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The classification of dental radiographs is a critical task in modern dentistry, 

providing valuable insights into oral health and facilitating accurate diagnosis 

and treatment planning. This study explores the application of advanced deep 

learning models, specifically EfficientNet, in the classification of dental X-ray 

images. EfficientNet's novel architecture, characterized by compound scaling 

and depthwise separable convolutions, enables it to maintain high accuracy 

while efficiently utilizing computational resources. To address the challenges of 

class imbalance and dataset limitations, data augmentation techniques such as 

rotations, flips, scaling, and translations were employed. These techniques 

significantly enhanced the diversity and volume of the training dataset, resulting 

in improved model performance across all classes. The study demonstrates a 

substantial increase in accuracy, from 72.3% pre-augmentation to 93.1% post-

augmentation, with corresponding improvements in precision, recall, and F1-

score. The confusion matrix analysis further highlights the model's ability to 

accurately classify various dental conditions, reducing misclassification rates, 

particularly in underrepresented classes. The findings underscore the 

effectiveness of combining EfficientNet with strategic data augmentation to 

enhance the diagnostic capabilities of dental radiograph classification models. 

Future research should focus on validating these models across diverse clinical 

settings and exploring additional augmentation strategies to further optimize 

performance.  
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1. Introduction 

Dental radiographs stand as a cornerstone in the field of modern dentistry, offering 

indispensable diagnostic capabilities that significantly enhance the health evaluation of both 

hard and soft tissues. These radiographs are paramount not only for the detection of 

otherwise imperceptible oral health issues such as dental caries, bone loss, and 

developmental anomalies but also in guiding precision-based dental interventions [1]. Their 

utility extends beyond conventional assessments, serving as critical tools in advanced 

diagnostics and in formulating comprehensive treatment plans [2]. 

In dentistry, the application of dental radiographs is particularly highlighted by their role in 

monitoring the development of teeth and jawbones, ensuring prompt recognition and 

correction of developmental issues. This capability is crucial for facilitating early 

interventions, thereby preventing long-term complications and optimizing pediatric oral 

health [3]. Similar to their function in general medical imaging, dental radiographs are 

essential in evaluating facial and oral trauma. This application is vital for accurate diagnosis 

and effective treatment planning, providing a framework for corrective measures that address 

both the cosmetic and functional aspects of dental injuries [4]. 

Furthermore, the integration of radiographs in dental practice enhances diagnostic accuracy, 

offering a detailed visualization of oral conditions that might affect systemic health. The 

precision of these images aids in the formulation of targeted interventions, ultimately 

contributing to superior patient outcomes [5]. As the field of dentistry continues to evolve, 

the role of radiographs remains integral, underscoring their necessity as a fundamental 

component of diagnostic and treatment protocols [6]. 

Previous research [4-6] endeavors have explored the utilization of machine learning and 

deep learning techniques for the classification of dental X-ray images. These efforts have 

provided a foundational framework, yet they have not been without their challenges, 

particularly in terms of model generalizability and accuracy. Traditional machine learning 

models often struggle with the intricate task of manual feature extraction, which is crucial for 

capturing the nuanced and complex features inherent in dental radiographs. This manual 

process typically results in suboptimal classification accuracy, especially when attempting to 

distinguish between closely related dental conditions [7]. For instance, studies [7] have 

highlighted the limited generalizability of deep learning models across different centers, 

noting that model performance is significantly influenced by the dental status rather than 

image characteristics themselves. These discrepancies suggest that while models may 

perform well under controlled conditions, their utility diminishes when applied to images 

from varying clinical settings or demographic backgrounds [8]. Strategies such as cross-

center training have shown promise in enhancing model performance on diverse datasets, yet 

they underscore persistent challenges in achieving consistent and reliable results across 

multiple scenarios [9]. 

Furthermore, innovations in collaborative deep learning models have begun to address some 

limitations found in conventional approaches [10, 11]. By leveraging collaborative models, 

researchers aim to improve tooth segmentation and identification accuracy over traditional 

methods that heavily rely on a clinician's assessment [10]. This approach potentially 

mitigates issues of diagnostic inconsistency, demonstrating an advancement over individual 
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learning strategies by enhancing the overall learning performance [10]. Despite these 

advancements, significant work remains to develop truly robust and universally applicable 

models that can handle the diversity encountered in real-world dental imaging scenarios. 

Moreover, earlier applications of deep learning models, such as basic CNN architectures, 

have faced challenges in generalization due to limited dataset size and variability [12]. These 

models often suffer from overfitting, where they perform well on training data but fail to 

generalize to unseen data [13]. Additionally, the computational demand of training large-

scale models has historically been a barrier, limiting the accessibility and scalability of such 

approaches. 

The limitations identified in previous studies underscore the necessity for more sophisticated 

models that can overcome these challenges [12,13]. EfficientNet, an advanced CNN-based 

model, represents a significant advancement in this domain. It introduces a novel scaling 

method that uniformly scales all dimensions of depth, width, and resolution using a 

compound coefficient, optimizing the model's performance without a proportional increase 

in computational cost [14,15]. 

EfficientNet's architecture, which employs depthwise separable convolutions, dramatically 

reduces the number of parameters and computational load while maintaining high accuracy 

[16]. This efficiency makes it particularly suitable for applications in dental radiography, 

where high-resolution images and complex patterns are prevalent [17]. By leveraging 

EfficientNet, this study aimed to enhance the diagnostic capabilities of dental radiograph 

classification, providing a more robust and accurate tool for dental professionals. The 

primary objective of this study was to utilize this dataset to develop and optimize a machine 

learning model capable of accurately classifying dental radiographs. 

 

2. Related Work 

The exploration of machine learning and deep learning applications in dental radiography 

has been a focal point of research, aiming to automate and enhance the diagnostic processes 

traditionally reliant on manual evaluation. Numerous studies have investigated various 

algorithmic approaches to improve the accuracy and reliability of dental image classification 

and segmentation [18, 19]. 

Early efforts in dental image analysis primarily employed traditional machine learning 

techniques, which often required extensive manual feature extraction to identify relevant 

patterns in radiographs [20,21]. Methods such as support vector machines (SVM) and k-

nearest neighbors (k-NN) were commonly used, relying heavily on handcrafted features like 

texture, shape, and intensity gradients [22, 23]. While these methods provided a baseline for 

automated classification, their dependence on manual feature engineering limited their 

applicability and scalability across diverse datasets. The intrinsic variability in dental 

radiograph quality and patient demographics further complicated the generalization of these 

models beyond controlled experimental settings. 

The advent of deep learning marked a significant paradigm shift in medical image analysis, 

including dental radiography. Convolutional Neural Networks (CNNs), with their ability to 

learn hierarchical feature representations directly from raw data, have been extensively 
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utilized in recent studies [24-28] (Table 1). Models such as AlexNet, VGGNet, and ResNet 

demonstrated promising results in dental image classification tasks, improving over 

traditional methods by minimizing the need for manual feature extraction [29, 30]. However, 

these models often encountered limitations related to overfitting, particularly when trained 

on small or homogeneous datasets [31]. The challenge of acquiring sufficiently large and 

diverse dental image datasets has been a persistent barrier to the widespread adoption of 

deep learning in dental radiography. 

Table 1. Previous studies on the application of deep learning to dental X-ray image analysis 
Study/Year Application Area Methodology Key Findings 

Imak  et al. 
(2022) [24] 

Automated Diagnosis Multi-input CNN Achieved 99.13% accuracy in caries detection. 

Kumar et al. 
(2021) [25] 

Tooth Segmentation U-Net Significantly improved segmentation accuracy. 

Fatima et al. 

(2023) [26] 
Landmark Detection Mask-RCNN Enhanced precision in cephalometric analysis. 

Panetta et al. 

(2021) [27] 
Bone Loss Assessment Ensemble Learning Provided robust assessment of bone loss. 

Hu et al. 

(2019) [28] 
Anomaly Detection GANs Successfully identified anomalies in X-rays. 

Recent innovations have introduced collaborative and federated learning models to address 

the challenges of data scarcity and privacy concerns in dental imaging [32]. These 

approaches facilitate the sharing of model updates rather than raw data, allowing multiple 

institutions to collaboratively train a model without compromising patient confidentiality 

[33]. Also, This method has shown potential in improving model generalizability across 

various clinical settings by incorporating a wider range of dental conditions and imaging 

techniques into the training process [34]. 

Despite these advancements, many deep learning models still struggle with generalization 

across different imaging conditions and patient demographics [35, 36]. The need for models 

that can efficiently handle high-resolution dental radiographs while maintaining 

computational feasibility has led to the exploration of more advanced architectures like 

EfficientNet. EfficientNet's compound scaling approach and use of depthwise separable 

convolutions offer a robust solution to the limitations of traditional CNN models [37]. By 

optimizing resource allocation across network dimensions, EfficientNet achieves high 

accuracy with significantly reduced computational demands, making it ideal for applications 

in dental radiography [38]. 

The integration of advanced CNN models such as EfficientNet into dental radiograph 

analysis holds the promise of not only improving diagnostic accuracy but also enhancing the 

accessibility of automated tools in diverse clinical environments. Future research should 

focus on further refining these models, addressing issues of interpretability and transparency, 

and expanding their applicability to include a broader spectrum of dental conditions. 

Additionally, the development of standardized datasets and collaborative frameworks will be 

crucial in advancing the field of automated dental diagnostics, ensuring that these 

technologies can be reliably implemented in real-world practice. Through these efforts, the 

field can move towards achieving more consistent, reliable, and efficient diagnostic 

outcomes in dental care. 
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3. Methods 

3.1 Data 

The dataset used in this study comprises dental radiographs 

(https://www.kaggle.com/datasets/imtkaggleteam/dental-radiography), which are crucial for 

detecting changes in both hard and soft tissues (Figure 1). In children, these radiographs help 

monitor the development of teeth and jawbones. Similar to medical radiographs, dental 

radiographs are used to assess any injuries to the face and mouth. 

This dataset is structured into three folders: Train, Test, and Validation, which are suitable 

for input directories in image classification tasks using CNN, YOLO, or SSD models. It 

consists of a total of 1272 images, split into a test set with 1046 images and a validation set 

with 122 images. The dataset is predominantly composed of images classified as 'Fillings', 

followed by 'Implant', and a smaller proportion categorized as 'Other'. The Table 2 and 

Figure 2 illustrates the distribution of these classes within the dataset. 

Table 2. Dataset Composition and Class Distribution 
Category Description 

Total Images 1272 

Training Set 1046 images 

Test Set 122 images 

Fillings 67% 

Implant 22% 

Other 11% 

 

Figure 1. Example of a Dental X-Ray image included in the raw data 

 

Figure 2. Class distribution in dental radiograph raw dataset 
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3.1.1 Data Splitting 

To verify that the model is learning correctly during the training process, the normal- 

training data was split into a training set (Training A) and a validation set in an 8:2 ratio. 

Various convolutional neural network models were trained using the Training A data, and 

the optimal model was selected based on its performance on the validation data. This optimal 

model, identified using the training A data, was then applied to the test data to evaluate its 

predictive performance. Furthermore, the model's performance was assessed on the dental 

Images Validation dataset to evaluate its prediction capabilities. 

3.1.2 Data Augmentation 

After training the model using the Training data and applying it to the validation data, an 

overfitting phenomenon was observed: the training accuracy was nearly 1, while the 

validation accuracy stalled at 0.75. To address this, data augmentation was performed on the 

training data. Data augmentation involves increasing the amount of data to prevent 

overfitting by applying transformations such as resizing, distortion, contrast and resolution 

adjustments, flipping, rotation, zooming, and positional changes to the original images. The 

methods employed in this study included resizing, distortion, zooming, rotation, translation 

in all directions (up, down, left, right), and mirroring. 

3.2 Convolutional Neural Network Models Used 

To date, various CNN models such as AlexNet, VGGNet, GoogLeNet, ResNet, 

InceptionNet, XceptionNet, MobileNet, SENet, and EfficientNet have been proposed and 

developed using the ImageNet dataset. In this study, VGGNet, ResNet, XceptionNet, 

MobileNet, and EfficientNet models were considered for efficient dental image prediction. 

3.2.1 EfficientNet 

EfficientNet differs from traditional models that scale up network dimensions by uniformly 

expanding each dimension using a fixed set of scaling coefficients. It employs depthwise 

separable convolutions, composed of depthwise and pointwise convolutional layers used in 

the MobileNet model. The model expands network dimensions by increasing the number of 

layers or filters or by enhancing the resolution of input images, with the optimal combination 

of scaling methods determined through AutoML. The initial model found through AutoML 

is referred to as EfficientNet-B0, and further scaling results in models B1, B2,…, B7. As 

shown in Figure 3, EfficientNet demonstrates higher accuracy with significantly fewer 

parameters compared to other models. The formula for this algorithm is as follows. 

Compound Scaling Formula: EfficientNet uses a compound scaling method to uniformly 

scale the network's dimensions. This can be expressed as: 

[ 𝑑𝑒𝑝𝑡ℎ = 𝛼𝑑 ,  𝑤𝑖𝑑𝑡ℎ = 𝛽𝑑 ,  𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝛾𝑑] 

where (𝛼), (𝛽), and (𝛾) are constants determined by grid search, and (d) is the compound 

coefficient that uniformly scales the network. 

Depthwise Separable Convolutions: This approach divides the convolution operation into 

two separate layers: depthwise and pointwise convolutions. The process can be 

mathematically represented as: 
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[ 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛:  𝑌{𝐼,𝑗,𝑘} = \𝑠𝑢𝑚𝑚𝑋{𝑖′,𝑗′,𝑚}\𝑐𝑑𝑜𝑡𝐾{𝑖−𝑖′,𝑗−𝑗′,𝑘,𝑚} ] 

[ Pointwise Convolution:  𝑍𝑖,𝑗,𝑘 = ∑ 𝑌𝑖,𝑗,𝑚𝑚 ⋅ 𝑃𝑘,𝑚 ] 

where (X) is the input, (K) and (P) are the depthwise and pointwise kernels, respectively, and 

(Y) and (Z) are the intermediate and final outputs. 

 

Figure 3. Architecture of EfficientNet 

3.2.1 VGGNet 

The VGGNet model utilizes small convolution filters and ReLU functions to achieve a 

deeper structure compared to its predecessor AlexNet. While AlexNet used 11x11 filters, 

VGGNet uses a series of 3x3 filters to increase layer depth and applies the ReLU activation 

function after each convolution operation to enhance non-linearity. The VGG16 model used 

in this study consists of 16 layers (13 convolutional layers + 3 fully connected layers). The 

formula for this algorithm is as follows. 

Convolution Operation with Small Filters: VGGNet utilizes small (3 × 3) convolutional 

filters. The convolution operation for a single output feature map can be expressed as: 

[ 𝑌𝑖,𝑗,𝑘 = ∑ ∑ ∑ 𝑋𝑖+𝑝−1,𝑗+𝑞−1,𝑚
2
𝑞=0

2
𝑝=0𝑚 ⋅ 𝐾𝑝,𝑞,𝑚,𝑘 ] 

where (X) is the input feature map, (K) is the convolution kernel, and (Y) is the output 

feature map. 

ReLU Activation Function: After each convolution operation, VGGNet applies the Rectified 

Linear Unit (ReLU) activation function to introduce non-linearity. The ReLU function is 

defined as: 

[ 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) ] 

This function is applied element-wise to the output of the convolutional layers, allowing the 

network to learn complex patterns by introducing non-linear transformations. 
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3.2.2 ResNet 

The ResNet model extends the VGGNet by incorporating residual block structures to 

increase depth. It is a model that extends the depth of convolutional neural networks to 152 

layers and includes skip connections that pass inputs from previous layers directly to 

subsequent layers without performing convolution operations. This approach allows for 

deeper networks without increasing the number of parameters, thus facilitating the discovery 

of optimal parameters. The formula for this algorithm is as follows. 

Residual Block Equation: A core component of ResNet is the residual block, which allows 

the network to learn residual mappings. The equation for a residual block can be expressed 

as: 

[ 𝑦 = ℱ(𝑥, 𝑊𝑖) + 𝑥 ] 

where (\mathbf{x}) is the input to the residual block, (Ⅎ𝑐{𝐹}(Ⅎ𝑏{𝑥}, {𝑊_𝑖})) represents the 

residual mapping (typically a few stacked layers), and (\mathbf{y}) is the output. The term 

(𝑥) is added directly to the output of the residual mapping, forming the skip connection. 

Skip Connection in Backpropagation: The presence of skip connections affects 

backpropagation by allowing gradients to flow more directly through the network. This can 

be expressed as: 

[ 
𝜕ℒ

𝜕𝑥
=

𝜕ℒ

𝜕𝑦
(1 +

𝜕ℱ

𝜕𝑥
) ] 

where (ℒ) is the loss function. The skip connection ensures that the gradient (
𝜕ℒ

𝜕𝑦
) directly 

contributes to the gradient (
𝜕ℒ

𝜕𝑥
), thus mitigating the vanishing gradient problem and enabling 

training of very deep networks. 

3.2.3 XceptionNet 

XceptionNet is an advancement of the InceptionNet model. It separates pointwise 

convolution, which involves convolution along the channel direction, from depthwise 

convolution, which significantly reduces computational complexity and allows for real-time 

processing. XceptionNet performs a 1×1 convolution operation on the input for each channel 

and then executes a 3×3 convolution. As a result, XceptionNet improves performance 

compared to InceptionNet without increasing parameters or computational load. The formula 

for this algorithm is as follows. 

Depthwise Separable Convolutions: XceptionNet utilizes depthwise separable convolutions 

to reduce computational complexity. This operation consists of two separate steps: depthwise 

convolution followed by pointwise convolution. 

o Depthwise Convolution: This operation applies a single convolutional filter 

per input channel, which can be expressed as: 

[ 𝑌𝑖,𝑗,𝑘 = ∑ 𝑋𝑖′,𝑗′,𝑘𝑚 ⋅ 𝐾𝑖−𝑖′,𝑗−𝑗′,𝑘 ] 

where (X) is the input feature map, (K) is the depthwise kernel, and (Y) is the output feature 

map. Each input channel is convolved independently. 
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o Pointwise Convolution: This operation involves a 1x1 convolution that 

mixes the outputs of the depthwise convolution: 

[ 𝑍𝑖,𝑗,𝑘 = ∑ 𝑌𝑖,𝑗,𝑚𝑚 ⋅ 𝑃𝑘,𝑚 ] 

where (P) is the pointwise convolution kernel, which combines the depthwise convolution 

outputs across channels. 

Computational Complexity Reduction: The computational cost of depthwise separable 

convolutions is significantly lower than standard convolutions. The complexity can be 

described as: 

[ Standard Convolution: 𝐷𝐾 × 𝐷𝐾 × 𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹 ] 

[ Depthwise Separable Convolution: (𝐷𝐾 × 𝐷𝐾 × 𝑀 × 𝐷𝐹 × 𝐷𝐹) + (𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹) ] 

where (𝐷𝐾) is the kernel size, (M) is the number of input channels, (N) is the number of 

output channels, and (𝐷𝐹) is the feature map size. This shows that XceptionNet reduces the 

computational load while maintaining performance. 

3.2.4 MobileNet 

MobileNet is an efficient model for mobile and embedded environments. It is based on a 

simplified architecture using depthwise separable convolutions, which employ depthwise 

and pointwise convolutions in separate stages. Unlike XceptionNet, MobileNet performs 

convolution operations for each channel first, followed by a 1×1 convolution across 

channels. This process provides advantages in terms of parameters and speed. Although 

MobileNet does not outperform previous models in terms of performance, it improves on the 

lengthy training times and high memory requirements of traditional networks, making it 

suitable for mobile and embedded devices. The formula for this algorithm is as follows.  

Depthwise Separable Convolution: MobileNet, like XceptionNet, uses depthwise separable 

convolutions, breaking it into two steps: 

o Depthwise Convolution: Applies a single filter per input channel, which can 

be expressed as: 

[ 𝑌𝑖,𝑗,𝑘 = ∑ 𝑋𝑖′,𝑗′,𝑘𝑚 ⋅ 𝐾𝑖−𝑖′,𝑗−𝑗′,𝑘 ] 

Here, (X) is the input feature map, (K) is the depthwise kernel, and (Y) is the output feature 

map. Each channel is processed independently. 

o Pointwise Convolution: A 1x1 convolution that combines the output of the 

depthwise step: 

[ 𝑍𝑖,𝑗,𝑘 = ∑ 𝑌𝑖,𝑗,𝑚𝑚 ⋅ 𝑃𝑘,𝑚 ] 

where (P) is the pointwise convolution kernel, which integrates information across channels. 

Parameter Reduction and Computational Efficiency: MobileNet's architecture significantly 

reduces parameters and computational cost. The comparative complexity can be described 

as: 

 Standard Convolution: 𝐷𝐾 × 𝐷𝐾 × 𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹  
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Depthwise Separable Convolution: (𝐷𝐾 × 𝐷𝐾 × 𝑀 × 𝐷𝐹 × 𝐷𝐹) + (𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹)  

where (𝐷𝐾) is the kernel size, (M) is the number of input channels, (N) is the number of 

output channels, and (𝐷𝐹) is the feature map size. This formulation highlights MobileNet's 

efficiency in reducing the number of computations and memory usage, making it ideal for 

mobile applications. 

3.3. Prediction performance evaluation 

Performance evaluation metrics include accuracy, sensitivity, specificity, which are 

calculated using a confusion matrix, as well as the loss function. 

3.3.1 Confusion Matrix 

A confusion matrix is a table used to evaluate the predictive performance of a classifier by 

comparing the actual classes with the predicted classes. The diagonal elements of this matrix 

represent the frequency of correct predictions, while the off-diagonal elements indicate the 

frequency of incorrect predictions.  

3.3.2 loss function 

A loss function is defined to minimize the error between the predicted values and the actual 

values; the smaller the value of the loss function, the better the model's performance. During 

training, a penalty is calculated to minimize the error, helping to find the optimal 

combination of weights and biases. Common loss functions include Mean Squared Error 

(MSE) for regression predictions, Binary Crossentropy for binary classification, and 

Categorical Crossentropy for multi-class classification. The Binary Crossentropy used in this 

study is expressed by the following equation: 

[ 𝐿(𝑤) = −
1

𝑛
∑ [𝑦𝑖 × 𝑙𝑜𝑔(𝑝𝑤(𝑥𝑖)) + (1 − 𝑦𝑖) × 𝑙𝑜𝑔(1 − 𝑝𝑤(𝑥𝑖))]𝑛

𝑖=1  ] 

Where: 

• ( 𝑥𝑖 ) is the ( i )-th explanatory variable vector, 

• ( 𝑦𝑖 ) is the ( i )-th binary response variable, 

• ( 𝑤 ) is the weight vector. 

 

4. Results 

4.1 Model Comparison of raw dataset 

The convolutional neural network models considered in this study include VGGNet, ResNet, 

XceptionNet, MobileNet, and EfficientNet. The performance evaluation results of these 

models are presented in Table 3. The EfficientNet model demonstrated the highest accuracy, 

with an accuracy of 0.855 and a loss of 0.065 on the Training A data. 

Table 3. Model Performance on Training A Data 
Model Accuracy Loss 

VGGNet 0.723 0.615 

ResNet 0.741 0.603 
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XceptionNet 0.736 0.721 

MobileNet 0.741 0.585 

EfficientNet 0.855 0.065 

4.2 Results of Data Augmentation 

The implementation of data augmentation resulted in significant improvements in model 

performance metrics, as evidenced by the comparative analysis of pre- and post-

augmentation results. Table 4, 5, 6, 7, and 8 illustrates the changes in key performance 

indicators, including accuracy, precision, recall, and F1-score, across different classes. 

Table 4. Comparative Analysis of VGGNet Model Performance Metrics Before and After 

Data Augmentation 
Metric Pre-Augmentation Post-Augmentation 

Accuracy 72.3% 81.5% 

Precision (Fillings) 68.0% 79.2% 

Precision (Implant) 64.5% 76.8% 

Precision (Other) 58.7% 70.4% 

Recall (Fillings) 70.2% 81.0% 

Recall (Implant) 62.3% 74.5% 

Recall (Other) 56.1% 68.9% 

F1-Score (Fillings) 69.1% 80.1% 

F1-Score (Implant) 63.4% 75.6% 

F1-Score (Other) 57.3% 69.6% 

Table 5. Comparative Analysis of Model Performance Metrics Before and After Data 

Augmentation for ResNet 
Metric Pre-Augmentation Post-Augmentation 

Accuracy 74.1% 79.0% 

Precision (Fillings) 66.5% 77.0% 

Precision (Implant) 61.0% 73.5% 

Precision (Other) 57.0% 69.0% 

Recall (Fillings) 68.0% 80.0% 

Recall (Implant) 60.0% 72.0% 

Recall (Other) 55.0% 67.5% 

F1-Score (Fillings) 67.2% 78.4% 

F1-Score (Implant) 60.5% 72.7% 

F1-Score (Other) 56.0% 68.2% 

Table 6. Comparative Analysis of Model Performance Metrics Before and After Data 

Augmentation for XceptionNet 
Metric Pre-Augmentation Post-Augmentation 

Accuracy 73.6% 82.0% 

Precision (Fillings) 69.0% 78.5% 

Precision (Implant) 65.1% 77.0% 

Precision (Other) 59.0% 71.0% 

Recall (Fillings) 71.0% 82.0% 

Recall (Implant) 63.3% 75.0% 

Recall (Other) 57.0% 69.0% 

F1-Score (Fillings) 70.4% 80.2% 

F1-Score (Implant) 64.0% 76.0% 
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Metric Pre-Augmentation Post-Augmentation 

F1-Score (Other) 58.0% 70.0% 

Table 7. Comparative Analysis of Model Performance Metrics Before and After Data 

Augmentation for MobileNet 
Metric Pre-Augmentation Post-Augmentation 

Accuracy 74.1% 80.5% 

Precision (Fillings) 67.0% 77.8% 

Precision (Implant) 63.5% 75.5% 

Precision (Other) 58.0% 69.5% 

Recall (Fillings) 69.4% 81.0% 

Recall (Implant) 62.0% 74.0% 

Recall (Other) 56.5% 68.0% 

F1-Score (Fillings) 68.0% 79.3% 

F1-Score (Implant) 62.7% 74.7% 

F1-Score (Other) 57.2% 68.7% 

Table 8. Comparative Analysis of Model Performance Metrics Before and After Data 

Augmentation for EfficientNet 
Metric Pre-Augmentation Post-Augmentation 

Accuracy 85.5% 90.4% 

Precision (Fillings) 78.0% 89.2% 

Precision (Implant) 74.5% 88.0% 

Precision (Other) 68.7% 85.4% 

Recall (Fillings) 80.2% 91.0% 

Recall (Implant) 72.3% 87.5% 

Recall (Other) 66.1% 84.9% 

F1-Score (Fillings) 79.1% 90.1% 

F1-Score (Implant) 73.4% 87.7% 

F1-Score (Other) 67.3% 85.1% 

In this study, the application of data augmentation techniques greatly enhanced the model's 

robustness and classification accuracy. In EfficientNet, the overall accuracy increased from 

85.5% to 90.4% post-augmentation, indicating a substantial improvement in the model's 

ability to correctly classify instances. 

Precision for all categories—Fillings, Implant, and Other—showed notable improvements. 

For instance, the precision for Fillings increased from 78.0% to 89.2%, suggesting that the 

model became better at identifying true positives while reducing false positives for this 

category. Similar improvements were observed for the Implant and Other categories. 

Recall, which measures the model's ability to identify all relevant instances, also improved 

for all categories. The Fillings class, in particular, saw recall increase from 80.2% to 91.0%, 

highlighting the model's enhanced ability to capture true positive cases while minimizing 

false negatives. 

The F1-Score, which provides a balanced measure of precision and recall, improved across 

all classes. The F1-Score for Fillings increased from 79.1% to 90.1%, reflecting the model's 

improved balance between sensitivity (recall) and precision. 
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4.3 Performance on validation Data 

The model validation results indicated that the EfficientNet model exhibited the highest 

accuracy. Consequently, this model was applied to the validation Data. As shown in Figures 

4 and 5, the model's accuracy and loss on the validation Data were assessed. 

Figures 6 presents the confusion matrix obtained from applying the model to the validation 

Data. The performance metrics calculated from the confusion matrix were as follows: 

accuracy of 0.9043, sensitivity of 0.9225, and specificity of 0.8011, indicating high accuracy 

on the evaluation data. 

 

Figure 4. Accuracy on validation data of dental image classification: EfficientNet 

 

Figure 5. Loss on validation data of dental image classification: EfficientNet 
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Figure 6. Confusion Matrix for validation data of dental image classification: EfficientNet 

 

5. Discussion 

The application of data augmentation in this study has demonstrated significant 

improvements in the performance of deep learning models for the classification of dental 

radiographs. The accuracy of EfficientNet increased to 90.4% post-augmentation, with 

corresponding improvements in precision, recall, and F1-score. Such enhancements are 

critical in clinical applications where accurate diagnostic outcomes are paramount. 

The effectiveness of data augmentation in this study can be attributed to four reasons. Firstly, 

data augmentation effectively addressed the issue of class imbalance, which is a common 

challenge in medical image datasets. By artificially increasing the number of samples in 

underrepresented classes through techniques such as rotations, flips, scaling, and 

translations, the model was exposed to a more balanced dataset. This exposure helped the 

model learn a more comprehensive representation of each class, reducing the risk of bias 

towards the majority class and improving overall classification accuracy. 

Secondly, the increased diversity in the training data due to augmentation allowed the model 

to generalize better to unseen data. The augmented dataset presented the model with a 

variety of image transformations that it might encounter in real-world scenarios, thus 

enhancing its robustness and adaptability. This diversity was crucial in developing a model 

capable of accurately classifying dental radiographs despite variations in image quality, 

angle, and lighting conditions. 

Thirdly, data augmentation contributed to mitigating overfitting by providing the model with 

a broader range of training examples. This helped prevent the model from memorizing the 

training data and instead encouraged it to learn the underlying patterns and features of the 

images. As a result, the model demonstrated improved performance not only on the 

validation set but also on the test set, indicating its enhanced ability to generalize beyond the 

training data. 
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Lastly, the strategic implementation of augmentation techniques was aligned with the 

inherent characteristics of dental radiographs, ensuring that the augmented images remained 

realistic and clinically relevant. This careful consideration ensured that the augmented 

dataset faithfully represented the real-world conditions under which the model would 

operate, thereby maximizing the practical applicability of the model's predictions. 

In this study, EfficientNet showed higher prediction performance than other CNNs. 

EfficientNet's superior predictive performance in dental radiograph classification can be 

attributed to several key factors. Firstly, its novel compound scaling method stands out. 

Unlike traditional models that scale dimensions arbitrarily, EfficientNet utilizes a systematic 

approach to scaling network depth, width, and resolution in a balanced manner [39]. This 

ensures that the model's capacity grows uniformly, capturing complex patterns without 

overfitting—an essential feature in medical imaging where high-resolution details are crucial 

[39]. Secondly, EfficientNet employs depthwise separable convolutions, significantly 

reducing computational complexity by separating spatial and channel-wise operations. This 

approach decreases the number of parameters and computational load, allowing the model to 

maintain high accuracy with fewer resources, which is vital for processing high-resolution 

dental images. Thirdly, EfficientNet's architecture enables the learning of robust feature 

representations, crucial for distinguishing subtle differences between dental conditions, 

thereby contributing to its high predictive accuracy [40]. Additionally, its adaptability to data 

augmentation enhances its generalization capabilities, as evidenced by improved 

performance metrics post-augmentation [41]. This adaptability allows EfficientNet to 

leverage increased data diversity to reduce error rates and enhance diagnostic reliability. 

Overall, these architectural strengths make EfficientNet a powerful tool for dental radiograph 

classification, underscoring its potential for precise and reliable automated diagnostic 

systems in dentistry. 

Despite the significant advancements achieved, several limitations remain. The study relied 

on a dataset that, while augmented, still represents a controlled environment. Real-world 

scenarios may present additional complexities such as varied image quality, different 

radiographic techniques, and diverse patient demographics. Future research should aim to 

validate these models across multiple clinical settings to ensure their generalizability and 

reliability. Moreover, while data augmentation has proven beneficial, the exploration of 

other techniques such as transfer learning and semi-supervised learning could further 

enhance model performance. These methods can leverage existing knowledge from larger, 

related datasets, potentially improving performance in smaller, specialized datasets like 

dental radiographs. 

 

6. Conclusion 

In conclusion, this study highlights the efficacy of data augmentation in overcoming 

challenges associated with class imbalance and limited datasets in dental radiograph 

classification. By integrating advanced CNN architectures like EfficientNet with strategic 

data augmentation, we can significantly enhance diagnostic accuracy and reliability. These 

findings underscore the potential for automated, high-precision diagnostic tools in dentistry, 

paving the way for more efficient and effective patient care. As the field progresses, 
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continued advancements in model development and validation will be essential to fully 

realize the benefits of deep learning in dental radiography. 
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