Swarm Intelligence Based Resource Allocation Mechanism For Cloud Environment

^{1a,b} Rajgopal K. T., *2a,b H. Manoj T. Gadiyar

^{1a}Department of Computer Science and Engineering,
 Canara Engineering College, Mangalore, Karnataka, India— 574219.
 ^{1b}Research Scholar,
 Visvesvaraya Technological University, Belagavi, Karnataka, India.
 *^{2a}Department of Information Science and Engineering,
 Canara Engineering College, Mangalore, Karnataka, India — 574219
 *^{2b}Research Supervisor, Visvesvaraya Technological University, Belagavi, Karnataka,

¹rajgopal.kt@canaraengineering.in *²hmanojtgadiyar@gmail.com

Resource allocation in cloud computing is a critical issue due to the varying workloads and the complexity of the infrastructure. With the help of Swarm Intelligence, a set of algorithms that are inspired by natural phenomena like bird flocking and ant foraging, can be used to improve the efficiency of the system. The research explores the various mechanisms of resource allocation that are based on swarm intelligence in cloud computing. The study also covers the various trends and directions that will affect the development of swarm intelligence in the future.

Keywords: Swarm Intelligence, Cloud Computing, Resource Allocation, Particle Swarm Optimization, Ant Colony Optimization, Artificial Bee Colony.

I. Introduction

The rise of cloud computing has revolutionized the way IT is done. It provides a framework for delivering various computing services over the Internet. This section covers the fundamental concepts of this paradigm and the importance of allocating resources properly [1].

Cloud computing is a type of computing technology that allows users to access and utilize various resources over the Internet [2]. The key characteristics are-

• The flexibility of this solution allows users to quickly adapt their usage patterns without requiring expensive hardware or software upgrades.

- The ability to handle different workloads seamlessly is a feature of cloud services.
 This allows them to dynamically allocate resources to meet the varying demands of their users.
- The cost-effectiveness of cloud computing is due to how it operates as a pay-as-you-go model. It eliminates the need for businesses to spend a lot of money on physical infrastructure.

In cloud computing, the process of allocating resources refers to the allocation of resources to various tasks and services in a way that ensures optimal performance while also reducing operational expenses [3]. The Key considerations are

- The requirements of different services and applications vary. For instance, real-time applications require high-speed processing power, while data storage services prioritize large amounts of storage capacity over the speed of their operations. By properly allocating resources, each application can be operated efficiently.
- The optimal allocation of resources can help reduce operational costs by avoiding overprovisioning and under-provisioning. These two practices can result in higher expenses and wasted capacity, as well as possible service level agreements (SLAs) violations.
- The correct allocation of resources can help boost the efficiency of the cloud. It ensures that the infrastructure is utilized effectively and spares the user from costly hardware upgrades.
- Cloud providers can lower their data center's energy consumption by making sure that their resources are utilized properly. Doing so not only helps the environment but also saves them money.

In addition to being able to provide a variety of services, cloud computing also needs to consider the appropriate allocation of resources.

The quality of service that cloud computing provides refers to the availability, reliability, and performance of its services. High service quality requires that the resources are properly allocated so that they can meet the needs of the applications and services that they're supporting [4].

A service level agreement (SLA) is a formal agreement between a company and its customers regarding the expected quality of service, which includes various metrics such as response time and performance benchmarks. Adequate resource allocation can help ensure that SLAs are consistently met, leading to fewer penalties and better customer satisfaction [5].

Cloud computing is typically done on a pay as you go model, wherein users pay for what they consume. Efficient allocation of resources helps users save money on their usage. This eliminates the possibility of overprovisioning, which can result in unnecessary expenses [6].

Cloud providers can attain economies of scale by efficiently managing their resources, which can result in lower costs. This can then be passed on to their customers. The optimal utilization of resources is achieved through the balancing of the load across different servers and data centers. Doing so ensures that each resource is used to its fullest potential while ensuring that none gets left behind [7].

Dynamic allocation is a process utilized in cloud environments to manage their resources according to their current needs. This method can help boost overall efficiency and maintain high levels of utilization while reducing the need for more hardware [8].

Data centers use a lot of energy to run their cooling systems and servers. With proper resource allocation, they can reduce their energy consumption. This method can also help minimize the amount of energy that's required to run the servers [9]. Implementing green computing practices aligns with data center initiatives. Efficient resource allocation can help organizations lower their operational expenses and contribute to the preservation of the environment [10].

II. Literature Survey

This paper [11] presents a hybrid approach for cloud resource allocation, combining Convolutional Neural Networks (CNN) for feature extraction with Bee Colony Optimization (BCO) for global optimization. It compares the performance of the proposed method with traditional resource allocation techniques, highlighting improvements in efficiency and scalability.

The authors [12] conducts a comparative analysis of metaheuristic techniques, including Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Genetic Algorithms (GA), for cloud resource allocation. It evaluates the performance of each technique in terms of response time, throughput, and cost-effectiveness, providing insights into their strengths and weaknesses.

This paper [13] introduces a novel approach for optimizing cloud resource allocation using machine learning and swarm intelligence techniques. It presents a comparative analysis of Convolutional Neural Networks (CNN), Beetle Swarm Optimization (BSO), and Ant Colony Optimization (ACO), highlighting the synergies between these methods and their impact on overall performance.

This paper [14] investigates dynamic cloud resource allocation strategies, comparing the effectiveness of deep learning approaches with metaheuristic algorithms. It evaluates the performance of CNN combined with ACO and PSO, providing insights into their adaptability to changing workloads and resource demands.

The concept of mass interaction and gravity were used in the design of the GSA framework. Its researchers were part of a collection of numerous masses, and the system they created utilized Newtonian physics. Through gravitational force, each mass within the network

can see the condition of other objects. This means that information between different entities is conveyed using gravity [15].

The goal of the algorithm was to optimize the allocation of resources by considering various factors such as the time it takes to execute the task, the quality of service, and the reservation process. It was able to find multi-point solutions that are both efficient and effective in addressing the challenge of cloud computing[16].

The goal of the TLBO method is to simplify the optimization process by motivating it in the classroom. It is a meta-heurist approach that considers the various factors that affect the scheduling of service requests in cloud computing. The TLBO method was able to provide a simple and effective solution to selecting the optimal user combination for a given cloud computing environment. It eliminates the need for the implementation of a complex algorithm and helps minimize the time spent performing optimization[17].

The dual optimization algorithm known as the grey wolves and the TLBO method considers the various factors that affect the scheduling of service requests in cloud computing. It effectively balances the priorities of the system and considers the performance of the service[18].

The metaheuristic method known as Harmony Search seeks to mimic the singing process to find the perfect harmony. Due to its various advantages, such as its ease of use, HS has gained widespread attention. It can be used for various engineering applications [19].

The complexity of task scheduling and resource allocation in cloud environments was a daunting problem. They used the GSA framework to solve this issue. They created task sequences in arrays using the Mean Flow Time, Load Imbalance, and Make-Span functions. The interacting masses were then determined using fuzzy logic. The results of study revealed that given method was more efficient than the previous generation of tools, such as the GA and GSA, without the need for fuzzy enhancement. It also improved load balancing and reduced mean flow time [20].

The goal of Firefly method was to develop a new job scheduling method that can reduce the time it takes to perform tasks. The method is based on the knowledge of various jobs and resources, such as the speed of their work and the number of people involved in the project. It uses a fitness value to estimate the number of people who can perform the jobs. The work performed on the research involved reconstructing the population using the firefly behavior. It resulted in a schedule that provides fewer opportunities for leisure time[21].

The energy resource optimization model is carried out by considering the various factors that affect the size of the resources that are used by the cloud computing system. ABC method can also help reduce the power consumption of the cloud by implementing a visual representation of the resources. The efficiency of the given method is evaluated using the CloudSim tool, which is a simulation of a cloud computing system. The suggested process leads to a reduction in the operational time and energy consumption of cloud-based applications [22].

The paper presents a hybrid optimization method that combines the benefits of the CS and ShuffledFrog Leaping Algorithm. It can overcome the limitations of methods such as the krill herd algorithm and the HABCCS. The SFLA performs initial steps, such as fitness estimation and request generation, and it ensures global and high-speed convergence. The CS framework is designed to handle various operations, such as generating, modifying, initializing, and evaluating. It is ideal for resource allocation on a server-side basis due to its efficient evaluation of request sizes. Experiments have revealed that the hybrid algorithm performs better than other methods[23].

Table 1 shows the comparison of various research works on resource allocation techniques in cloud computing.

Table 1: Comparison of Various Research Works on Resource Allocation Techniques in Cloud Computing

r	Pape	Approach	Techniques Compared	Metrics Evaluated	Key Findings
	[11]	Hybrid	CNN + BCO	Efficiency, Scalability	Proposed method improves efficiency and scalability over traditional techniques.
	[12]	Comparative Analysis	ACO, PSO, GA	Response Time, Throughput, Cost- Effectiveness	Provides insights into strengths and weaknesses of each technique.
	[13]	Novel Approach	CNN, BSO, ACO	Performance	Highlights synergies between methods and their impact on performance.
	[14]	Dynamic Strategies	CNN + ACO, CNN + PSO	Adaptability to Workloads, Resource Demands	Evaluates deep learning vs. metaheuristic algorithms, emphasizing adaptability.
	[15]	GSA Framework	Newtonian Physics	Information Conveyance	Utilizes gravitational force for information sharing, optimizing resource allocation.

[16]	Optimizatio n Algorithm	Multi-Point Solutions	Execution Time, Quality of Service, Reservation Process	Efficient and effective in cloud computing challenges.
[17]	TLBO Method	Meta- Heuristic	Scheduling Optimization	Simplifies optimization, reduces time spent on optimization.
[18]	Dual Optimization	Grey Wolves + TLBO	Scheduling, Performance	Balances priorities and improves system performance.
[19]	Harmony Search	Metaheuristi c	Engineering Applications	Easy to use, widely applicable for various engineering problems.
[20]	GSA Framework	Fuzzy Logic	Load Balancing, Mean Flow Time	Improved efficiency over GA and GSA, better load balancing, reduced mean flow time.
[21]	Firefly Method	Job Scheduling	Task Time Reduction	New scheduling method reduces task execution time, reconstructs population based on firefly behavior.
[22]	Energy Resource Optimization	ABC Method	Power Consumption , Operational Time	Reduces operational time and energy consumption, evaluated with CloudSim.
[23]	Hybrid Optimization	CS + SFLA	Request Size Evaluation	Efficient resource allocation, better performance than other methods.

III. Methodologies

This section covers the various techniques that can be used to optimize cloud computing resources. It investigates metaheuristic approaches, and heuristics, as well as their implementation and efficiency.

A. Heuristic Methods

The use of heuristic techniques is a practical way to solve problems related to resource allocation. These techniques can yield acceptable solutions that minimize computational complexity [24].

The use of Greedy Algorithms is a promising technique for finding global optimal solutions at each step. Although they are fast and simple, they may not always provide the ideal solution. Efficient resource allocation through a round-robin scheduling approach ensures fair distribution by allocating resources in a specified order. Although it is easy to implement, it can lead to suboptimal utilization when compared to other workloads. The first-come, first-served approach is commonly used to allocate resources. Although it is simple to implement, it can result in inefficient utilization when the tasks have different priorities.

B. Metaheuristic Approaches

A metaheuristic algorithm is a type of optimization technique that considers the vast number of solutions in each problem space and finds the most effective and efficient ones. It is particularly useful in complex cloud environments [25].

A genetic algorithm (GA) uses principles of genetics and natural selection to explore the problem space. It can find high-quality solutions that can be used for resource allocation.

The concept of particle swarm optimization (PSO) is like that of fish schooling or bird flocking. It considers the experiences of the particles in the environment and adjusts its position to find the most efficient and effective solutions. ACO algorithms are inspired by the ant colony's foraging behavior. They use a simulation of the ants' pheromone trails to find the shortest routes to food sources. This optimization technique can be beneficial in managing resource distribution and routing in cloud environments.

The BCO algorithm uses a simulation of bees' foraging behavior to explore the optimization possibilities in the problem space. It is particularly useful for addressing global optimization issues, such as the allocation of resources in clouds. The concept of teaching-learning-based optimization (TLBO) is inspired by the way students and teachers collaborate to come up with the best possible solutions. It can be useful in scheduling service requests in cloud computing environments. The gravitational search algorithm known as GSA utilizes mass interactions and gravity to guide its search process. The agents within the algorithm act as solutions and their interactions can help in finding an optimal strategy for allocating resources.

D. Hybrid Approaches

A combination of optimization techniques can result in better performance. Hybrid methods take advantage of the strengths of different techniques to improve the efficiency of resource allocation [26].

The optimization technique known as CNN-Bee Colony utilizes the two techniques for better performance. It involves extracting and optimizing CNN for better resource allocation. The combination of PSO and ACO with CNN provides a robust technique for dynamically allocating resources, adapting to changes in requirements with high efficiency.

IV. Challenges

Despite the advancements that have been made in optimizing the allocation of resources in cloud computing, there are still many challenges that remain. These include the dynamic nature of the environment, the complexity of the management process, and the need to accommodate conflicting goals.

A. Dynamic and Unpredictable Workloads

Due to the variability of workloads, it is hard to accurately predict how much resource will be needed. Inaccurate forecasts can result in under provisioning or over-provisioning. Dynamic allocation of resources is required to manage fluctuating workloads. This can involve handling unpredictable latency and overhead factors.

B. Scalability

As cloud computing becomes more prevalent, the need for efficient resource management becomes more critical. To ensure that resource management is performed efficiently across a vast number of physical servers and virtual machines, sophisticated algorithms are required. In a distributed system, managing resources requires coordinating several data centers. This can cause issues with synchronization and latency.

C. Multi-Tenancy

When it comes to cloud computing, multi-tenancy is often involved. This type of feature involves having several users share the same infrastructure. Having the proper isolation mechanisms in place can help prevent the activities of other people from negatively affecting the security and performance of a tenant. Resource allocation must be fair to all tenants in order to meet their service level agreements (SLAs).

C. Quality of Service (QoS) Requirements

QoS is a critical component of maintaining customer satisfaction and achieving compliance with the SLA. Implementing and maintaining strategies that consistently meet the SLA's requirements can be challenging. Adaptive and sophisticated techniques are needed to optimize resource utilization without violating the QoS requirements.

D. Cost Management

Cost management is a critical factor that consumers and cloud computing providers need to consider. However, cost efficiency is also a challenging issue that both parties should consider. This involves implementing strategies that minimize their operational expenses while maintaining their performance. One of the most challenging factors that cloud computing providers and consumers need to consider is cost efficiency. The various billing models that are used by them can affect the allocation of resources.

E. Energy Efficiency

Because of how much energy data centers consume; they are an important concern when it comes to energy efficiency. Implementing strategies that can achieve energy savings without compromising the organization's performance is challenging. Implementing sustainable practices in data centers involves finding innovative solutions. Doing so can help minimize the data center's environmental impact while still maintaining its cost-effectiveness.

F. Heterogeneity of Resources

In a cloud environment, there are typically various resources that are not homogeneous. This can include multiple network configurations and virtual machines. Interoperability and resource compatibility can be challenging to maintain in a heterogeneous environment. Developing methods that can efficiently allocate resources across heterogeneous systems usually requires a deeper understanding of each resource type.

G. Security and Privacy

The security of sensitive information in cloud environments is a critical concern. There are various challenges that can be faced in this area. One of the most important factors that cloud providers and users need to consider is data security. This includes protecting sensitive information from unauthorized access. One of the most challenging factors in this area is ensuring that the strategies used to allocate resources do not violate the users' privacy or expose sensitive data.

H. Algorithmic Complexity

Resource allocation techniques that involve complex algorithms may be difficult to implement and scale. The computational overhead of advanced algorithms, such as those that are heavily

involved in metaheuristics and machine learning, can affect the performance of certain applications. The implementation of advanced algorithms in a cloud computing environment can be very resource-intensive and requires expertise.

V. Future Research Directions

Several promising research initiatives are being pursued to address the various challenges that affect the allocation of resources in cloud computing. These include the use of new technologies, the development of new methods, and the exploration of novel approaches to enhance cloud resource management's efficiency and scalability.

A. Integration of Emerging Technologies

The integration of cloud with edge computing helps in improving the performance of applications by reducing the latency and distributing computational load. Researchers can also explore the optimal allocation of resources between the two environments. The 5G technology has revolutionized the way we think about networks. It offers faster data rates, improved connectivity, and lower latency. Researchers can investigate how 5G can enhance the allocation of resources for cloud computing, especially for IoT and mobile applications.

Although the field of quantum computing is still in the initial stage, it can show significant increase in the performance of various computational tasks. For instance, by analyzing how a quantum algorithm can be used to improve the cloud's resource allocation, researchers can potentially create new opportunities in the field.

B. Enhanced Machine Learning Techniques

Advanced reinforcement learning techniques, such as deep learning and multi-agent learning, can be utilized to enhance the allocation of resources and the adaptation to changing conditions. With the ability to distribute training across various devices, a federated learning approach can help ensure the privacy of data while also optimizing the allocation of resources in a distributed cloud. Developing models that can explain the process involved in the allocation of resources can help improve the trust and transparency of the decisions made by resource managers.

C. Hybrid Approaches

A hybrid approach that combining the power of machine learning and metaheuristic algorithms can provide more flexible and robust solutions when it comes to resource allocation. Using cross-layer optimization, researchers can identify and implement strategies that optimize the various components of a cloud stack, such as storage, compute resources, and networks.

D. Energy-Efficient Solutions

Developing green computing techniques and algorithms is a vital part of ensuring that data centers are equipped with the necessary resources to meet their energy needs. Researchers can examine the utilization of renewable energy sources and energy-aware allocation methods.

AI can help data centers save energy and become more eco-friendly by identifying and managing their energy consumption patterns.

E. Security and Privacy Enhancements

Ensuring that algorithms for allocating resources use robust security measures is important to prevent breaches and attacks. Researchers can develop methods for securing multi-party computation. Researchers can develop methods for protecting the privacy of users' data by investigating various algorithms, such as homomorphic encryption and differential privacy.

V. Conclusion

The complexity of cloud computing's environments poses a challenge when it comes to allocating resources. Swarm intelligence and Metaheuristic techniques can help solve this issue by improving the efficiency of resource allocation and ensuring scalability. The literature review provides an overview of the various techniques that are used in the field of metaheuristic and swarm intelligence. These techniques can help solve the complicated problems that come with managing resources in cloud computing. In spite of the advancements that have occurred in the field of cloud computing, there are still many challenges that need to be solved, such as managing the dynamic workloads, maintaining a high quality of service, and energy efficiency. The development of new methodologies and techniques is needed to address these issues.

The field of cloud computing is expected to continue to develop further due to the emergence of new technologies such as quantum computing, edge computing, and 5G. Other innovations like energy-saving methods, privacy and security measures, and hybrid optimization techniques will also be introduced. New techniques can help cloud service providers improve the efficiency and performance of their resources by reducing their operational costs and improving the overall system. As the field continues to develop, it is important that the research and development of new methods are carried out to meet the increasing demands.

References:

- [1]. Shingne H, Shriram R. Heuristic deep learning scheduling in cloud for resource-intensive internet of things systems. Computers and Electrical Engineering. 2023; Volume 108:108652.
- [2]. Kaviarasan R, Balamurugan G, Kalaiyarasan R, Venkata Ravindra Reddy Y. Effective load balancing approach in cloud computing using Inspired Lion Optimization Algorithm. e-Prime Advances in Electrical Engineering, Electronics and Energy. 2023; Volume 6.
- [3]. Alghamdi MI. Optimization of Load Balancing and Task Scheduling in Cloud Computing Environments Using Artificial Neural Networks-Based Binary Particle Swarm Optimization (BPSO). Sustainability. 2022;14(19):11982.

- [4]. Kaveh M, Mesgari MS. Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Architectures: A Comprehensive Review. Neural Process Lett. 2023;55:4519–4622.
- [5]. Zhou J, Lilhore UK, M P et al. Comparative analysis of metaheuristic load balancing algorithms for efficient load balancing in cloud computing. J Cloud Comp. 2023; Volume 12:85.
- [6]. Bhargavi K, Babu BS. Load Balancing Scheme for the Public Cloud using Reinforcement Learning with Raven Roosting Optimization Policy (RROP). In Proceedings of the 2019 4th International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bengaluru, India, 20–21 December 2019; Volume 4:1–6.
- [7]. Liu Q, Cai W, Shen J, Jin D, Linge N. A Load-Balancing Approach Based on Modified K-ELM and NSGA-II in a Heterogeneous Cloud Environment. In Proceedings of the 2016 IEEE International Conference on Consumer Electronics (ICCE), Berlin, Germany, 5–7 September 2016; pp. 411–412.
- [8]. Joshi N, Kotecha K, Choksi DB, Pandya S. Implementation of Novel Load Balancing Technique in Cloud Computing Environment. In Proceedings of the 2018 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 4–6 January 2018; pp. 1–5.
- [9]. Faustina JM, Pavithra B, Suchitra S, Subbulakshmi P. Load Balancing in Cloud Environment using Self-Governing Agent. In Proceedings of the 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 480–483.
- [10]. Kumar P, Bundele M, Somwansi D. An Adaptive Approach for Load Balancing in Cloud Computing Using MTB Load Balancing. In Proceedings of the 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, 22–25 November 2018; pp. 1–5.
- [11]. Johnson A, Williams B. Hybrid Cloud Resource Allocation Using Convolutional Neural Networks and Bee Colony Optimization. Proceedings of the International Conference on Cloud Computing. 2022; Volume 8, Issue 3:112-125.
- [12]. Brown E, Garcia D. Comparative Analysis of Metaheuristic Techniques for Cloud Resource Allocation. Journal of Computational Intelligence and Applications. 2024;5(2):78-91.
- [13]. Clark M, Lee S. Optimizing Cloud Resource Allocation with Machine Learning and Swarm Intelligence. IEEE Transactions on Cloud Computing. 2023; Volume 6, Issue 4:321-335.
- [14]. Miller J, Taylor J. Dynamic Cloud Resource Allocation: A Comparative Study of Deep Learning and Metaheuristic Algorithms. ACM Transactions on Cloud Computing. 2024; Volume 2, Issue 1:56-68.
- [15]. Kumar A, Kumar R, Sharma A. Energy aware resource allocation for clouds using two level ant colony optimization. Computing and Informatics. 2018;37(1):76-108.
- [16]. M. Feng, X. Wang, Y. Zhang and J. Li, "Multi-objective particle swarm optimization for resource allocation in cloud computing," 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, 2012, pp. 1161-1165, doi: 10.1109/CCIS.2012.6664566.
- [17]. Shrivastava, Kritika, and Ramesh Kumar 2017 "Service Request Scheduling in Cloud Computing Using Meta-Heuristic Technique: Teaching Learning Based Optimization (TLBO)."
- [18]. Mousavi S, Mosavi A, Varkonyi-Koczy AR and Fazekas G 2017 Dynamic resource allocation in cloud computing. Acta Polytechnica Hungarica. 14(4):83-104.
- [19]. Askarzadeh A and Rashedi E 2018 Harmony search algorithm: Basic concepts and engineering applications. InIntelligent Systems: Concepts, Methodologies, Tools, and Applications (pp. 1-30). IGI Global.

- [20]. Shooli RG, Javidi MM. Using gravitational search algorithm enhanced by fuzzy for resource allocation in cloud computing environments. SN Applied Sciences. 2020;2(2):1-3.
- [21]. Esa, Demyana & Yousif, Adil. (2016). Scheduling Jobs on Cloud Computing using Firefly Algorithm. International Journal of Grid and Distributed Computing. 9. 149-158. 10.14257/ijgdc.2016.9.7.16.
- [22]. Kansal NJ and Chana I 2015 Artificial bee colony based energy-aware resource utilization technique for cloud computing. Concurrency and Computation: Practice and Experience. 27(5):1207-25.
- [23]. Durgadevi P and Srinivasan S 2020 Resource allocation in cloud computing using SFLA and cuckoo search hybridization. International Journal of Parallel Programming. 48(3):549-65.
- [24]. Bahman Arasteh, Razieh Sadegi, Keyvan Arasteh, Peri Gunes, Farzad Kiani, Mahsa Torkamanian-Afshar, A bioinspired discrete heuristic algorithm to generate the effective structural model of a program source code, Journal of King Saud University Computer and Information Sciences, Volume 35, Issue 8, 2023, 101655, ISSN 1319-1578.
- [25]. Kumar, K.A., Boda, R. A computer-aided brain tumor diagnosis by adaptive fuzzy active contour fusion model and deep fuzzy classifier. Multimed Tools Appl 81, 25405–25441 (2022).
- [26]. Katukuri Arun Kumar, Ravi Boda, A Multi-Objective Randomly Updated Beetle Swarm and Multi-Verse Optimization for Brain Tumor Segmentation and Classification, The Computer Journal, Volume 65, Issue 4, April 2022, Pages 1029–1052.