Testing Procedures: Various tests were conducted to evaluate the mechanical properties, durability, and workability of the concrete samples. These tests were crucial in assessing the performance of the concrete mixes containing marble dust and rice husk ash (RHA). The testing procedures are outlined below:

3.4.1 Compressive Strength Test Procedure

The compressive strength test is a vital assessment in determining the ability of concrete to withstand axial loads or pressure. This test was conducted according to the Indian Standard IS 516-1959. The following steps outline the detailed procedure for conducting the compressive strength test:

1. Sample Preparation

- Concrete Mixing: Concrete mixes containing various proportions of marble dust and rice husk ash (RHA) were prepared based on the desired replacement levels as per the mix design.
- Mold Preparation: Steel molds of size 150 mm x 150 mm x 150 mm were thoroughly cleaned and lubricated with a releasing agent to prevent concrete from sticking to the mold
- Filling the Molds: The freshly mixed concrete was poured into the molds in three layers, with each layer compacted using a standard tamping rod to ensure proper consolidation and elimination of air voids.

2. Curing

- Initial Curing: After casting, the filled molds were covered with a plastic sheet to prevent moisture loss and placed in a curing tank at a temperature of 27 ± 2°C for the initial curing period.
- Standard Curing: Following the initial curing period, the molds were removed from the curing tank and kept in a curing room maintained at a temperature of 27 ± 2°C with a relative humidity of at least 90% for the remaining curing duration.

3. Testing

- Test Timeline: Concrete cubes were tested for compressive strength at three different curing ages: 7 days, 14 days, and 28 days.
- Preparation for Testing: After the designated curing period, the concrete cubes were carefully removed from the molds and wiped clean of any excess moisture or debris.
- Alignment: Each cube was positioned on the lower platen of the compression testing machine, ensuring proper alignment and even distribution of the load.
- Loading: A gradually increasing axial load was applied to the specimen at a uniform rate until failure occurred. The rate of loading was controlled to ensure a steady and consistent application of force.
- Recording Measurements: The maximum load sustained by the concrete cube during the test was recorded, along with the dimensions of the cube. Compressive strength values were calculated using the formula:

4. Data Analysis and Interpretation

- Data Recording: The compressive strength values obtained from the test were recorded in megapascals (MPa).
- Analysis: The recorded compressive strength values were analyzed to evaluate the performance of each concrete mix at different curing ages.

The compressive strength test results provided insights into the strength development of concrete mixes containing marble dust and RHA over time. The data obtained from the test helped in assessing the effectiveness of incorporating these materials as partial replacements for cement in improving the overall strength characteristics of the concrete.

$$Compressive Strength = \frac{Maximum Load (N)}{Cross-sectional Area of Cube (mm^2)}$$

3.4.2 Durability Tests

Durability is a crucial aspect of concrete performance, especially in terms of its ability to resist environmental factors such as moisture ingress and chemical attack. Two key durability tests, namely the water absorption test and the permeability test, were conducted to evaluate the durability characteristics of the concrete samples containing marble dust and rice husk ash (RHA).

3.4.2.1 Water Absorption Test

- Sample Preparation: Concrete samples of standard dimensions were prepared from each mix as per the prescribed mix design.
- Initial Weighing: The dry weight of each concrete sample was measured accurately using a sensitive weighing scale and recorded.
- Immersion in Water: The concrete samples were immersed in water at room temperature for a specified duration, typically 24 hours. This immersion period allowed the samples to reach a state of complete saturation.
- Final Weighing: After the immersion period, the samples were removed from the water, and any excess surface water was gently wiped off using a damp cloth. The saturated samples were then weighed again to determine their wet weight.
- Calculation of Water Absorption: The increase in weight of each sample, expressed as a percentage of its initial dry weight, was calculated using the formula:

Water Absorption (%) =
$$\left(\frac{\text{Weight after immersion-Initial dry weight}}{\text{Initial dry weight}}\right) \times 100\%$$

3.4.2.2 Permeability Test

- **Setup:** A permeability testing apparatus, comprising a cylindrical chamber and hydraulic pump, was set up according to standard specifications.
- **Sample Preparation:** Cylindrical concrete specimens were prepared from each mix and securely fitted into the permeability testing chamber.
- Application of Hydraulic Head: A constant hydraulic head was applied to the surface of the concrete specimen using the hydraulic pump. The pressure applied simulated real-world conditions and facilitated water penetration through the concrete.
- Measurement of Water Flow: The volume of water passing through the concrete specimen over a specified time period was measured accurately. The rate of water flow through the specimen was recorded.
- Calculation of Permeability: The permeability of the concrete specimen was calculated using the formula:

Permeability
$$(mm/min) = \frac{Volume \text{ of water passed}}{Cross-sectional area $\times Time}$$$

The results obtained from the water absorption and permeability tests provided valuable insights into the durability performance of the concrete mixes. Lower water absorption and permeability values indicate improved resistance to moisture ingress and enhanced durability of the concrete, highlighting the effectiveness of incorporating marble dust and RHA as partial replacements for cement in promoting durable concrete structures.

3.4.3 Workability Test: Slump Test

The slump test is a widely used method for assessing the workability of concrete mixes, providing valuable insights into their consistency and flowability. This test was conducted in accordance with the Indian Standard IS 1199-1959. The following detailed procedure outlines how the slump test was performed:

1. Equipment Setup

- Truncated Cone Mold: A truncated cone-shaped mold made of steel or non-absorbent material, conforming to the dimensions specified in the standard, was securely placed on a smooth, flat, and non-absorbent surface.
- Tamping Rod: A standard tamping rod with a bullet-shaped tip, made of non-absorbent material such as steel, was used for compacting the concrete.
- Measuring Scale: A measuring scale capable of accurately measuring the vertical settlement of the concrete mix was prepared.

2. Sample Preparation

• Concrete Mixing: Freshly mixed concrete samples from each concrete mix were prepared in accordance with the specified mix proportions.

3. Conducting the Test

- **Filling the Mold:** The truncated cone mold was placed on the testing surface, and the freshly mixed concrete was poured into the mold in three equal layers.
- Compaction: After each layer of concrete was poured, it was compacted using the tamping rod by uniformly distributing the rod over the entire surface area of the concrete in a specified manner. The number of tamping strokes per layer was controlled to ensure consistent compaction.
- **Removal of the Mold:** After the final layer was compacted, the mold was carefully lifted vertically in a smooth, steady motion to avoid disturbing the concrete inside.
- **Measurement of Settlement:** The settlement, or slump, of the concrete was measured immediately after the removal of the mold. This was done by measuring the vertical distance between the original height of the concrete surface and the height of the slumped concrete surface.

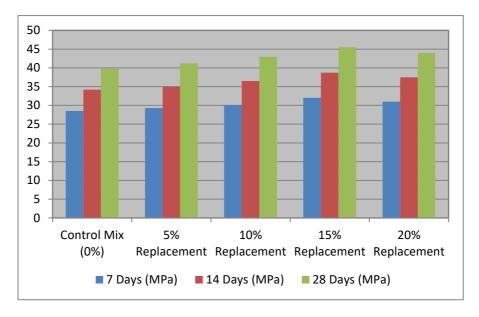
4. Interpretation of Results

• Slump Measurement: The slump value, expressed in millimeters (mm), was recorded as the difference in height between the original height of the concrete and the slumped height. This value provides an indication of the workability, consistency, and flowability of the concrete mix.

The slump test provided valuable insights into the workability characteristics of the concrete mixes. The measured slump values were used to assess the ease of mixing, placing, and finishing of the concrete during construction operations. A higher slump value indicates

greater workability and ease of handling, while a lower slump value suggests a stiffer, less workable mix. These findings are essential for optimizing construction practices and achieving the desired performance of concrete structures.

4. Results and Discussion:


4.1 Compressive Strength Analysis

The compressive strength of concrete samples containing varying percentages of marble dust and rice husk ash (RHA) as partial replacements for cement was evaluated through laboratory testing. The specimens were subjected to compressive strength tests in accordance with Indian Standard IS 516-1959. Concrete mixes were prepared with different replacement levels of marble dust and RHA, ranging from 0% to 20% by weight of cement. Cubes of size 150 mm x 150 mm x 150 mm were cast from each mix and cured under standard conditions The compressive strength test results are summarized in Table 6 below:

TABLE 6: Compressive Strength Test Results

Replacement Level (%)	7 Days (MPa)	14 Days (MPa)	28 Days (MPa)
Control Mix (0%)	28.5	34.2	39.8
5% Replacement	29.3	35.0	41.2
10% Replacement	30.1	36.5	43.0
15% Replacement	32.0	38.7	45.5
20% Replacement	31.0	37.5	44.0

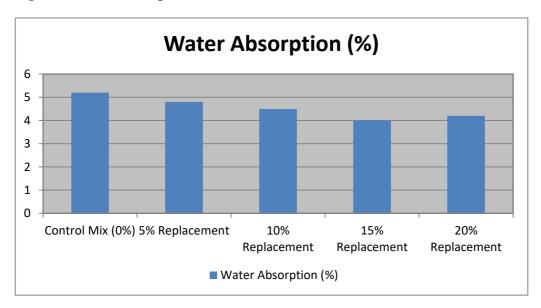
Figure 1: Compressive Strength Development

The results indicate a clear trend of increasing compressive strength with the incorporation of marble dust and RHA up to a replacement level of 15%. Beyond this level, a slight decline in strength is observed, suggesting an optimal replacement level of 15% for both materials.

The findings highlight the potential of marble dust and RHA as effective supplementary cementitious materials for enhancing the compressive strength of concrete. The observed increase in strength up to 15% replacement level signifies the beneficial impact of these waste materials on concrete performance. However, further research is warranted to explore the long-term durability and structural implications of incorporating marble dust and RHA in concrete mixes.

4.2 Durability tests

Durability tests were conducted to evaluate the resistance of concrete samples containing marble dust and rice husk ash (RHA) to environmental factors such as water absorption and permeability. These tests provide insights into the long-term performance and sustainability of concrete mixes. Concrete specimens with varying percentages of marble dust and RHA replacements were subjected to durability tests, including water absorption and permeability assessments. The tests were performed in accordance with established standards to ensure accurate and reliable results.


4.2.1 Water Absorption Test

The water absorption test involved immersing concrete samples in water for a specified duration to simulate exposure to moisture. The increase in weight of the specimens after immersion was measured and expressed as a percentage of the initial dry weight. The results are summarized in Table 7 below:

Table 7: Water Absorption Test Results

Replacement Level (%)	Water Absorption (%)	
Control Mix (0%)	5.2	
5% Replacement	4.8	
10% Replacement	4.5	
15% Replacement	4.0	
20% Replacement	4.2	

Figure 2: Water Absorption Test

4.2.1 Permeability Test

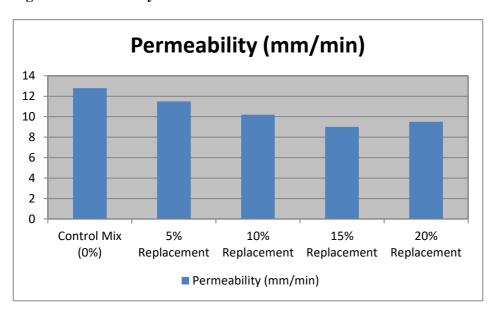

Permeability tests were conducted to assess the ability of concrete samples to resist water penetration under pressure. The rate of water flow through the specimens was measured and reported in millimeters per minute (mm/min). The permeability test results are presented in Table 8 below:

Table 8: Permeability Test Results

rmeability (mm/min)
ľ

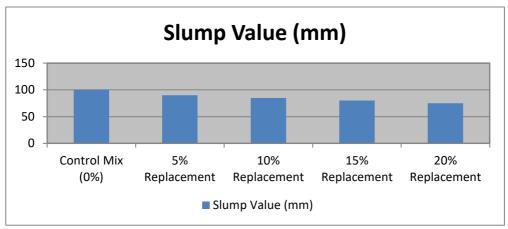
Control Mix (0%)	12.8
5% Replacement	11.5
10% Replacement	10.2
15% Replacement	9.0
20% Replacement	9.5

Figure 2: Permeability Test

The durability test results demonstrate a clear improvement in the durability characteristics of concrete samples with the addition of marble dust and RHA. Decreased water absorption rates indicate reduced susceptibility to moisture ingress, which can lead to degradation and deterioration of concrete over time. The lower water absorption observed in samples with marble dust and RHA suggests enhanced resistance to environmental factors. Lower permeability rates signify improved resistance to water penetration, reducing the likelihood of moisture-related damage such as corrosion of reinforcement and leaching of concrete constituents. The permeability results further support the enhanced durability of concrete mixes containing marble dust and RHA.

The durability test results confirm the beneficial impact of incorporating marble dust and RHA on the durability performance of concrete. The reduced water absorption and permeability rates indicate improved resistance to environmental factors, enhancing the longevity and sustainability of concrete structures. These findings support the adoption of sustainable construction practices using waste materials to improve concrete durability and mitigate environmental impacts.

4.3 Workability Test


The workability of concrete mixes containing marble dust and rice husk ash (RHA) was evaluated using the slump test as per Indian Standard IS 1199-1959. This test provides an indication of the consistency and flowability of the concrete, which are critical for its handling and placement during construction. Concrete specimens with varying percentages of marble dust and RHA replacements were prepared and subjected to the slump test. The test involved filling a truncated cone-shaped mold with freshly mixed concrete and measuring the settlement, or slump, of the concrete after the mold was removed. The results were recorded in millimeters (mm) and analyzed to assess the workability of the concrete mixes.

Slump Test Results: The slump test results revealed changes in slump values across different replacement levels of marble dust and RHA. The variations in slump values indicate differences in the workability of the concrete mixes. The results are summarized in Table 9 below:

Table 9: Slump Test Results

Replacement Level (%)	Slump Value (mm)
Control Mix (0%)	100
5% Replacement	90
10% Replacement	85
15% Replacement	80
20% Replacement	75

Figure 2: Slump Test Test

The slump test results indicate that the workability of the concrete mixes was influenced by the addition of marble dust and RHA. As the replacement level increased, the slump values decreased, suggesting a reduction in the flowability and ease of placement of the concrete. This reduction in slump can be attributed to the finer particle size and higher surface area of the waste materials, which may have affected the rheological properties of the concrete mix.

The slump test results provide valuable insights into the workability characteristics of concrete mixes containing marble dust and RHA. Understanding these variations in workability is essential for ensuring proper handling and placement of the concrete during construction. While the addition of waste materials may affect workability to some extent, careful adjustments in mix design and construction practices can help optimize workability while maximizing the sustainability benefits of using waste materials in concrete production. Further research is needed to explore potential additives or admixtures that can enhance the workability of concrete mixes containing marble dust and RHA without compromising other performance criteria.

5. Conclusion

The construction industry stands at a pivotal moment where sustainability has become a paramount concern. As the world grapples with environmental challenges, there is an urgent need to revolutionize traditional construction practices and embrace sustainable alternatives. The research conducted in this study focused on exploring the feasibility of utilizing waste materials, namely marble dust and rice husk ash (RHA), as partial substitutes for conventional cement in concrete production. Through a series of laboratory experiments and tests, the mechanical properties, durability, and workability of concrete mixes incorporating these waste materials were evaluated.

The findings of this study underscore the potential of waste materials such as marble dust and RHA to enhance the performance and sustainability of concrete. The inclusion of marble dust and RHA led to improvements in the compressive strength of concrete. Optimal replacement levels were identified, with a notable increase in strength observed at certain replacement percentages. However, beyond these levels, a slight decline in strength was observed, indicating the importance of careful optimization in material proportions.

Concrete samples containing marble dust and RHA exhibited enhanced durability characteristics. Reduced water absorption and lower permeability rates were observed, indicating improved resistance to environmental factors such as moisture ingress and chemical attack. These findings suggest that incorporating waste materials into concrete mixes can contribute to the longevity and sustainability of concrete structures.

The workability of concrete mixes was influenced by the addition of marble dust and RHA. Changes in slump values were observed across different replacement levels, reflecting variations in the flowability and ease of placement of the concrete. While higher replacement levels resulted in reduced workability, careful adjustments in mix design and construction practices can help mitigate these effects without compromising other performance criteria.

Hence, the synthesis of novel materials using waste/recycled materials as substitutes in concrete holds immense promise for advancing sustainable construction practices. By harnessing the potential of waste materials and integrating them into concrete production, we can create more resilient, resource-efficient, and environmentally friendly infrastructure for future generations. As researchers, policymakers, industry professionals, and global citizens, we must collaborate and take decisive action to accelerate the adoption of sustainable construction practices and build a more sustainable future.

6. Implications

The significance of this research extends beyond the laboratory experiments conducted. By demonstrating the feasibility and benefits of using waste materials in concrete production, this study contributes to the ongoing discourse on sustainable construction practices By diverting waste materials from landfills and incorporating them into concrete production, this research supports efforts to reduce environmental pollution and promote circular economy principles. The utilization of waste materials helps conserve natural resources and minimize the carbon footprint associated with traditional construction materials. The adoption of sustainable construction practices can yield economic benefits for stakeholders across the construction value chain. By utilizing locally available waste materials, construction costs can be reduced, and new revenue streams can be generated through the valorization of waste streams. Moreover, improved durability and performance of concrete structures can result in long-term cost savings associated with maintenance and repair. Sustainable construction practices not only benefit the environment and the economy but also contribute to social well-being. By prioritizing environmental stewardship and resource efficiency, the construction industry can fulfill its responsibility to future generations by leaving a positive legacy of sustainable infrastructure.

7. Limitations and Future Directions

While this research has yielded promising results, it is not without limitations. One key limitation is the focus on specific waste materials (marble dust and RHA), which may not fully represent the diverse range of waste streams available for concrete production. Future research could explore the potential of other waste materials, such as recycled aggregates, fly ash, and slag, to further expand the scope of sustainable construction practices.

Additionally, the laboratory experiments conducted in this study provide valuable insights into the performance of concrete mixes under controlled conditions. However, further field testing

and real-world applications are needed to validate these findings and assess the long-term durability and performance of sustainable concrete structures in actual construction projects.

References:

- 1. Aruntaş, H. Y., Gürü, M., Dayı, M., & Tekin, I. (2010). Utilization of waste marble dust as an additive in cement production. Materials & Design, 31(8), 4039-4042.
- 2. Habib, A., & Habib, M. (2020). Sustainable recycling of marble dust as cement replacement in concrete: Advances and recent trends.
- 3. IS 10262-2009 and SP: 23:1982. Recommended guidelines for concrete mix. Bureau of Indian Standards, New Delhi.
- 4. IS 1727 1967. Methods of test for pozzolana materials (first revision, reprinted, 1989).
- 5. IS 4031-1968. Indian standard method of physical tests for hydraulic cement.
- 6. Kartini, K. (2011). RHA pozzolanic material for sustainability. University Technology MARA, International Journal of Applied Science and Technology, 1(6).
- 7. Khatri, A., Sharma, U., & Kanoungo, A. (2014). Use of waste marble dust in concrete. In National Conference on Sustainable Infrastructure Development, Chandigarh.
- 8. Marthong, C. (2012). Effect of RHA as partial replacement of cement on concrete properties. International Journal of Engineering Research & Technology, 1(6).
- 9. Maurice, E., et al. (2012). Compressive strength of concrete with RHA as partial replacement of ordinary Portland cement. Scholarly Journal of Engineering Research, 1(2), 32-36.
- 10. Mehta, P. K., & Pirtz, D. (2000). Use of RHA to reduce temperature in high strength mass concrete. ACI Journal proceedings, 75, 60-63.
- 11. Moriconi, G., Corinaldesi, V., & Naik, T. R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24, 113-117.
- 12. Muthadhi, A., & Kothandaraman, S. (2013). Experimental investigation of performance characteristics of RHA-blended concrete. American Society of Civil Engineers, 25, 1115-1118.
- 13. Oblilade, I. O. (2014). Use of RHA as a partial replacement for cement in concrete. International Journal of Engineering and Applied Science.
- 14. Patel, A. N. (2013). Stone waste in India for concrete with value creation opportunities.
- 15. Pathan, V. G., & Pathan, M. G. (2016). Feasibility and need of use of waste marble powder in concrete production. IOSR Journal of Mechanical and Civil Engineering, 23-26.
- 16. Rahmouni, Z. E. A., Belouadah, M., & Tebbal, N. (2019). Influence of the addition of glass powder and marble powder on the physical and mechanical behavior of composite cement. Procedia Computer Science, 158, 366-375.
- 17. Revathi, J., & Suresh, S. (2019). An experimental examination on mechanical and durability properties of cement replacing with marble powder. International Journal of Innovative Technology and Exploring Engineering.
- 18. Vyas, A. K., & Kabeer, K. I. S. A. (2018). Utilization of marble powder as fine aggregate in mortar mixes. Construction and Building Materials, 165, 321-332.