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With the quick development in landscape of cybersecurity, the importance of
DNS firewall solutions has been recently pronounced. Such solutions work as
building blocks in forming inoficial access to various domains, suggesting real-
time protection and gretaly unclear communications. The conventional
paradigm depends heavily on preprepared lists of known malicious domains,
necessitating frequent updates to maintain relevance. However, this method
shows inadequate in yet-to-be-cataloged malicious or domains identifying
emerging, leading to potential vulnerabilities. Throughout this paper, a creative
research endeavor is discussed to shed lights on presenting a cutting-edge DNS
firewall solution that proves the power of Machine Learning (ML) techniques.
The major purpose is to use the real-time detection of malicious domain
requests, thereby critically enhancing cybersecurity protocols. A reasonable
assembled dataset, incorporating 34 intricate features and meticulously recorded
instances totaling 90,000, was critically chosen from genuine DNS logs.
Similarly, it becomes more riched through the careful integration of Open-
Source Intelligence (OSINT) sources. The set goal includes the empowerment
of precise in addition to rapid classification of domain requests as either
malicious or benign.

Keywords: ¢ DNS, Machine learning, Deep learning, Cybersecurity, XGBoost,
SVM, Random Forest, LightGBM.

1. Introduction

The obvious enhancement of the network has called out and introduced the way to
companies as well as entrepreneurs to develop on emerging prospects and engage their
process as well as evolution. The development in the advancements of technology has
ushered in a concomitant surge in critical risks, especially those connected to the increasing
frequency of network security. This paradigm change has created an environment where
many enterprises discover that they are threatened by serious problem from malicious
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presentors seeking unreal and unethical access to sensitive data, as it is happening in the
recent instances [1]. Based on this view and in relation to evolving security landscape,
organizations are obliges to include robust countermeasures as well as strengthening their
cyber defenses to relief the unauthorized inherent in the contemporary digital milieu. In the
domain of network dynamics, it is crucial to announce that the increased intricacy coming
from the extensive and rapid growth of the network infrastructure has concurrently simplify
the emergence of discernible lacunae, thus allowing new and opportunistic assailants with
avenues to incorporate in prohibitive activities. A harmful attempt like the above mentioned
one, if left unsolved, has the abilit to ruin and destroy the confidentiality of different entities
such as transgressing the governmental secrecy as well as manipulating the personal privacy
of everyday users [2].

This considers the crucial significance of measures and comprehensive strategies that are
proactive to enhance the network architecture in the face of danger, building a well secured
and flexible digital ecosystem. In spite of the industrious presence of security services by
companies to decrease possible threats, assailants precisly utilize strategies that varies in
order to control these measures and secretly get the access to the network. It is important to
note that one of the considerable exploited methods by these adversaries include the
manipulation of the Domain Name System (DNS) protocol, working as a conduit to access
restricted data. Some studies have shown the seriousness of this issue, maintaining that a
staggering 87% of companies fell prey to DNS attacks in the year 2021 [3]. This highlights
the real challenges that can be found in cybersecurity efforts, prioritizing a continual
enhancement and reassessment of defensive protocols to achieve the tactics created by
professional threat actors.

As a matter of fact, the Domain Name System (DNS) is considered to be a functional part of
the pivotal internet protocol, framed by the significant responsibility of identifying and
naming computer resources accessible through Internet protocols (IP). DNS efficiently
directs user requests to the ultimate hosting machin which is operating as an intricate
system, facilitate the identification of the sought-after resources manifested in the form of
Uniform Resource Locators (URLS) containing the associated domain name [4]. At its main
part, the crucial aim of the DNS system is to translate these user-friendly URLs into IP
addresses, giving a format which is more comprehensive and yet memorable for users to
navigate the huge expanse of the digital realm. Such transformation attempts to reduce an
issue which is cognitive and is associated with struggling with an integration of arbitrary
letters and numbers, similarly enhancing the act of being moe accessible and usable of the
online resources [5]. The hidden and real goal of the DNS underscores lies in its role in
making the internet more user-friendly, including an easy, understandable, and healthy
communication not only between users but also on the countless collection of computer
resources available on the Internet. Because DNS as an ideas is not connected to data
transfer, in theory it should not be a problem for companies or firms. Regrettably, what is
mention can’t announce and mean that these companies are too safe from DNS-related
threats.

The Domain Name System (DNS) unfolds as systematic process through the operational
framework. Based on the user interaction with a website, including activities such as
browsing or search queries, the Domain Name System (DNS) system specifically

Nanotechnology Perceptions Vol. 20 No.6 (2024)



465 Asma Ahmed A. Mohammed Machine Learning-Powered DNS....

encompasses communication with the nearest root name server. Such interaction is initiated
to solicit responses pertaining to the user's inquiries, referred to as the "requested query."
Building on this, the root server forms connections with Top-Level Domain (TLD) servers,
systematically collating the integral components of the domain name to determine the
comprehensive IP address associated with the designated website. Noteworthy TLDs include
extensions such as ‘.com’, ‘.org’, and ‘.edu’. It is quite worthy to mention that local DNS
serves has an effective role in enabling Internet Service Providers (ISPs) to monitor internet
traffic [6].

Moreover, there exists the inherent possibility for domains to adopt a malevolent disposition
within the intricate domain of Domain Name System (DNS), functioning as conduits for the
propagation of malware, facilitation of Command and Control (C&C) communications, and
hosting of phishing or spam websites [7]. Both the domain hame and subdomain name form
the nefarious domains which lead to a serious threat vector that can precipitate internet
attacks. When utilized to construct malicious Uniform Resource Locators (URLS), the
malevolent nature of these domains becomes more clear. The uniform resource locator
(URL) is made up, converging to constitute the host name. This host name function as a
representative identifier for the computing entity that hosts the pertinent internet resource.
Through the intricacies of these irrelated processes, the importance of vigilant cybersecurity
measure to counteract the potential exploitation of DNS vulnerabilities in the ever-evolving
landscape of online threats is shown.

The historical landscape of many domain detection initially relied on conventional methods
and strategy, including the examination of web content, URL inspection, and the analysis of
network traffic. However, as technological sophistication advanced, a pivotal transformation
transpired, ensuring the integration of artificial intelligence (Al) for the automated
identification of malicious domains [8]. This contemporary era allows the application of
advanced Al methods, getting away from traditional strategies and allowingd a more
proactive and adaptive stance.

This progress in the side of malicious domain detection commenced with elementary
techniques like case-based and rule-based approaches, gradually developed to have more
sophisticated methodologies, prominently featuring machine learning (ML) techniques. The
initial emphasis was primarily on discerning the input-output relationships, with less
consideration for understanding the intricate when mentioning the machine learning
domain’s supervision, processes generating the output. The current investigation focuses on
the overarching aim of evaluating the effectiveness of diverse ML techniques, including
Support Vector Machine (SVM), XGBoost, RandomForest, Deep Neural Network, and
LightGBM. This assessment specially focuses on their ability to discern the malicious
attributes embedded in DNS logs, relying on the extraction of specific features. The purpose
is to delineate the nuanced efficacy of each ML technique, contributing to the accurate
identification and classification of malicious domains within the dynamic landscape of
cybersecurity.

The operational process of the Domain Name System (DNS) can be delineated as follows:
When a user engages with a website and initiates a search, the DNS system navigates to the
nearest root name server to ascertain the answers corresponding to the user's "requested
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query." Subsequently, the root server interfaces with the Top-Level Domain (TLD) servers
to assemble the constituent parts of the domain name, thereby establishing the complete IP
address of the website. Examples of TLDs include, but are not limited to, .com, .org, and
.edu. Furthermore, local DNS servers facilitate the oversight of internet traffic by Internet
Service Providers (ISPs). This procedural orchestration ensures that users are directed to the
correct IP addresses corresponding to their requested queries, contributing to the efficient
and accurate functioning of the DNS infrastructure. The detailed workflow of how DNS
works in described in Figure 1 below.
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Figure 1. The Workflow of General DNS System

Our study has made noteworthy contributions in the pursuit of advancing cybersecurity.
First, a development of a Tailored Machine Learning Model which has made a specialized
machine learning model adept at discerning malicious domains within a comprehensive
dataset including both malicious and benign domains. Second, the Algorithmic Analysis for
Al-based Firewall has conducted a meticulous comparative analysis involving five distinct
algorithms, culminating in the conceptualization and development of an advanced artificial
intelligence (Al)-based firewall. Furthermore, the structure of the paper is divided into five
major parts. To start with, the introduction Provides an overview of the study's objectives
and significance. Then, the literature review, section two, offers insights into recent
advancements in detecting malicious DNS activities, laying the foundation for the current
study. Next, the methodology, section three, delves into the comprehensive methodology,
elucidating crucial considerations like dataset selection, data preparation, feature extraction,
and a detailed algorithmic description. Moreover, results and evaluation, section four,
present the findings derived from the study, accompanied by a detailed exposition of the
evaluation metrics employed to assess the model's performance. Finally, the conclusion,
section five, summarizes the study's key outcomes, implications, and concluding remarks,
contributing to the broader discourse on cybersecurity.

2. Literature Review

In the context of existing research studies, a multitude of studies have explored innovative
technologies to discern the malignancy or benign nature of domains. Recent investigations
have prominently focused on leveraging deep learning architectures to enhance existing
methodologies. Similarly, a substantial body of literature has centered on domain
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classification by using the machine learning techniques. This section lists some
comprehensive reviews of noteworthy studies employing machine learning methods for
domain classification.

Han and Zhang [9] have proposed, in their seminal work, the CLEAN method as an
innovative approach for benign domain detection. Utilizing a passive DNS approach, the
CLEAN method comprises three integral stages: data pre-processing, stability detection, and
the application of a Naive Bayesian classifier. The data pre-processing phase involves the
meticulous filtration of a substantial volume of irrelevant domains. Subsequently, stability
detection contributes to the identification of additional domain names, followed by the Naive
Bayesian classifier discerning benign domains within a vast dataset. Experimental validation
based on authentic data from a province in China demonstrated the efficacy of the CLEAN
model, achieving an impressive average accuracy of 92.2% and an average recall percentage
of 82.1%. Noteworthy features employed for classification, drawn from previous studies,
encompass specific TTL ranges, TTL variance, length of LMS percentage, average TTL,
TTL changes, the number of different TTLs, and numerical characters’ percentage. The
CLEAN model has showcased significant efficacy despite having a lower recall value
attributed to disparities between domain names detected by stability detection in the
verification sample and those in the experimentation sample.

In a distinct scholarly endeavor, Antonakasis et al. [10] have introduced the Notos model,
conceived as a comprehensive reputation system for DNS. Employing passive DNS data,
this model systematically analyzes domain features and constructs a framework
incorporating both malicious and benign domains. Subsequently, the framework is utilized to
generate a reputation score for a new domain, signifying its potential malicious or benign
nature. The experimentation phase involved approximately 1.5 million users engaged in
collecting DNS traffic within a large Intrusion Prevention System (IPS) network. In fact, the
results have shown the exceptional abilities of the model to accurately identify malicious
domains, achieving a minimal 0.38% false positive rate and an outstanding accuracy of
96.8%. The features chosen for this investigation were systematically classified into three
distinct categories: network-based features, zone-based features, and evidence-based
features. The reputation engine operates in both offline and online training modes.

Furthermore, Khan et al. [11] have introduced a nuanced model for malicious domain
detection, utilizing explainable artificial intelligence. Initial exploration involved various
machine learning techniques, progressing to ensemble models such as CatBoost, Adaboost,
and Extreme Gradient Boosting (XGB). Rigorous testing on a meticulously pre-processed
dataset, coupled with Sequential Forward Feature Selection for feature optimization,
demonstrated the robust performance of machine learning algorithms in distinguishing
between malicious and benign domains. Particularly noteworthy was the Extreme Gradient
Boosting model, achieving an outstanding accuracy rate of 98.18%, underscoring the
effectiveness of their approach in enhancing precision within the realm of cybersecurity.

Marques, et al. [12] have presented a study which focuses on the development and
implementation of a Machine Learning (ML)-based DNS firewall solution aimed at
enhancing the detection of malicious domain requests in real-time. Leveraging a dataset with
34 features and 90,000 records derived from authentic DNS logs and enriched through Open-
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Source Intelligence (OSINT) sources, the research undergoes exploratory analysis, data
preparation, and applies various supervised ML algorithms. The results demonstrate
accuracy rates between 89% and 96%, with a classification time ranging from 0.01 to 3.37
seconds. The study contributes to research by providing a publicly available dataset and a
replicable methodology for other researchers. In terms of a practical solution, the work lays
the foundation for an in-band DNS firewall. Simultaneously, the CART algorithm proves
optimal, and the study introduces considerations on the effectiveness of automatic ML
processes. The proposed DNS firewall, which does not impact the core DNS service, holds
promise for real-world applications, with acknowledgment of the need for further testing in
diverse scenarios to enhance robustness.

Mahdavifa, et al. [13] have addressed the pervasive threat of malicious domains and the
imperative need for timely detection and classification. The authors highlight the historical
challenges of relying on blacklists for domain detection and underscore the evolving role of
machine learning techniques in enhancing detection capabilities. The study suggests a robust
system based on three distinct categories of features: DNS statistical, lexical, and third-party
features extracted from deep analysis of DNS traffic. The authors present a substantial
13,011 malicious samples and dataset comprising 400,000 benign, mirroring real-world
scenarios. The methodology involves training and validating a classification model, with k-
Nearest Neighbors (k-NN) achieving high performance, particularly an impressive 99.4%
Fl-score for imbalanced data ratio (97/3%). Feature evaluation using information gain
analysis identifies third-party features as pivotal, constituting 58% of the top 13 influential
features. The authors release their dataset and propose future work to enrich feature sets,
demonstrating the article's comprehensive contribution to advancing the field of malicious
domain classification using DNS traffic analysis.

3. Methodology

This paper focuses on the categorization of domains into either malicious or benign
categories. The classification methodology involves training on a contemporary DNS dataset
through the utilization of supervised machine learning algorithms. The schematic
representation in Figure 1 delineates the essential steps the model will execute to
categorically classify the provided DNS logs as either malicious or non-malicious. These
procedural steps include reading the dataset, preprocessing the dataset, executing feature
selection, and employing both machine learning algorithms and deep neural networks.
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Figure 2. General Workflow of the Proposed Model for DNS logs Classification
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3.1 Dataset

The dataset employed for this research has been meticulously curated to facilitate a thorough
supervised machine learning analysis aimed at discerning between malicious and non-
malicious domain names. Carefully constructed from publicly available DNS logs
encompassing both categories, the dataset comprises a total of 90,000 domain names. A
deliberate effort has been made to maintain a balanced distribution, allocating 50% of the
dataset to non-malicious domain names and the remaining 50% to malicious ones [14].

Within this dataset, a myriad of features has been extracted from the domain names to
provide a rich set of attributes for analysis. Within the domain of critical attributes, there
exist foundational characteristics integral to the analysis of domain names. These attributes
encompass intrinsic elements, notably the domain name itself, entropy, the occurrence of
unconventional characters, and the length of the domain name. These fundamental features
serve as pivotal indicators in the comprehensive examination of domains within the context
of our research. Additionally, data enrichment techniques, such as Open-Source Intelligence
(OSINT), have been employed to obtain supplementary features. These features encompass
domain creation date, IP address, open ports, geolocation, and registration information.

The comprehensive set of 34 features encompasses a diverse array of aspects, ranging from
DNS response details and organizational associations to top-level domains, reputation
scores, character ratios, and sequence lengths. This multifaceted feature set is designed to
offer nuanced insights into the characteristics of the domains under consideration. Through
this meticulous approach, the dataset is poised to contribute to a robust analysis for
effectively distinguishing between malicious and non-malicious entities in the realm of DNS.

TABLE I. FEATURES IN THE DATASET FOR MALICIOUS AND NON-MALICIOUS
DOMAIN CLASSIFICATION

No. Feature Description

1 Domain Domain name

2 DNSRecordType DNS record type queried

3 MXDnsResponse Response from a DNS request for the record type
MX

4 TXTDnsResponse Response from a DNS request for the record type
TXT

5 HasSPFInfo Presence of Sender Policy Framework attribute

6 HasDkimlInfo Presence of Domain Keys Identified Email attribute

7 HasDmarclInfo Presence of Domain-Based Message Authentication

8 1P IP address for the domain

9 DomaininAlexaDB If the domain is registered in the Alexa DB

10 CommonPorts Presence of the domain on common ports

11 CountryCode Country code associated with the IP of the domain

12 RegisteredCountryCode Country code defined in the domain registration
process

13 CreationDate Creation date of the domain

14 LastUpdateDate Last update date of the domain

15 ASN Autonomous System Number for the domain

16 HttpResponseCode HTTP/HTTPS response status code for the domain

17 RegisteredOrg Organization name associated with the domain

18 SubdomainNumber Number of subdomains for the domain

19 Entropy Shannon Entropy of the domain name

20 EntropyOfSubDomains Mean value of the entropy for the subdomains

21 StrangeCharacters Number of characters different from [a-zA-Z]

22 TLD Top Level Domain for the domain
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23 IpReputation Result of the blocklisted search for the IP

24 DomainReputation Result of the blocklisted search for the domain

25 ConsoantRatio Ratio of consonant characters in the domain

26 NumericRatio Ratio of numeric characters in the domain

27 SpecialCharRatio Ratio of special characters in the domain

28 VowelRatio Ratio of vowel characters in the domain

29 ConsoantSequence Maximum number of consecutive consonants in the
domain

30 VowelSequence Maximum number of consecutive vowels in the
domain

31 NumericSequence Maximum number of consecutive numbers in the
domain

32 SpecialCharSequence Maximum number of consecutive special characters
in domain

33 DomainLength Length of the domain

34 Class Class of the domain (0: malicious, 1: non-malicious)

Table | furnishes a comprehensive overview of the diverse features incorporated within the
dataset utilized for the supervised machine learning analysis. The primary objective of this
analysis is to classify domain names into distinct categories, specifically distinguishing
between malicious and non-malicious entities. Each feature encapsulated in the table plays a
crucial role in providing valuable insights into the nuanced characteristics of the domains
under consideration.

These features collectively serve as the foundational elements for the development of robust
machine learning models tailored for cybersecurity applications. By harnessing the
information gleaned from these features, the models can be finely tuned to enhance their
efficacy in accurately classifying domain names, thus contributing to the broader objectives
of cybersecurity analysis and threat detection.

Class Distribution
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Figure 3. Class Distribution of the Dataset

Figure 3, titled "Class Distribution of the Dataset," provides a representation of the balanced
distribution of classes within the dataset, particularly focusing on threat detection. The box
plot clearly depicts an equitable distribution, with an equal representation of malicious and
non-malicious domain names, each constituting 50% of the total data.
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This balanced class distribution is a crucial aspect in the context of threat detection as it
ensures a fair and unbiased representation of both classes. The equal distribution of
malicious and non-malicious instances facilitates a robust and evaluation training of machine
learning models designed for effective domain classification. By maintaining parity between
the two classes, the dataset enables models to learn and generalize patterns without being
skewed towards one class over the other. Consequently, the balanced class distribution
depicted in Figure 2 lays a solid foundation for the development of accurate and reliable
machine learning models for threat detection in the domain classification task.

3.2 Data Preprocessing

In the preprocessing phase, a series of crucial steps were meticulously executed to optimize
the dataset for efficient machine learning model training. It included the Column Removal
where certain columns deemed non-contributory to the classification task were strategically
eliminated. Notable exclusions encompassed 'RegisteredCountry,” 'RegisteredOrg,'
'‘CountryCode," 'Domain,' 'DNSRecordType,' and 'TLD.' Also, Handling Null Values existed
which follows the removal of specified columns, a thorough check for null values was
conducted. Fortunately, the dataset, post-column removal, exhibited the absence of any null
values. Then follows the Boolean Column Conversion aiming to streamline the model
training process, boolean columns, including TXTDnsResponse,’ 'MXDnsResponse,'
'HasSPFInfo," 'HasDmarcinfo,” 'DomainlnAlexaDB,"” 'CommonPorts,” 'HasDkimlnfo,'
'IpReputation,” and 'DomainReputation,’ underwent conversion to numerical values (O for
False, 1 for True). After that, Min-Max Normalization lists all numerical features within the
dataset underwent min-max normalization. This crucial step ensures uniformity in scale
across all features, preventing any singular feature from unduly influencing the learning
process. Train-Test Split where the preprocessed dataset was judiciously partitioned into
distinct training and testing sets. The training set served as the foundation for training
machine learning models, while the testing set was reserved for evaluating model
performance. Lastly, the above meticulous sequence of steps collectively contributes to the
creation of a pristine, well-structured dataset. Such a dataset, marked by its cleanliness,
balance, and structural integrity, proves highly conducive to training robust machine learning
models. The ultimate goal is to enable the effective classification of domain names into
either malicious or non-malicious categories.

3.3 Feature selection

Feature selection stands as a pivotal phase in the realm of machine learning, dedicated to
discerning and preserving the most informative attributes that wield substantial influence
over a model's predictive prowess. The employed feature selection algorithm leveraged the
chi-squared test methodology via the SelectKBest method. This strategic approach was
undertaken to pinpoint the utmost relevant features crucial for accurate prediction of DNS
threat classifications. Within the expansive array of features, the algorithm decisively
identified 14 elements as paramount in their influence, pivotal for effectively distinguishing
between benign and malicious DNS activities which are divided as the follow:

. MXDnsResponse
. TXTDnsResponse
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o HasSPFInfo

o CommonPorts

J CreationDate

o LastUpdateDate

o HttpResponseCode
o StrangeCharacters
o IpReputation

J ConsonantRatio

o NumericRatio

o VowelRatio

o NumericSequence
o DomainLength

Collectively, these characteristics furnish pertinent information to machine learning models,
facilitating precise predictions. The process of feature selection serves to diminish
dimensionality, enhance model interpretability, and potentially augment the model's ability
to generalize effectively to previously unseen data. The chosen features encapsulate pivotal
facets of DNS-related data, encompassing response characteristics, content types, security-
related details, and structural attributes. These elements are considered indispensable for
discerning between ordinary and malicious DNS activities.

3.4 Machine Learning Models
a) XGBoost:

The XGBoost algorithm, recommended by Chen and Guestrin [15], is founded on the GBDT
structure. In contrast to GBDT, XGBoost incorporates a regularization term in its objective
function to prevent overfitting. The main objective function is described a

0 =Z L{yy F(x)) +Z R(F) +C

. . . k c, .
Were  R(fi) shows the regularization term at iteration , and being a constant that
can be electively.
Regularization term R (fx} written as,

H
1
R =al +51 ) w?
-1
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o, ) H -
Where is the complexity of leaves, denotes the number of leaves, 7 signifies

penalty variable, and  ©j utput results in each leaf node. Leaves denote the expected
categories based on classification criteria, w eaf node denotes the tree node which cannot be
divided.

Furthermore, unlike GBDT, XGBoost employs a second-order Taylor series of main
functions rathe rst-order derivative. If the loss function is the mean square error (MSE), then
the main function may be wri

0 :Z
-1

Where  glx:) is a function that maps data points to leaves, g:iand ki represents loss
function's first a lerivatives, respectively.
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The final loss value is calculated by adding all of the loss values together. Because samples
orresponds to nodes of leaf, the ultimate loss value can be calculated by adding loss values of

the leaf " esult, the main function can be written as:

: . 2
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=

where Fr = ZuyPe@ = Eiey @i and i are the total number of samples in leaf node 7

b) Random Forest

Random Forest (RF) has emerged as a widely adopted machine learning technique renowned
for its simplicity and versatility. Proposed by Breiman in 2001, RF serves as a supervised
learning approach applicable to both classification and regression tasks [16]. This integrated
learning method harnesses the strength of multiple decision trees (DT) to augment prediction
accuracy, employing techniques such as majority voting or mean aggregation, depending on
the specific task.

Given an input dataset characterized by values Q=q_1, q_2, q_3, ..., g_n, with n denoting the
dataset's size, an RF model is constituted by a set of T trees, denoted as T_1(Q), T_2(Q),
T 3(Q), ..., T_n(Q). The forecasted results of these decision trees are represented as (R_1)"
(R_2), ..., (R_n)" In the context of regression tasks, the final output of the RF model is
determined by averaging the prediction outcomes across all individual trees.

The process of constructing decision trees within Random Forests (RF) involves partitioning
initial training sets into smaller subsets. At each split, only a random subset of predictive
elements is chosen. To control the growth of trees and prevent indefinite expansion, stopping
criteria such as the Gini Diversity Index, Root Mean Square Error (RMSE), or Mean
Squared Error (MSE) are incorporated. In the final RF model, trees that exhibit accurate
predictions are retained, while those with lower predictive power are excluded. This
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systematic methodology guarantees the creation of an efficient ensemble model capable of
providing resilient and accurate predictions across a variety of scenarios.

¢) Support Vector Machine (SVM)

In 1995, Vapnik introduced Support Vector Machines (SVM), a learning algorithm widely
embraced for its efficacy in addressing both linear and nonlinear regression problems [17].
Acknowledged for its capacity to navigate high-dimensional feature spaces, SVM offers
robust and dependable predictions, demonstrating notable resistance to noise [18] [19]. The
literature extensively documents numerous successful implementations of SVM across
various disciplines, adeptly handling challenges in both classification and regression [20]
[21] [22].

Succinctly summarizing the foundational theory of SVM involves considering a designated
training set {(u_k, v_k), k=1,2,...,n} for an SVM model. In this context, u k=[u_ 1k, u 2k,
..., u_nk]eR™(n_k) represents the input data, v_keR™(n_m) corresponds to the output data
for u_k, and n denotes the number of training samples. The primary goal of SVM is to
determine an optimal hyperplane function denoted as f(x), defined by the weight vector w,
and the offset b.

d) LightGBM

LightGBM, an acronym for Light Gradient Boosting Machine, represents a robust and highly
efficient gradient boosting framework meticulously crafted for distributed and streamlined
training processes. Falling within the spectrum of boosting algorithms, renowned for their
adeptness in amalgamating weak learners, typically manifested as decision trees, into a
formidable learner, LightGBM distinguishes itself through its notable attributes of speed,
minimal memory consumption, and elevated efficiency. These characteristics render it
particularly well-suited for managing expansive datasets and intricate problem domains.

In contrast to conventional gradient boosting methodologies, LightGBM adopts a leaf-wise
growth strategy in lieu of a level-wise approach. This strategic choice results in a diminished
number of levels within the trees, thereby optimizing the efficiency and hastening the
training process. Furthermore, LightGBM integrates a histogram-based learning technique,
enhancing the training phase by discretizing continuous features into bins.

e) Deep Neural Network (DNN)

A Deep Neural Network, often referred to as a neural network or artificial neural network,
constitutes a class of machine learning models inspired by the architectural and functional
principles of the human brain. DNNs are comprised of layers of interconnected nodes
(neurons) designed to process and transform input data, ultimately yielding an output.
Noteworthy for their incorporation of multiple hidden layers, these networks possess the
capacity to discern intricate patterns and representations from intricate datasets. Deep
learning, a subset of machine learning, has garnered significant attention due to its inherent
capability to autonomously acquire hierarchical features and representations from
unprocessed data.

DNNs exhibit notable proficiency in tasks such as image and speech recognition, natural
language processing, and various other intricate pattern recognition challenges. The training
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process of a DNN involves iteratively adjusting the weights of the connections between
neurons through optimization algorithms and backpropagation. This dynamic adjustment
mechanism facilitates the model's adaptability and continual enhancement of its performance
over time.

4, Results

The machine learning models, such as Support Vector Machine (SVM), Random Forest,
XGBoost, LightGBM, and Deep Learning Neural Network, were subjected to an evaluation
aimed at classifying domain names into either malicious or non-malicious categories. The
SVM model exhibited a noteworthy accuracy of approximately 96.81%, demonstrating
balanced performance across precision, recall, and F1-score for both malicious and benign
domains. Surpassing this, the Random Forest model achieved a higher accuracy of about
98.13%, showcasing robust performance across all evaluation metrics. Similarly, the
XGBoost model demonstrated an accuracy of approximately 98.21%, accompanied by
effective precision, recall, and F1-score for both classes. The LightGBM model attained an
accuracy of about 98.12%, maintaining balanced performance metrics. Additionally, the
Deep Learning Neural Network yielded a competitive accuracy of 97.85%.

4.1 Support Vector Machine (SVM)

The Support Vector Machine (SVM) model demonstrated a commendable level of
performance, achieving an accuracy of approximately 96.81%. Precision, recall, and F1-
score metrics for both malicious (Class 0) and benign (Class 1) domains hovered around
97%, indicative of a well-balanced performance. Examination of the confusion matrix
presented in Figure 3 reveals the model's adeptness in correctly identifying a significant
number of instances for both classes, with only a limited number of misclassifications.

In the graphical representation, correct classifications are represented by a dark blue color,
while failed classifications are denoted by a light blue color. For instance, the SVM
accurately classified 8567 samples as benign, which were indeed benign, and similarly,
correctly identified 8859 samples as malicious. Notably, the model exhibited a low
misclassification rate, failing to correctly classify only 287 samples between benign and
malicious. This result is particularly noteworthy given the overall success achieved in other
aspects of the classification task.

SVM Confusion Matrix
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Figure 4. SVM Confusion matrix
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4.2 Random Forest

The Random Forest model exhibited superior accuracy at approximately 98.13% compared
to the SVM. Precision, recall, and Fl1-score for both classes also hovered around 98%,
indicating robust performance. An examination of the confusion matrix in Figure 4
underscores the model's proficiency in accurately classifying instances for both benign and
malicious classes, with a minimal number of misclassifications.

Specifically, the Random Forest correctly classified 8,649 samples as benign, accurately
identifying them as such. Similarly, it correctly identified 9,015 samples as malicious,
aligning with their true malicious nature. However, the model encountered challenges in
classifying 205 samples that were genuinely benign but were misclassified as malicious.
Conversely, 131 samples that were truly malicious were erroneously labeled as benign.
These results underscore the Random Forest's heightened accuracy compared to the SVM,
providing more reliable data.
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Figure 5. Random Forest Confusion Matrix
4.3 XGBoost

The XGBoost model demonstrated a notable accuracy of approximately 98.21%, with
precision, recall, and F1-score consistently hovering around 98% for both classes. The
accompanying confusion matrix depicted in Figure 5 underscores its robust performance,
accurately categorizing a substantial number of instances for both benign and malicious
classes, with minimal misclassifications.

Specifically, the XGBoost model accurately classified 8,665 samples as benign, which were
genuinely benign, and correctly identified 9,012 samples as malicious, reflecting their true
nature. However, it encountered challenges in classifying 189 instances that were truly
benign, misclassifying them as malicious, and erroneously classified 134 truly malicious
samples as benign. This analysis substantiates the superiority of the XGBoost model over
Random Forest and SVM, affirming its accuracy and reliability in providing trustworthy
data.

Nanotechnology Perceptions Vol. 20 No.6 (2024)



477 Asma Ahmed A. Mohammed Machine Learning-Powered DNS....

XGBoost Confusion Matrix
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Figure 6. XGBoost Confusion Matrix
4.4 LightGBM

The LightGBM model demonstrated a commendable level of performance, achieving an
accuracy rate of approximately 98.12%. Consistent with other models, precision, recall, and
Fl-score for both classes hovered around 98%. The accompanying confusion matrix,
presented in Figure 6, visually conveys the model's effective classification, revealing a
minimal number of misclassifications.

Specifically, LightGBM accurately classified 8,640 samples as Benign that were indeed
benign, and similarly, correctly identified 9,021 samples as Malicious that were genuinely
malicious. However, it exhibited challenges in classifying 214 samples that were truly
benign as malicious and misclassified 125 samples that were genuinely malicious as benign.
This observation underscores that, while LightGBM falls short of the accuracy achieved by
XGBoost and Random Forest, it outperforms Support Vector Machines (SVM) in terms of
classification accuracy.

LightGBM Confusion Matrix
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Figure 7. LightGBM Confusion Matrix
4.5 Deep Learning Neural Network

By exhibiting a commendable level of performance of the Deep Learning Neural Network, it
appear to be an impressive accuracy rate of 97.85%. The precision, recall, and F1-scores for
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both classes approached an exceptional 98%, as meticulously detailed in the comprehensive
confusion matrix presented in Figure 7. This matrix underscores the model's efficacy in
achieving accurate classification while minimizing instances of misclassification.

Within the dataset, the DNN showcased its robust capabilities by accurately classifying
8,623 samples as Benign, all of which were verifiably benign, and 8,978 samples as
Malicious, all of which were unequivocally malicious. Nevertheless, the model revealed
certain limitations, manifesting in the misclassification of 231 samples as benign when they
were, in fact, benign, and 168 samples as malicious when they were genuinely benign.

This nuanced analysis highlights that, while the DNN demonstrates proficiency in
classification tasks, it falls short of the accuracy levels attained by other formidable models
such as XGBoost, Random Forest, and LightGBM. Interestingly, the DNN outperforms
Support Vector Machine (SVM) in terms of classification accuracy, yet there remains room
for improvement to align with the exemplary standards set by other advanced machine
learning models.
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Figure 8. Deep Neural Network Confusion Matrix

Figure 9 bellow depicts the training progression of the Deep Learning (Neural Network)
model across 20 epochs, where each epoch corresponds to a complete iteration through the
entire training dataset. The graph illustrates the fluctuations in both training and validation
loss (measured using binary cross-entropy) as well as accuracy at each epoch. The loss
metric quantifies the disparity between predicted and actual values, while accuracy serves as
a measure of the model's overall correctness. In the initial epochs, notable enhancements in
the model's performance are evident, as reflected by a simultaneous reduction in both
training and validation loss. Following this initial phase, the model reaches a point of
stability, attaining a high level of accuracy. This visual representation offers valuable
insights into the convergence and generalization performance of the model throughout the
duration of the training process.
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Figure 9. The training progression of the Deep Learning (Neural Network) model

The Area Under the Curve (AUC) serves as a quantitative metric for assessing the efficacy
of binary classification models, commonly applied within the context of receiver operating
characteristic (ROC) curves. The ROC curve provides a graphical representation of the
compromise between the true positive rate (sensitivity) and false positive rate (1-specificity)
across different classification thresholds. AUC quantifies the area beneath this curve,
offering a singular value for evaluating a model's capacity to differentiate between the two
classes.

The Support Vector Machine (SVM) model demonstrates commendable discriminatory
capability, attaining an AUC of 0.9681, indicative of its proficiency in discerning between
malicious and non-malicious instances. The model exhibits satisfactory performance in the
accurate classification of positive and negative cases.

XGBoost showcases outstanding discriminatory power, registering an AUC of 0.9820. Its
notable ability to distinguish between the two classes underscores its effectiveness as a
classification model, contributing to its high performance.

The Random Forest model achieves a notably elevated AUC of 0.9813, signaling robust
performance in discriminating between instances of malignancy and non-malignancy. The
ensemble nature of the model significantly contributes to its overall effectiveness.

The Deep Neural Network (DNN) model displays a robust AUC of 0.9778, indicative of its
capability to make precise predictions and distinguish between the two classes. While
marginally lower than some other models, it remains a formidable performer.

LightGBM attains an AUC of 0.9811, underscoring its effectiveness in classification tasks.
The model excels in discerning between malicious and non-malicious instances, further
substantiating its commendable overall performance.
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Figure 10. Receiver Operating Characteristics (ROC)

This graphical representation illustrates the Receiver Operating Characteristic (ROC) curves
for each model, delineating the true positive rate against the false positive rate across diverse
classification thresholds. The Area Under the Curve (AUC) values associated with each
curve serve as quantitative measures of the discriminative performance of the respective
models. A larger AUC is indicative of a superior model with enhanced discriminatory
capabilities. In the context of this figure, the visual depiction underscores that XGBoost
attains the highest AUC, underscoring its exceptional discriminatory power. Following
closely are Random Forest and LightGBM, both exhibiting commendable AUC values,
suggesting robust performance. Meanwhile, Support Vector Machine (SVM) and Deep
Neural Network (DNN) also demonstrate proficient performance, albeit with slightly lower
AUC values, affirming their effectiveness in classification tasks. This nuanced analysis of
the ROC curves and associated AUC values provides a comprehensive perspective on the
relative strengths of each model in terms of their discriminative abilities.
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Figure 11. Bar Plot Representation of the Performance Metrics of Our Algorithms

The presented bar plot illustrates the outcomes as follows: Correct classifications are
represented by a dark blue color, while failed classifications are indicated by a light blue
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color. For instance, the SVM accurately classified 8,567 samples as Benign, correctly
identifying them as truly benign. Similarly, it successfully classified 8,859 samples as
Malicious, accurately identifying them as truly malicious. Notably, the model exhibited a
low failure rate in classifying only 287 samples between benign and malicious, indicating a
high level of accuracy compared to other instances of successful classifications.

4.6 Results Discussion

Upon a comprehensive comparative analysis of our study's outcomes against those of other
pertinent investigations, a discernible trend emerges, unequivocally affirming the superior
efficacy of the algorithms employed in our research. Noteworthy is the exemplary
performance of our Support Vector Machine (SVM), attaining an accuracy of 0.9681, a
marked improvement over the 0.910 reported in the DNS Firewall Based on Machine
Learning study [12] and the 61.2% recorded in the Classifying Malicious Domains using
DNS Traffic Analysis study [13].

Moreover, our study establishes a conspicuous advantage in terms of precision, recall, and
Fl-score, pivotal indicators of accuracy, when juxtaposed with the aforementioned
referenced studies. This notable superiority extends uniformly across all algorithms
examined in our research, namely Random Forest, XGBoost, LightGBM, and Deep
Learning, attesting to the consistent and elevated performance of our models across various
metrics in contrast to those presented in the cited papers.

Nevertheless, a judicious interpretation of these results is imperative, considering the
potential contingencies affecting actual performance. Factors such as dataset selection,
feature extraction methodology, and model configuration settings wield considerable
influence. Furthermore, it is pertinent to acknowledge that the Classifying Malicious
Domains using DNS Traffic Analysis study [13] utilized a distinct dataset, necessitating a
nuanced consideration of observed disparities and caution in drawing direct comparisons.

In conclusion, our findings substantiate a substantial enhancement in the classification of
DNS threats through the adept application of machine learning techniques. As we celebrate
the advancements achieved, it is incumbent upon us to remain circumspect and recognize the
nuanced intricacies that may influence performance, thereby fostering a more nuanced
understanding of the evolving landscape of cybersecurity threats and the corresponding
efficacy of our proposed solutions.

Table 2. Summary Of Results

Algorithm Our Paper Accuracy Paper [12] Paper [13]
SVM 0.9681 0.910 61.2
LR - 0.913 76.9
LDA - 0.907 -
KNN - 0.957 94.8
CART - 0.961 -
NB - 0.897

Random Forest 0.9813 -

XGBoost 0.9821

LightGBM 0.9812

Deep  Learning  (Neural | 0.9785

Network)

MLP - - 72.2
GNB - - 78.2
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5. Conclusion

Our research represents a significant advancement in the domain of cybersecurity,
particularly addressing the significant role of DNS firewall solutions. The escalating
complexity of cyber threats necessitates innovative approaches, and our study has diligently
explored the integration of cutting-edge Machine Learning (ML) techniques to enhance the
real-time detection of malicious domain requests. The meticulous construction of a dataset,
incorporating 34 intricate features and comprising 90,000 meticulously recorded instances
derived from authentic DNS logs, enriched with Open-Source Intelligence (OSINT) sources,
underscores the rigor and depth of our research methodology. By leveraging this
comprehensive dataset, our primary objective was to empower a DNS firewall solution
capable of accurately and promptly classifying domain requests as either malicious or
benign. Notably, our Support Vector Machine (SVM) achieved an accuracy of 0.9681,
surpassing previous studies in the field. This trend persisted across all algorithms
investigated, including Random Forest, XGBoost, LightGBM, and Deep Learning,
demonstrating consistently elevated accuracy and key performance metrics such as precision,
recall, and F1-score. Based on these considerations, our study relates substantively to the
discourse on DNS threat classification, offering a robust framework for enhancing
cybersecurity protocols. While recognizing the advancements achieved, we focused for
ongoing scrutiny and refinement, acknowledging the dynamic nature of the cybersecurity
landscape. Lastly, our results underscore the efficacy of integrating machine learning
techniques in fortifying DNS firewall solutions, presenting a promising avenue for continued
research and implementation in the evolving realm of cybersecurity.
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