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With the quick development in landscape of cybersecurity, the importance of 

DNS firewall solutions has been recently pronounced. Such solutions work as 

building blocks in forming inoficial access to various domains, suggesting real-

time protection and gretaly unclear communications. The conventional 

paradigm depends heavily on preprepared lists of known malicious domains, 

necessitating frequent updates to maintain relevance. However, this method 

shows inadequate in yet-to-be-cataloged malicious or domains identifying 

emerging, leading to potential vulnerabilities. Throughout this paper, a creative 

research endeavor is discussed to shed lights on presenting a cutting-edge DNS 

firewall solution that proves the power of Machine Learning (ML) techniques. 

The major purpose is to use the real-time detection of malicious domain 

requests, thereby critically enhancing cybersecurity protocols. A reasonable 

assembled dataset, incorporating 34 intricate features and meticulously recorded 

instances totaling 90,000, was critically chosen from genuine DNS logs. 

Similarly, it becomes more riched through the careful integration of Open-

Source Intelligence (OSINT) sources. The set goal includes the empowerment 

of precise in addition to rapid classification of domain requests as either 

malicious or benign.  

Keywords: c DNS, Machine learning, Deep learning, Cybersecurity, XGBoost,  

SVM,  Random Forest, LightGBM. 

 

 

1. Introduction 

The obvious enhancement of the network has called out and introduced the way to 

companies as well as entrepreneurs to develop on emerging prospects and engage their 

process as well as evolution. The development in the advancements of technology has 

ushered in a concomitant surge in critical risks, especially those connected to the increasing 

frequency of network security. This paradigm change has created an environment where 

many enterprises discover that they are threatened by serious problem from malicious 
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presentors seeking unreal and unethical access to sensitive data, as it is happening in the 

recent instances [1]. Based on this view and in relation to evolving security landscape, 

organizations are obliges to include robust countermeasures as well as strengthening their 

cyber defenses to relief the unauthorized inherent in the contemporary digital milieu. In the 

domain of network dynamics, it is crucial to announce that the increased intricacy coming 

from the extensive and rapid growth of the network infrastructure has concurrently simplify 

the emergence of discernible lacunae, thus allowing new and opportunistic assailants with 

avenues to incorporate in prohibitive activities. A harmful attempt like the above mentioned 

one, if left unsolved, has the abilit to ruin and destroy the confidentiality of different entities 

such as transgressing the governmental secrecy as well as manipulating the personal privacy 

of everyday users [2]. 

This considers the crucial significance of measures and comprehensive strategies that are 

proactive to enhance the network architecture in the face of danger, building a well secured 

and flexible digital ecosystem. In spite of the industrious presence of security services by 

companies to decrease possible threats, assailants precisly utilize strategies that varies in 

order to control  these measures and secretly get the access to the network. It is important to 

note that one of the considerable exploited methods by these adversaries include the 

manipulation of the Domain Name System (DNS) protocol, working as a conduit to access 

restricted data. Some studies have shown the seriousness of this issue, maintaining that a 

staggering 87% of companies fell prey to DNS attacks in the year 2021 [3]. This highlights 

the real challenges that can be found in cybersecurity efforts, prioritizing a continual 

enhancement and reassessment of defensive protocols to achieve the  tactics created by 

professional threat actors. 

As a matter of fact, the Domain Name System (DNS) is considered to be a functional part of 

the pivotal internet protocol, framed by the significant responsibility of identifying and 

naming computer resources accessible through Internet protocols (IP). DNS efficiently 

directs user requests to the ultimate hosting machin  which is operating as an intricate 

system, facilitate the identification of the sought-after resources manifested in the form of 

Uniform Resource Locators (URLs) containing the associated domain name [4]. At its main 

part, the crucial aim of the DNS system is to translate these user-friendly URLs into IP 

addresses, giving a format  which is more comprehensive and yet memorable for users to 

navigate the huge expanse of the digital realm. Such transformation attempts to reduce an 

issue which is cognitive and is associated with struggling with an integration of  arbitrary 

letters and numbers, similarly enhancing the act of being moe accessible and usable of the 

online resources [5]. The hidden and real goal of the DNS underscores lies in its  role in 

making the internet more user-friendly, including an easy, understandable, and healthy 

communication not only between users but also on the countless  collection of computer 

resources available on the Internet. Because DNS as an ideas is not connected to data 

transfer, in theory it should not be a problem for companies or firms. Regrettably, what is 

mention can’t announce and mean that these companies are too safe from DNS-related 

threats. 

The Domain Name System (DNS) unfolds as systematic process through the operational 

framework. Based on the user interaction with a website, including activities such as 

browsing or search queries, the Domain Name System (DNS) system specifically 
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encompasses communication with the nearest root name server. Such interaction is initiated 

to solicit responses pertaining to the user's inquiries, referred to as the "requested query." 

Building on this, the root server forms connections with Top-Level Domain (TLD) servers, 

systematically collating the integral components of the domain name to determine the 

comprehensive IP address associated with the designated website. Noteworthy TLDs include 

extensions such as ‘.com’, ‘.org’, and ‘.edu’. It is quite worthy to mention that local DNS 

serves has an effective role in enabling Internet Service Providers (ISPs) to monitor internet 

traffic [6].  

Moreover, there exists the inherent possibility for domains to adopt a malevolent disposition 

within the intricate domain of Domain Name System (DNS), functioning as conduits for the 

propagation of malware, facilitation of Command and Control (C&C) communications, and 

hosting of phishing or spam websites [7]. Both the domain name and subdomain name form 

the nefarious domains which lead to a serious threat vector that can precipitate internet 

attacks. When utilized to construct malicious Uniform Resource Locators (URLs), the 

malevolent nature of these domains becomes more clear. The uniform resource locator 

(URL) is made up, converging to constitute the host name. This host name function as a 

representative identifier for the computing entity that hosts the pertinent internet resource. 

Through the intricacies of these irrelated processes, the importance of vigilant cybersecurity 

measure to counteract the potential exploitation of DNS vulnerabilities in the ever-evolving 

landscape of online threats is shown. 

The historical landscape of many domain detection initially relied on conventional methods 

and strategy, including the examination of web content, URL inspection, and the analysis of 

network traffic. However, as technological sophistication advanced, a pivotal transformation 

transpired, ensuring the integration of artificial intelligence (AI) for the automated 

identification of malicious domains [8]. This contemporary era allows the application of 

advanced AI methods, getting away from traditional strategies and allowing0 a more 

proactive and adaptive stance.  

This progress in the side of malicious domain detection commenced with elementary 

techniques like case-based and rule-based approaches, gradually developed  to have more 

sophisticated methodologies, prominently featuring machine learning (ML) techniques. The 

initial emphasis was primarily on discerning the input-output relationships, with less 

consideration for understanding the intricate when mentioning the machine learning 

domain’s supervision, processes generating the output. The current investigation focuses on 

the overarching aim of evaluating the effectiveness of diverse ML techniques, including 

Support Vector Machine (SVM), XGBoost, RandomForest, Deep Neural Network, and 

LightGBM. This assessment specially focuses on their ability to discern the malicious 

attributes embedded in DNS logs, relying on the extraction of specific features. The purpose 

is to delineate the nuanced efficacy of each ML technique, contributing to the accurate 

identification and classification of malicious domains within the dynamic landscape of 

cybersecurity. 

The operational process of the Domain Name System (DNS) can be delineated as follows: 

When a user engages with a website and initiates a search, the DNS system navigates to the 

nearest root name server to ascertain the answers corresponding to the user's "requested 
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query." Subsequently, the root server interfaces with the Top-Level Domain (TLD) servers 

to assemble the constituent parts of the domain name, thereby establishing the complete IP 

address of the website. Examples of TLDs include, but are not limited to, .com, .org, and 

.edu. Furthermore, local DNS servers facilitate the oversight of internet traffic by Internet 

Service Providers (ISPs). This procedural orchestration ensures that users are directed to the 

correct IP addresses corresponding to their requested queries, contributing to the efficient 

and accurate functioning of the DNS infrastructure. The detailed workflow of how DNS 

works in described in Figure 1 below. 

 

Figure 1. The Workflow of General DNS System 

Our study has made noteworthy contributions in the pursuit of advancing cybersecurity. 

First, a development of a Tailored Machine Learning Model which has made a specialized 

machine learning model adept at discerning malicious domains within a comprehensive 

dataset including both malicious and benign domains. Second, the Algorithmic Analysis for 

AI-based Firewall has conducted a meticulous comparative analysis involving five distinct 

algorithms, culminating in the conceptualization and development of an advanced artificial 

intelligence (AI)-based firewall. Furthermore, the structure of the paper is divided into five 

major parts. To start with, the introduction Provides an overview of the study's objectives 

and significance. Then, the literature review, section two, offers insights into recent 

advancements in detecting malicious DNS activities, laying the foundation for the current 

study. Next, the methodology, section three, delves into the comprehensive methodology, 

elucidating crucial considerations like dataset selection, data preparation, feature extraction, 

and a detailed algorithmic description. Moreover, results and evaluation, section four, 

present the findings derived from the study, accompanied by a detailed exposition of the 

evaluation metrics employed to assess the model's performance. Finally, the conclusion, 

section five, summarizes the study's key outcomes, implications, and concluding remarks, 

contributing to the broader discourse on cybersecurity. 

 

2. Literature Review 

In the context of existing research studies, a multitude of studies have explored innovative 

technologies to discern the malignancy or benign nature of domains. Recent investigations 

have prominently focused on leveraging deep learning architectures to enhance existing 

methodologies. Similarly, a substantial body of literature has centered on domain 
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classification by using the machine learning techniques. This section lists some 

comprehensive reviews of noteworthy studies employing machine learning methods for 

domain classification. 

Han and Zhang [9] have proposed, in their seminal work,  the CLEAN method as an 

innovative approach for benign domain detection. Utilizing a passive DNS approach, the 

CLEAN method comprises three integral stages: data pre-processing, stability detection, and 

the application of a Naïve Bayesian classifier. The data pre-processing phase involves the 

meticulous filtration of a substantial volume of irrelevant domains. Subsequently, stability 

detection contributes to the identification of additional domain names, followed by the Naïve 

Bayesian classifier discerning benign domains within a vast dataset. Experimental validation 

based on authentic data from a province in China demonstrated the efficacy of the CLEAN 

model, achieving an impressive average accuracy of 92.2% and an average recall percentage 

of 82.1%. Noteworthy features employed for classification, drawn from previous studies, 

encompass specific TTL ranges, TTL variance, length of LMS percentage, average TTL, 

TTL changes, the number of different TTLs, and numerical characters’ percentage. The 

CLEAN model has showcased significant efficacy despite having a lower recall value 

attributed to disparities between domain names detected by stability detection in the 

verification sample and those in the experimentation sample.  

In a distinct scholarly endeavor, Antonakasis et al. [10] have introduced the Notos model, 

conceived as a comprehensive reputation system for DNS. Employing passive DNS data, 

this model systematically analyzes domain features and constructs a framework 

incorporating both malicious and benign domains. Subsequently, the framework is utilized to 

generate a reputation score for a new domain, signifying its potential malicious or benign 

nature. The experimentation phase involved approximately 1.5 million users engaged in 

collecting DNS traffic within a large Intrusion Prevention System (IPS) network. In fact, the 

results have shown the exceptional abilities of the model to accurately identify malicious 

domains, achieving a minimal 0.38% false positive rate and an outstanding accuracy of 

96.8%. The features chosen for this investigation were systematically classified into three 

distinct categories: network-based features, zone-based features, and evidence-based 

features. The reputation engine operates in both offline and online training modes. 

Furthermore, Khan et al. [11] have introduced a nuanced model for malicious domain 

detection, utilizing explainable artificial intelligence. Initial exploration involved various 

machine learning techniques, progressing to ensemble models such as CatBoost, Adaboost, 

and Extreme Gradient Boosting (XGB). Rigorous testing on a meticulously pre-processed 

dataset, coupled with Sequential Forward Feature Selection for feature optimization, 

demonstrated the robust performance of machine learning algorithms in distinguishing 

between malicious and benign domains. Particularly noteworthy was the Extreme Gradient 

Boosting model, achieving an outstanding accuracy rate of 98.18%, underscoring the 

effectiveness of their approach in enhancing precision within the realm of cybersecurity. 

Marques, et al. [12] have presented a study which focuses on the development and 

implementation of a Machine Learning (ML)-based DNS firewall solution aimed at 

enhancing the detection of malicious domain requests in real-time. Leveraging a dataset with 

34 features and 90,000 records derived from authentic DNS logs and enriched through Open-



                                              Machine Learning-Powered DNS…. Asma Ahmed A. Mohammed 468  
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

Source Intelligence (OSINT) sources, the research undergoes exploratory analysis, data 

preparation, and applies various supervised ML algorithms. The results demonstrate 

accuracy rates between 89% and 96%, with a classification time ranging from 0.01 to 3.37 

seconds. The study contributes to research by providing a publicly available dataset and a 

replicable methodology for other researchers. In terms of a practical solution, the work lays 

the foundation for an in-band DNS firewall. Simultaneously, the CART algorithm proves 

optimal, and the study introduces considerations on the effectiveness of automatic ML 

processes. The proposed DNS firewall, which does not impact the core DNS service, holds 

promise for real-world applications, with acknowledgment of the need for further testing in 

diverse scenarios to enhance robustness. 

Mahdavifa, et al. [13] have addressed the pervasive threat of malicious domains and the 

imperative need for timely detection and classification. The authors highlight the historical 

challenges of relying on blacklists for domain detection and underscore the evolving role of 

machine learning techniques in enhancing detection capabilities. The study suggests a robust 

system based on three distinct categories of features: DNS statistical, lexical, and third-party 

features extracted from deep analysis of DNS traffic. The authors present a substantial 

13,011 malicious samples and dataset comprising 400,000 benign, mirroring real-world 

scenarios. The methodology involves training and validating a classification model, with k-

Nearest Neighbors (k-NN) achieving high performance, particularly an impressive 99.4% 

F1-score for imbalanced data ratio (97/3%). Feature evaluation using information gain 

analysis identifies third-party features as pivotal, constituting 58% of the top 13 influential 

features. The authors release their dataset and propose future work to enrich feature sets, 

demonstrating the article's comprehensive contribution to advancing the field of malicious 

domain classification using DNS traffic analysis. 

 

3. Methodology  

This paper focuses on the categorization of domains into either malicious or benign 

categories. The classification methodology involves training on a contemporary DNS dataset 

through the utilization of supervised machine learning algorithms. The schematic 

representation in Figure 1 delineates the essential steps the model will execute to 

categorically classify the provided DNS logs as either malicious or non-malicious. These 

procedural steps include reading the dataset, preprocessing the dataset, executing feature 

selection, and employing both machine learning algorithms and deep neural networks. 

 

Figure 2. General Workflow of the Proposed Model for DNS logs Classification 
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3.1 Dataset 

The dataset employed for this research has been meticulously curated to facilitate a thorough 

supervised machine learning analysis aimed at discerning between malicious and non-

malicious domain names. Carefully constructed from publicly available DNS logs 

encompassing both categories, the dataset comprises a total of 90,000 domain names. A 

deliberate effort has been made to maintain a balanced distribution, allocating 50% of the 

dataset to non-malicious domain names and the remaining 50% to malicious ones [14]. 

Within this dataset, a myriad of features has been extracted from the domain names to 

provide a rich set of attributes for analysis. Within the domain of critical attributes, there 

exist foundational characteristics integral to the analysis of domain names. These attributes 

encompass intrinsic elements, notably the domain name itself, entropy, the occurrence of 

unconventional characters, and the length of the domain name. These fundamental features 

serve as pivotal indicators in the comprehensive examination of domains within the context 

of our research. Additionally, data enrichment techniques, such as Open-Source Intelligence 

(OSINT), have been employed to obtain supplementary features. These features encompass 

domain creation date, IP address, open ports, geolocation, and registration information. 

The comprehensive set of 34 features encompasses a diverse array of aspects, ranging from 

DNS response details and organizational associations to top-level domains, reputation 

scores, character ratios, and sequence lengths. This multifaceted feature set is designed to 

offer nuanced insights into the characteristics of the domains under consideration. Through 

this meticulous approach, the dataset is poised to contribute to a robust analysis for 

effectively distinguishing between malicious and non-malicious entities in the realm of DNS. 

TABLE I. FEATURES IN THE DATASET FOR MALICIOUS AND NON-MALICIOUS 

DOMAIN CLASSIFICATION 
No. Feature Description 

1 Domain Domain name 

2 DNSRecordType DNS record type queried 

3 MXDnsResponse Response from a DNS request for the record type 

MX 

4 TXTDnsResponse Response from a DNS request for the record type 
TXT 

5 HasSPFInfo Presence of Sender Policy Framework attribute 

6 HasDkimInfo Presence of Domain Keys Identified Email attribute 

7 HasDmarcInfo Presence of Domain-Based Message Authentication 

8 IP IP address for the domain 

9 DomainInAlexaDB If the domain is registered in the Alexa DB 

10 CommonPorts Presence of the domain on common ports 

11 CountryCode Country code associated with the IP of the domain 

12 RegisteredCountryCode Country code defined in the domain registration 

process 

13 CreationDate Creation date of the domain 

14 LastUpdateDate Last update date of the domain 

15 ASN Autonomous System Number for the domain 

16 HttpResponseCode HTTP/HTTPS response status code for the domain 

17 RegisteredOrg Organization name associated with the domain 

18 SubdomainNumber Number of subdomains for the domain 

19 Entropy Shannon Entropy of the domain name 

20 EntropyOfSubDomains Mean value of the entropy for the subdomains 

21 StrangeCharacters Number of characters different from [a-zA-Z] 

22 TLD Top Level Domain for the domain 



                                              Machine Learning-Powered DNS…. Asma Ahmed A. Mohammed 470  
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

23 IpReputation Result of the blocklisted search for the IP 

24 DomainReputation Result of the blocklisted search for the domain 

25 ConsoantRatio Ratio of consonant characters in the domain 

26 NumericRatio Ratio of numeric characters in the domain 

27 SpecialCharRatio Ratio of special characters in the domain 

28 VowelRatio Ratio of vowel characters in the domain 

29 ConsoantSequence Maximum number of consecutive consonants in the 

domain 

30 VowelSequence Maximum number of consecutive vowels in the 

domain 

31 NumericSequence Maximum number of consecutive numbers in the 

domain 

32 SpecialCharSequence Maximum number of consecutive special characters 

in domain 

33 DomainLength Length of the domain 

34 Class Class of the domain (0: malicious, 1: non-malicious) 

Table I furnishes a comprehensive overview of the diverse features incorporated within the 

dataset utilized for the supervised machine learning analysis. The primary objective of this 

analysis is to classify domain names into distinct categories, specifically distinguishing 

between malicious and non-malicious entities. Each feature encapsulated in the table plays a 

crucial role in providing valuable insights into the nuanced characteristics of the domains 

under consideration. 

These features collectively serve as the foundational elements for the development of robust 

machine learning models tailored for cybersecurity applications. By harnessing the 

information gleaned from these features, the models can be finely tuned to enhance their 

efficacy in accurately classifying domain names, thus contributing to the broader objectives 

of cybersecurity analysis and threat detection. 

 

Figure 3. Class Distribution of the Dataset 

Figure 3, titled "Class Distribution of the Dataset," provides a representation of the balanced 

distribution of classes within the dataset, particularly focusing on threat detection. The box 

plot clearly depicts an equitable distribution, with an equal representation of malicious and 

non-malicious domain names, each constituting 50% of the total data. 



471 Asma Ahmed A. Mohammed Machine Learning-Powered DNS....                                                                      
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

This balanced class distribution is a crucial aspect in the context of threat detection as it 

ensures a fair and unbiased representation of both classes. The equal distribution of 

malicious and non-malicious instances facilitates a robust and evaluation training of machine 

learning models designed for effective domain classification. By maintaining parity between 

the two classes, the dataset enables models to learn and generalize patterns without being 

skewed towards one class over the other. Consequently, the balanced class distribution 

depicted in Figure 2 lays a solid foundation for the development of accurate and reliable 

machine learning models for threat detection in the domain classification task. 

3.2 Data Preprocessing 

In the preprocessing phase, a series of crucial steps were meticulously executed to optimize 

the dataset for efficient machine learning model training. It included the Column Removal 

where certain columns deemed non-contributory to the classification task were strategically 

eliminated. Notable exclusions encompassed 'RegisteredCountry,' 'RegisteredOrg,' 

'CountryCode,' 'Domain,' 'DNSRecordType,' and 'TLD.' Also, Handling Null Values existed 

which follows the removal of specified columns, a thorough check for null values was 

conducted. Fortunately, the dataset, post-column removal, exhibited the absence of any null 

values. Then follows the Boolean Column Conversion aiming to streamline the model 

training process, boolean columns, including 'TXTDnsResponse,' 'MXDnsResponse,' 

'HasSPFInfo,' 'HasDmarcInfo,' 'DomainInAlexaDB,' 'CommonPorts,' 'HasDkimInfo,' 

'IpReputation,' and 'DomainReputation,' underwent conversion to numerical values (0 for 

False, 1 for True). After that, Min-Max Normalization lists all numerical features within the 

dataset underwent min-max normalization. This crucial step ensures uniformity in scale 

across all features, preventing any singular feature from unduly influencing the learning 

process. Train-Test Split where the preprocessed dataset was judiciously partitioned into 

distinct training and testing sets. The training set served as the foundation for training 

machine learning models, while the testing set was reserved for evaluating model 

performance. Lastly, the above meticulous sequence of steps collectively contributes to the 

creation of a pristine, well-structured dataset. Such a dataset, marked by its cleanliness, 

balance, and structural integrity, proves highly conducive to training robust machine learning 

models. The ultimate goal is to enable the effective classification of domain names into 

either malicious or non-malicious categories. 

3.3 Feature selection  

Feature selection stands as a pivotal phase in the realm of machine learning, dedicated to 

discerning and preserving the most informative attributes that wield substantial influence 

over a model's predictive prowess. The employed feature selection algorithm leveraged the 

chi-squared test methodology via the SelectKBest method. This strategic approach was 

undertaken to pinpoint the utmost relevant features crucial for accurate prediction of DNS 

threat classifications. Within the expansive array of features, the algorithm decisively 

identified 14 elements as paramount in their influence, pivotal for effectively distinguishing 

between benign and malicious DNS activities which are divided as the follow: 

• MXDnsResponse 

• TXTDnsResponse 
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• HasSPFInfo 

• CommonPorts 

• CreationDate 

• LastUpdateDate 

• HttpResponseCode 

• StrangeCharacters 

• IpReputation 

• ConsonantRatio 

• NumericRatio 

• VowelRatio 

• NumericSequence 

• DomainLength 

Collectively, these characteristics furnish pertinent information to machine learning models, 

facilitating precise predictions. The process of feature selection serves to diminish 

dimensionality, enhance model interpretability, and potentially augment the model's ability 

to generalize effectively to previously unseen data. The chosen features encapsulate pivotal 

facets of DNS-related data, encompassing response characteristics, content types, security-

related details, and structural attributes. These elements are considered indispensable for 

discerning between ordinary and malicious DNS activities.  

3.4 Machine Learning Models  

a) XGBoost: 

The XGBoost algorithm, recommended by Chen and Guestrin [15], is founded on the GBDT 

structure. In contrast to GBDT, XGBoost incorporates a regularization term in its objective 

function to prevent overfitting. The main objective function is described a 

 

Were  shows the regularization term at iteration , and  being a constant that 

can be electively. 

Regularization term  written as, 
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Where  is the complexity of leaves,  denotes the number of leaves,  signifies 

penalty variable, and  utput results in each leaf node. Leaves denote the expected 

categories based on classification criteria, w eaf node denotes the tree node which cannot be 

divided. 

Furthermore, unlike GBDT, XGBoost employs a second-order Taylor series of main 

functions rathe rst-order derivative. If the loss function is the mean square error (MSE), then 

the main function may be wri 

 

Where  is a function that maps data points to leaves,  and  represents loss 

function's first a lerivatives, respectively. 

The final loss value is calculated by adding all of the loss values together. Because samples 

orresponds to nodes of leaf, the ultimate loss value can be calculated by adding loss values of 

the leaf  esult, the main function can be written as: 

 

where , and  are the total number of samples in leaf node . 

b) Random Forest 

Random Forest (RF) has emerged as a widely adopted machine learning technique renowned 

for its simplicity and versatility. Proposed by Breiman in 2001, RF serves as a supervised 

learning approach applicable to both classification and regression tasks [16]. This integrated 

learning method harnesses the strength of multiple decision trees (DT) to augment prediction 

accuracy, employing techniques such as majority voting or mean aggregation, depending on 

the specific task. 

Given an input dataset characterized by values Q=q_1, q_2, q_3, ..., q_n, with n denoting the 

dataset's size, an RF model is constituted by a set of T trees, denoted as T_1(Q), T_2(Q), 

T_3(Q), ..., T_n(Q). The forecasted results of these decision trees are represented as (R_1) ,̂ 

(R_2) ,̂ ..., (R_n) ̂. In the context of regression tasks, the final output of the RF model is 

determined by averaging the prediction outcomes across all individual trees. 

The process of constructing decision trees within Random Forests (RF) involves partitioning 

initial training sets into smaller subsets. At each split, only a random subset of predictive 

elements is chosen. To control the growth of trees and prevent indefinite expansion, stopping 

criteria such as the Gini Diversity Index, Root Mean Square Error (RMSE), or Mean 

Squared Error (MSE) are incorporated. In the final RF model, trees that exhibit accurate 

predictions are retained, while those with lower predictive power are excluded. This 
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systematic methodology guarantees the creation of an efficient ensemble model capable of 

providing resilient and accurate predictions across a variety of scenarios. 

c) Support Vector Machine (SVM) 

In 1995, Vapnik introduced Support Vector Machines (SVM), a learning algorithm widely 

embraced for its efficacy in addressing both linear and nonlinear regression problems [17]. 

Acknowledged for its capacity to navigate high-dimensional feature spaces, SVM offers 

robust and dependable predictions, demonstrating notable resistance to noise [18] [19]. The 

literature extensively documents numerous successful implementations of SVM across 

various disciplines, adeptly handling challenges in both classification and regression [20] 

[21] [22]. 

Succinctly summarizing the foundational theory of SVM involves considering a designated 

training set {(u_k, v_k), k=1,2,…,n} for an SVM model. In this context, u_k=[u_1k, u_2k, 

…, u_nk]∈R^(n_k) represents the input data, v_k∈R^(n_m) corresponds to the output data 

for u_k, and n denotes the number of training samples. The primary goal of SVM is to 

determine an optimal hyperplane function denoted as f(x), defined by the weight vector w, 

and the offset b. 

d) LightGBM 

LightGBM, an acronym for Light Gradient Boosting Machine, represents a robust and highly 

efficient gradient boosting framework meticulously crafted for distributed and streamlined 

training processes. Falling within the spectrum of boosting algorithms, renowned for their 

adeptness in amalgamating weak learners, typically manifested as decision trees, into a 

formidable learner, LightGBM distinguishes itself through its notable attributes of speed, 

minimal memory consumption, and elevated efficiency. These characteristics render it 

particularly well-suited for managing expansive datasets and intricate problem domains. 

In contrast to conventional gradient boosting methodologies, LightGBM adopts a leaf-wise 

growth strategy in lieu of a level-wise approach. This strategic choice results in a diminished 

number of levels within the trees, thereby optimizing the efficiency and hastening the 

training process. Furthermore, LightGBM integrates a histogram-based learning technique, 

enhancing the training phase by discretizing continuous features into bins. 

e) Deep Neural Network (DNN) 

A Deep Neural Network, often referred to as a neural network or artificial neural network, 

constitutes a class of machine learning models inspired by the architectural and functional 

principles of the human brain. DNNs are comprised of layers of interconnected nodes 

(neurons) designed to process and transform input data, ultimately yielding an output. 

Noteworthy for their incorporation of multiple hidden layers, these networks possess the 

capacity to discern intricate patterns and representations from intricate datasets. Deep 

learning, a subset of machine learning, has garnered significant attention due to its inherent 

capability to autonomously acquire hierarchical features and representations from 

unprocessed data. 

DNNs exhibit notable proficiency in tasks such as image and speech recognition, natural 

language processing, and various other intricate pattern recognition challenges. The training 
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process of a DNN involves iteratively adjusting the weights of the connections between 

neurons through optimization algorithms and backpropagation. This dynamic adjustment 

mechanism facilitates the model's adaptability and continual enhancement of its performance 

over time. 

 

4. Results 

The machine learning models, such as Support Vector Machine (SVM), Random Forest, 

XGBoost, LightGBM, and Deep Learning Neural Network, were subjected to an evaluation 

aimed at classifying domain names into either malicious or non-malicious categories. The 

SVM model exhibited a noteworthy accuracy of approximately 96.81%, demonstrating 

balanced performance across precision, recall, and F1-score for both malicious and benign 

domains. Surpassing this, the Random Forest model achieved a higher accuracy of about 

98.13%, showcasing robust performance across all evaluation metrics. Similarly, the 

XGBoost model demonstrated an accuracy of approximately 98.21%, accompanied by 

effective precision, recall, and F1-score for both classes. The LightGBM model attained an 

accuracy of about 98.12%, maintaining balanced performance metrics. Additionally, the 

Deep Learning Neural Network yielded a competitive accuracy of 97.85%. 

4.1 Support Vector Machine (SVM) 

The Support Vector Machine (SVM) model demonstrated a commendable level of 

performance, achieving an accuracy of approximately 96.81%. Precision, recall, and F1-

score metrics for both malicious (Class 0) and benign (Class 1) domains hovered around 

97%, indicative of a well-balanced performance. Examination of the confusion matrix 

presented in Figure 3 reveals the model's adeptness in correctly identifying a significant 

number of instances for both classes, with only a limited number of misclassifications. 

In the graphical representation, correct classifications are represented by a dark blue color, 

while failed classifications are denoted by a light blue color. For instance, the SVM 

accurately classified 8567 samples as benign, which were indeed benign, and similarly, 

correctly identified 8859 samples as malicious. Notably, the model exhibited a low 

misclassification rate, failing to correctly classify only 287 samples between benign and 

malicious. This result is particularly noteworthy given the overall success achieved in other 

aspects of the classification task. 

 

Figure 4. SVM Confusion matrix 
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4.2 Random Forest 

The Random Forest model exhibited superior accuracy at approximately 98.13% compared 

to the SVM. Precision, recall, and F1-score for both classes also hovered around 98%, 

indicating robust performance. An examination of the confusion matrix in Figure 4 

underscores the model's proficiency in accurately classifying instances for both benign and 

malicious classes, with a minimal number of misclassifications. 

Specifically, the Random Forest correctly classified 8,649 samples as benign, accurately 

identifying them as such. Similarly, it correctly identified 9,015 samples as malicious, 

aligning with their true malicious nature. However, the model encountered challenges in 

classifying 205 samples that were genuinely benign but were misclassified as malicious. 

Conversely, 131 samples that were truly malicious were erroneously labeled as benign. 

These results underscore the Random Forest's heightened accuracy compared to the SVM, 

providing more reliable data. 

 

Figure 5. Random Forest Confusion Matrix 

4.3 XGBoost 

The XGBoost model demonstrated a notable accuracy of approximately 98.21%, with 

precision, recall, and F1-score consistently hovering around 98% for both classes. The 

accompanying confusion matrix depicted in Figure 5 underscores its robust performance, 

accurately categorizing a substantial number of instances for both benign and malicious 

classes, with minimal misclassifications. 

Specifically, the XGBoost model accurately classified 8,665 samples as benign, which were 

genuinely benign, and correctly identified 9,012 samples as malicious, reflecting their true 

nature. However, it encountered challenges in classifying 189 instances that were truly 

benign, misclassifying them as malicious, and erroneously classified 134 truly malicious 

samples as benign. This analysis substantiates the superiority of the XGBoost model over 

Random Forest and SVM, affirming its accuracy and reliability in providing trustworthy 

data. 
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Figure 6. XGBoost Confusion Matrix 

4.4 LightGBM 

The LightGBM model demonstrated a commendable level of performance, achieving an 

accuracy rate of approximately 98.12%. Consistent with other models, precision, recall, and 

F1-score for both classes hovered around 98%. The accompanying confusion matrix, 

presented in Figure 6, visually conveys the model's effective classification, revealing a 

minimal number of misclassifications. 

Specifically, LightGBM accurately classified 8,640 samples as Benign that were indeed 

benign, and similarly, correctly identified 9,021 samples as Malicious that were genuinely 

malicious. However, it exhibited challenges in classifying 214 samples that were truly 

benign as malicious and misclassified 125 samples that were genuinely malicious as benign. 

This observation underscores that, while LightGBM falls short of the accuracy achieved by 

XGBoost and Random Forest, it outperforms Support Vector Machines (SVM) in terms of 

classification accuracy. 

 

Figure 7. LightGBM Confusion Matrix 

4.5 Deep Learning Neural Network 

By exhibiting a commendable level of performance of the Deep Learning Neural Network, it 

appear to be an impressive accuracy rate of 97.85%. The precision, recall, and F1-scores for 
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both classes approached an exceptional 98%, as meticulously detailed in the comprehensive 

confusion matrix presented in Figure 7. This matrix underscores the model's efficacy in 

achieving accurate classification while minimizing instances of misclassification. 

Within the dataset, the DNN showcased its robust capabilities by accurately classifying 

8,623 samples as Benign, all of which were verifiably benign, and 8,978 samples as 

Malicious, all of which were unequivocally malicious. Nevertheless, the model revealed 

certain limitations, manifesting in the misclassification of 231 samples as benign when they 

were, in fact, benign, and 168 samples as malicious when they were genuinely benign. 

This nuanced analysis highlights that, while the DNN demonstrates proficiency in 

classification tasks, it falls short of the accuracy levels attained by other formidable models 

such as XGBoost, Random Forest, and LightGBM. Interestingly, the DNN outperforms 

Support Vector Machine (SVM) in terms of classification accuracy, yet there remains room 

for improvement to align with the exemplary standards set by other advanced machine 

learning models. 

 

Figure 8. Deep Neural Network Confusion Matrix 

Figure 9 bellow depicts the training progression of the Deep Learning (Neural Network) 

model across 20 epochs, where each epoch corresponds to a complete iteration through the 

entire training dataset. The graph illustrates the fluctuations in both training and validation 

loss (measured using binary cross-entropy) as well as accuracy at each epoch. The loss 

metric quantifies the disparity between predicted and actual values, while accuracy serves as 

a measure of the model's overall correctness. In the initial epochs, notable enhancements in 

the model's performance are evident, as reflected by a simultaneous reduction in both 

training and validation loss. Following this initial phase, the model reaches a point of 

stability, attaining a high level of accuracy. This visual representation offers valuable 

insights into the convergence and generalization performance of the model throughout the 

duration of the training process. 
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Figure 9. The training progression of the Deep Learning (Neural Network) model 

The Area Under the Curve (AUC) serves as a quantitative metric for assessing the efficacy 

of binary classification models, commonly applied within the context of receiver operating 

characteristic (ROC) curves. The ROC curve provides a graphical representation of the 

compromise between the true positive rate (sensitivity) and false positive rate (1-specificity) 

across different classification thresholds. AUC quantifies the area beneath this curve, 

offering a singular value for evaluating a model's capacity to differentiate between the two 

classes. 

The Support Vector Machine (SVM) model demonstrates commendable discriminatory 

capability, attaining an AUC of 0.9681, indicative of its proficiency in discerning between 

malicious and non-malicious instances. The model exhibits satisfactory performance in the 

accurate classification of positive and negative cases. 

XGBoost showcases outstanding discriminatory power, registering an AUC of 0.9820. Its 

notable ability to distinguish between the two classes underscores its effectiveness as a 

classification model, contributing to its high performance. 

The Random Forest model achieves a notably elevated AUC of 0.9813, signaling robust 

performance in discriminating between instances of malignancy and non-malignancy. The 

ensemble nature of the model significantly contributes to its overall effectiveness. 

The Deep Neural Network (DNN) model displays a robust AUC of 0.9778, indicative of its 

capability to make precise predictions and distinguish between the two classes. While 

marginally lower than some other models, it remains a formidable performer. 

LightGBM attains an AUC of 0.9811, underscoring its effectiveness in classification tasks. 

The model excels in discerning between malicious and non-malicious instances, further 

substantiating its commendable overall performance. 
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Figure 10. Receiver Operating Characteristics (ROC) 

This graphical representation illustrates the Receiver Operating Characteristic (ROC) curves 

for each model, delineating the true positive rate against the false positive rate across diverse 

classification thresholds. The Area Under the Curve (AUC) values associated with each 

curve serve as quantitative measures of the discriminative performance of the respective 

models. A larger AUC is indicative of a superior model with enhanced discriminatory 

capabilities. In the context of this figure, the visual depiction underscores that XGBoost 

attains the highest AUC, underscoring its exceptional discriminatory power. Following 

closely are Random Forest and LightGBM, both exhibiting commendable AUC values, 

suggesting robust performance. Meanwhile, Support Vector Machine (SVM) and Deep 

Neural Network (DNN) also demonstrate proficient performance, albeit with slightly lower 

AUC values, affirming their effectiveness in classification tasks. This nuanced analysis of 

the ROC curves and associated AUC values provides a comprehensive perspective on the 

relative strengths of each model in terms of their discriminative abilities. 

 

Figure 11. Bar Plot Representation of the Performance Metrics of Our Algorithms 

The presented bar plot illustrates the outcomes as follows: Correct classifications are 

represented by a dark blue color, while failed classifications are indicated by a light blue 
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color. For instance, the SVM accurately classified 8,567 samples as Benign, correctly 

identifying them as truly benign. Similarly, it successfully classified 8,859 samples as 

Malicious, accurately identifying them as truly malicious. Notably, the model exhibited a 

low failure rate in classifying only 287 samples between benign and malicious, indicating a 

high level of accuracy compared to other instances of successful classifications. 

4.6 Results Discussion 

Upon a comprehensive comparative analysis of our study's outcomes against those of other 

pertinent investigations, a discernible trend emerges, unequivocally affirming the superior 

efficacy of the algorithms employed in our research. Noteworthy is the exemplary 

performance of our Support Vector Machine (SVM), attaining an accuracy of 0.9681, a 

marked improvement over the 0.910 reported in the DNS Firewall Based on Machine 

Learning study [12] and the 61.2% recorded in the Classifying Malicious Domains using 

DNS Traffic Analysis study [13]. 

Moreover, our study establishes a conspicuous advantage in terms of precision, recall, and 

F1-score, pivotal indicators of accuracy, when juxtaposed with the aforementioned 

referenced studies. This notable superiority extends uniformly across all algorithms 

examined in our research, namely Random Forest, XGBoost, LightGBM, and Deep 

Learning, attesting to the consistent and elevated performance of our models across various 

metrics in contrast to those presented in the cited papers. 

Nevertheless, a judicious interpretation of these results is imperative, considering the 

potential contingencies affecting actual performance. Factors such as dataset selection, 

feature extraction methodology, and model configuration settings wield considerable 

influence. Furthermore, it is pertinent to acknowledge that the Classifying Malicious 

Domains using DNS Traffic Analysis study [13] utilized a distinct dataset, necessitating a 

nuanced consideration of observed disparities and caution in drawing direct comparisons. 

In conclusion, our findings substantiate a substantial enhancement in the classification of 

DNS threats through the adept application of machine learning techniques. As we celebrate 

the advancements achieved, it is incumbent upon us to remain circumspect and recognize the 

nuanced intricacies that may influence performance, thereby fostering a more nuanced 

understanding of the evolving landscape of cybersecurity threats and the corresponding 

efficacy of our proposed solutions. 

Table 2. Summary Of Results 
Algorithm Our Paper Accuracy Paper [12] Paper [13] 

SVM 0.9681 0.910 61.2 

LR - 0.913 76.9 

LDA - 0.907 - 

KNN - 0.957 94.8 

CART - 0.961 - 

NB - 0.897 - 

Random Forest 0.9813 - - 

XGBoost 0.9821 - - 

LightGBM 0.9812 - - 

Deep Learning (Neural 

Network) 

0.9785 - - 

MLP - - 72.2 

GNB - - 78.2 
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5. Conclusion 

Our research represents a significant advancement in the domain of cybersecurity, 

particularly addressing the significant role of DNS firewall solutions. The escalating 

complexity of cyber threats necessitates innovative approaches, and our study has diligently 

explored the integration of cutting-edge Machine Learning (ML) techniques to enhance the 

real-time detection of malicious domain requests. The meticulous construction of a dataset, 

incorporating 34 intricate features and comprising 90,000 meticulously recorded instances 

derived from authentic DNS logs, enriched with Open-Source Intelligence (OSINT) sources, 

underscores the rigor and depth of our research methodology. By leveraging this 

comprehensive dataset, our primary objective was to empower a DNS firewall solution 

capable of accurately and promptly classifying domain requests as either malicious or 

benign. Notably, our Support Vector Machine (SVM) achieved an accuracy of 0.9681, 

surpassing previous studies in the field. This trend persisted across all algorithms 

investigated, including Random Forest, XGBoost, LightGBM, and Deep Learning, 

demonstrating consistently elevated accuracy and key performance metrics such as precision, 

recall, and F1-score. Based on these considerations, our study relates substantively to the 

discourse on DNS threat classification, offering a robust framework for enhancing 

cybersecurity protocols. While recognizing the advancements achieved, we focused for 

ongoing scrutiny and refinement, acknowledging the dynamic nature of the cybersecurity 

landscape. Lastly, our results underscore the efficacy of integrating machine learning 

techniques in fortifying DNS firewall solutions, presenting a promising avenue for continued 

research and implementation in the evolving realm of cybersecurity. 
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