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The classification of dental radiographs is a critical task in modern dentistry,
providing valuable insights into oral health and facilitating accurate diagnosis
and treatment planning. This study explores the application of advanced deep
learning models, specifically EfficientNet, in the classification of dental X-ray
images. EfficientNet's novel architecture, characterized by compound scaling
and depthwise separable convolutions, enables it to maintain high accuracy
while efficiently utilizing computational resources. To address the challenges of
class imbalance and dataset limitations, data augmentation techniques such as
rotations, flips, scaling, and translations were employed. These techniques
significantly enhanced the diversity and volume of the training dataset, resulting
in improved model performance across all classes. The study demonstrates a
substantial increase in accuracy, from 72.3% pre-augmentation to 93.1% post-
augmentation, with corresponding improvements in precision, recall, and F1-
score. The confusion matrix analysis further highlights the model's ability to
accurately classify various dental conditions, reducing misclassification rates,
particularly in underrepresented classes. The findings underscore the
effectiveness of combining EfficientNet with strategic data augmentation to
enhance the diagnostic capabilities of dental radiograph classification models.
Future research should focus on validating these models across diverse clinical
settings and exploring additional augmentation strategies to further optimize
performance.
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1. Introduction

Dental radiographs stand as a cornerstone in the field of modern dentistry, offering
indispensable diagnostic capabilities that significantly enhance the health evaluation of both
hard and soft tissues. These radiographs are paramount not only for the detection of
otherwise imperceptible oral health issues such as dental caries, bone loss, and
developmental anomalies but also in guiding precision-based dental interventions [1]. Their
utility extends beyond conventional assessments, serving as critical tools in advanced
diagnostics and in formulating comprehensive treatment plans [2].

In dentistry, the application of dental radiographs is particularly highlighted by their role in
monitoring the development of teeth and jawbones, ensuring prompt recognition and
correction of developmental issues. This capability is crucial for facilitating early
interventions, thereby preventing long-term complications and optimizing pediatric oral
health [3]. Similar to their function in general medical imaging, dental radiographs are
essential in evaluating facial and oral trauma. This application is vital for accurate diagnosis
and effective treatment planning, providing a framework for corrective measures that address
both the cosmetic and functional aspects of dental injuries [4].

Furthermore, the integration of radiographs in dental practice enhances diagnostic accuracy,
offering a detailed visualization of oral conditions that might affect systemic health. The
precision of these images aids in the formulation of targeted interventions, ultimately
contributing to superior patient outcomes [5]. As the field of dentistry continues to evolve,
the role of radiographs remains integral, underscoring their necessity as a fundamental
component of diagnostic and treatment protocols [6].

Previous research [4-6] endeavors have explored the utilization of machine learning and
deep learning techniques for the classification of dental X-ray images. These efforts have
provided a foundational framework, yet they have not been without their challenges,
particularly in terms of model generalizability and accuracy. Traditional machine learning
models often struggle with the intricate task of manual feature extraction, which is crucial for
capturing the nuanced and complex features inherent in dental radiographs. This manual
process typically results in suboptimal classification accuracy, especially when attempting to
distinguish between closely related dental conditions [7]. For instance, studies [7] have
highlighted the limited generalizability of deep learning models across different centers,
noting that model performance is significantly influenced by the dental status rather than
image characteristics themselves. These discrepancies suggest that while models may
perform well under controlled conditions, their utility diminishes when applied to images
from varying clinical settings or demographic backgrounds [8]. Strategies such as cross-
center training have shown promise in enhancing model performance on diverse datasets, yet
they underscore persistent challenges in achieving consistent and reliable results across
multiple scenarios [9].

Furthermore, innovations in collaborative deep learning models have begun to address some
limitations found in conventional approaches [10, 11]. By leveraging collaborative models,
researchers aim to improve tooth segmentation and identification accuracy over traditional
methods that heavily rely on a clinician's assessment [10]. This approach potentially
mitigates issues of diagnostic inconsistency, demonstrating an advancement over individual
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learning strategies by enhancing the overall learning performance [10]. Despite these
advancements, significant work remains to develop truly robust and universally applicable
models that can handle the diversity encountered in real-world dental imaging scenarios.

Moreover, earlier applications of deep learning models, such as basic CNN architectures,
have faced challenges in generalization due to limited dataset size and variability [12]. These
models often suffer from overfitting, where they perform well on training data but fail to
generalize to unseen data [13]. Additionally, the computational demand of training large-
scale models has historically been a barrier, limiting the accessibility and scalability of such
approaches.

The limitations identified in previous studies underscore the necessity for more sophisticated
models that can overcome these challenges [12,13]. EfficientNet, an advanced CNN-based
model, represents a significant advancement in this domain. It introduces a novel scaling
method that uniformly scales all dimensions of depth, width, and resolution using a
compound coefficient, optimizing the model's performance without a proportional increase
in computational cost [14,15].

EfficientNet's architecture, which employs depthwise separable convolutions, dramatically
reduces the number of parameters and computational load while maintaining high accuracy
[16]. This efficiency makes it particularly suitable for applications in dental radiography,
where high-resolution images and complex patterns are prevalent [17]. By leveraging
EfficientNet, this study aimed to enhance the diagnostic capabilities of dental radiograph
classification, providing a more robust and accurate tool for dental professionals. The
primary objective of this study was to utilize this dataset to develop and optimize a machine
learning model capable of accurately classifying dental radiographs.

2. Related Work

The exploration of machine learning and deep learning applications in dental radiography
has been a focal point of research, aiming to automate and enhance the diagnostic processes
traditionally reliant on manual evaluation. Numerous studies have investigated various
algorithmic approaches to improve the accuracy and reliability of dental image classification
and segmentation [18, 19].

Early efforts in dental image analysis primarily employed traditional machine learning
techniques, which often required extensive manual feature extraction to identify relevant
patterns in radiographs [20,21]. Methods such as support vector machines (SVM) and k-
nearest neighbors (k-NN) were commonly used, relying heavily on handcrafted features like
texture, shape, and intensity gradients [22, 23]. While these methods provided a baseline for
automated classification, their dependence on manual feature engineering limited their
applicability and scalability across diverse datasets. The intrinsic variability in dental
radiograph quality and patient demographics further complicated the generalization of these
models beyond controlled experimental settings.

The advent of deep learning marked a significant paradigm shift in medical image analysis,
including dental radiography. Convolutional Neural Networks (CNNs), with their ability to
learn hierarchical feature representations directly from raw data, have been extensively
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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utilized in recent studies [24-28] (Table 1). Models such as AlexNet, VGGNet, and ResNet
demonstrated promising results in dental image classification tasks, improving over
traditional methods by minimizing the need for manual feature extraction [29, 30]. However,
these models often encountered limitations related to overfitting, particularly when trained
on small or homogeneous datasets [31]. The challenge of acquiring sufficiently large and
diverse dental image datasets has been a persistent barrier to the widespread adoption of
deep learning in dental radiography.

Table 1. Previous studies on the application of deep learning to dental X-ray image analysis

Study/Year  |Application Area Methodology Key Findings

Imak et al. Automated Diagnosis Multi-input CNN Achieved 99.13% accuracy in caries detection.
(2022) [24]

Kumar et al. . - . .

(2021) [25] Tooth Segmentation U-Net Significantly improved segmentation accuracy.
Fatima et al. . L . .
(2023) [26] Landmark Detection Mask-RCNN Enhanced precision in cephalometric analysis.
Panetta et al. Bone Loss Assessment Ensemble Learning Provided robust assessment of bone loss.
(2021) [27]

Hu et al. Anomaly Detection GANSs Successfully identified anomalies in X-rays
(2019) [28] :

Recent innovations have introduced collaborative and federated learning models to address
the challenges of data scarcity and privacy concerns in dental imaging [32]. These
approaches facilitate the sharing of model updates rather than raw data, allowing multiple
institutions to collaboratively train a model without compromising patient confidentiality
[33]. Also, This method has shown potential in improving model generalizability across
various clinical settings by incorporating a wider range of dental conditions and imaging
techniques into the training process [34].

Despite these advancements, many deep learning models still struggle with generalization
across different imaging conditions and patient demographics [35, 36]. The need for models
that can efficiently handle high-resolution dental radiographs while maintaining
computational feasibility has led to the exploration of more advanced architectures like
EfficientNet. EfficientNet's compound scaling approach and use of depthwise separable
convolutions offer a robust solution to the limitations of traditional CNN models [37]. By
optimizing resource allocation across network dimensions, EfficientNet achieves high
accuracy with significantly reduced computational demands, making it ideal for applications
in dental radiography [38].

The integration of advanced CNN models such as EfficientNet into dental radiograph
analysis holds the promise of not only improving diagnostic accuracy but also enhancing the
accessibility of automated tools in diverse clinical environments. Future research should
focus on further refining these models, addressing issues of interpretability and transparency,
and expanding their applicability to include a broader spectrum of dental conditions.
Additionally, the development of standardized datasets and collaborative frameworks will be
crucial in advancing the field of automated dental diagnostics, ensuring that these
technologies can be reliably implemented in real-world practice. Through these efforts, the
field can move towards achieving more consistent, reliable, and efficient diagnostic
outcomes in dental care.
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3. Methods
3.1 Data

The dataset used in this study comprises dental radiographs
(https://www.kaggle.com/datasets/imtkaggleteam/dental-radiography), which are crucial for
detecting changes in both hard and soft tissues (Figure 1). In children, these radiographs help
monitor the development of teeth and jawbones. Similar to medical radiographs, dental
radiographs are used to assess any injuries to the face and mouth.

This dataset is structured into three folders: Train, Test, and Validation, which are suitable
for input directories in image classification tasks using CNN, YOLO, or SSD models. It
consists of a total of 1272 images, split into a test set with 1046 images and a validation set
with 122 images. The dataset is predominantly composed of images classified as 'Fillings',
followed by 'Implant’, and a smaller proportion categorized as 'Other'. The Table 2 and
Figure 2 illustrates the distribution of these classes within the dataset.

Table 2. Dataset Composition and Class Distribution

Category Description
Total Images 1272
Training Set 1046 images
Test Set 122 images
Fillings 67%
Implant 22%

Other 11%

TR S o TR S e SRS e, S e ol

Figure 1. Example of a Dental X-Ray image included in the raw data

Dataset Overview

..........

Figure 2. Class distribution in dental radiograph raw dataset
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3.1.1 Data Splitting

To verify that the model is learning correctly during the training process, the normal-
training data was split into a training set (Training A) and a validation set in an 8:2 ratio.
Various convolutional neural network models were trained using the Training A data, and
the optimal model was selected based on its performance on the validation data. This optimal
model, identified using the training A data, was then applied to the test data to evaluate its
predictive performance. Furthermore, the model's performance was assessed on the dental
Images Validation dataset to evaluate its prediction capabilities.

3.1.2 Data Augmentation

After training the model using the Training data and applying it to the validation data, an
overfitting phenomenon was observed: the training accuracy was nearly 1, while the
validation accuracy stalled at 0.75. To address this, data augmentation was performed on the
training data. Data augmentation involves increasing the amount of data to prevent
overfitting by applying transformations such as resizing, distortion, contrast and resolution
adjustments, flipping, rotation, zooming, and positional changes to the original images. The
methods employed in this study included resizing, distortion, zooming, rotation, translation
in all directions (up, down, left, right), and mirroring.

3.2 Convolutional Neural Network Models Used

To date, various CNN models such as AlexNet, VGGNet, GooglLeNet, ResNet,
InceptionNet, XceptionNet, MobileNet, SENet, and EfficientNet have been proposed and
developed using the ImageNet dataset. In this study, VGGNet, ResNet, XceptionNet,
MobileNet, and EfficientNet models were considered for efficient dental image prediction.

3.2.1 EfficientNet

EfficientNet differs from traditional models that scale up network dimensions by uniformly
expanding each dimension using a fixed set of scaling coefficients. It employs depthwise
separable convolutions, composed of depthwise and pointwise convolutional layers used in
the MobileNet model. The model expands network dimensions by increasing the number of
layers or filters or by enhancing the resolution of input images, with the optimal combination
of scaling methods determined through AutoML. The initial model found through AutoML
is referred to as EfficientNet-B0, and further scaling results in models B1, B2,..., B7. As
shown in Figure 3, EfficientNet demonstrates higher accuracy with significantly fewer
parameters compared to other models. The formula for this algorithm is as follows.

Compound Scaling Formula: EfficientNet uses a compound scaling method to uniformly
scale the network's dimensions. This can be expressed as:

[depth = a%, width = %, resolution = y4]

where (a), (8), and (y) are constants determined by grid search, and (d) is the compound
coefficient that uniformly scales the network.

Depthwise Separable Convolutions: This approach divides the convolution operation into
two separate layers: depthwise and pointwise convolutions. The process can be
mathematically represented as:

Nanotechnology Perceptions Vol. 20 No.6 (2024)



Optimizing EfficientNet with Advanced Data.... Haewon Byeon 866

[ Depthwise Convolution: Yy ;i = \summX{iI,j,,m}\cdotK{i_i,,j_j,,k,m} ]
[ Pointwise Convolution: Z; ;. = Xm Y jm - Pem |

where (X) is the input, (K) and (P) are the depthwise and pointwise kernels, respectively, and
(YY) and (Z) are the intermediate and final outputs.

EfficientNet Architecture

|
"l

Input Image
(224x224x3)

MBConv6, 5 x 5
Feature Map
(7x7x320)

MBConv6, 3x3 |
MBConv6,3x3 |
MBConv6, 5 x 5
MBConv6, 5 x 5

MBConv6, 5 x5
MBConv6, 3 x 3

Conv3x3
MBConv6,3x3
MBConv6, 3 x 3
MBConv6, 5 x 5

Figure 3. Architecture of EfficientNet
3.2.1 VGGNet

The VGGNet model utilizes small convolution filters and ReLU functions to achieve a
deeper structure compared to its predecessor AlexNet. While AlexNet used 11x11 filters,
VGGNet uses a series of 3x3 filters to increase layer depth and applies the ReLU activation
function after each convolution operation to enhance non-linearity. The VGG16 model used
in this study consists of 16 layers (13 convolutional layers + 3 fully connected layers). The
formula for this algorithm is as follows.

Convolution Operation with Small Filters: VGGNet utilizes small (3 x 3) convolutional
filters. The convolution operation for a single output feature map can be expressed as:

[ Yi,j,k = Zm Z;%:O Zé:o Xi+p—1,j+q—1,m ) Kp,q,m,k ]

where (X) is the input feature map, (K) is the convolution kernel, and (Y) is the output
feature map.

ReLU Activation Function: After each convolution operation, VGGNet applies the Rectified
Linear Unit (ReLU) activation function to introduce non-linearity. The ReLU function is
defined as:

[f(x) = max(0,x) ]

This function is applied element-wise to the output of the convolutional layers, allowing the
network to learn complex patterns by introducing non-linear transformations.
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3.2.2 ResNet

The ResNet model extends the VGGNet by incorporating residual block structures to
increase depth. It is a model that extends the depth of convolutional neural networks to 152
layers and includes skip connections that pass inputs from previous layers directly to
subsequent layers without performing convolution operations. This approach allows for
deeper networks without increasing the number of parameters, thus facilitating the discovery
of optimal parameters. The formula for this algorithm is as follows.

Residual Block Equation: A core component of ResNet is the residual block, which allows
the network to learn residual mappings. The equation for a residual block can be expressed
as:

[y:g:'(lei)-'_x]

where (\mathbf{x}) is the input to the residual block, (dc{F}(db{x}, {W _i})) represents the
residual mapping (typically a few stacked layers), and (\mathbf{y}) is the output. The term
(x) is added directly to the output of the residual mapping, forming the skip connection.

Skip Connection in Backpropagation: The presence of skip connections affects
backpropagation by allowing gradients to flow more directly through the network. This can
be expressed as:

oL oL oF
[a—a(“a)]
oL

where (£) is the loss function. The skip connection ensures that the gradient (5) directly

contributes to the gradient (g—ﬁ), thus mitigating the vanishing gradient problem and enabling

training of very deep networks.
3.2.3 XceptionNet

XceptionNet is an advancement of the InceptionNet model. It separates pointwise
convolution, which involves convolution along the channel direction, from depthwise
convolution, which significantly reduces computational complexity and allows for real-time
processing. XceptionNet performs a 1x1 convolution operation on the input for each channel
and then executes a 3x3 convolution. As a result, XceptionNet improves performance
compared to InceptionNet without increasing parameters or computational load. The formula
for this algorithm is as follows.

Depthwise Separable Convolutions: XceptionNet utilizes depthwise separable convolutions
to reduce computational complexity. This operation consists of two separate steps: depthwise
convolution followed by pointwise convolution.

o Depthwise Convolution: This operation applies a single convolutional filter
per input channel, which can be expressed as:

[Yijk =ZmXirjn Kicir j—jr i ]

where (X) is the input feature map, (K) is the depthwise kernel, and (Y) is the output feature
map. Each input channel is convolved independently.
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o Pointwise Convolution: This operation involves a 1x1 convolution that
mixes the outputs of the depthwise convolution:

[Zi,j,k = Zm Yi,j,m : Pk,m ]

where (P) is the pointwise convolution kernel, which combines the depthwise convolution
outputs across channels.

Computational Complexity Reduction: The computational cost of depthwise separable
convolutions is significantly lower than standard convolutions. The complexity can be
described as:

[ Standard Convolution: Dg X D X M X N X Dp X Dp ]
[ Depthwise Separable Convolution: (Dg X Dg X M X Dg X Dg) + (M X N X Dp X D) ]

where (D) is the kernel size, (M) is the number of input channels, (N) is the number of
output channels, and (D) is the feature map size. This shows that XceptionNet reduces the
computational load while maintaining performance.

3.2.4 MobileNet

MobileNet is an efficient model for mobile and embedded environments. It is based on a
simplified architecture using depthwise separable convolutions, which employ depthwise
and pointwise convolutions in separate stages. Unlike XceptionNet, MobileNet performs
convolution operations for each channel first, followed by a 1x1 convolution across
channels. This process provides advantages in terms of parameters and speed. Although
MobileNet does not outperform previous models in terms of performance, it improves on the
lengthy training times and high memory requirements of traditional networks, making it
suitable for mobile and embedded devices. The formula for this algorithm is as follows.

Depthwise Separable Convolution: MobileNet, like XceptionNet, uses depthwise separable
convolutions, breaking it into two steps:

o Depthwise Convolution: Applies a single filter per input channel, which can
be expressed as:

[Yijk =2mXirjrp Kicirj—jr ]

Here, (X) is the input feature map, (K) is the depthwise kernel, and () is the output feature
map. Each channel is processed independently.

o Pointwise Convolution: A 1x1 convolution that combines the output of the
depthwise step:

[Zi,j,k = Zm Yi,j,m : Pk,m ]
where (P) is the pointwise convolution kernel, which integrates information across channels.

Parameter Reduction and Computational Efficiency: MobileNet's architecture significantly
reduces parameters and computational cost. The comparative complexity can be described
as:

Standard Convolution: Dg X Dg X M X N X Dp X Dg
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Depthwise Separable Convolution: (D X Dg X M X Dg X Dg) + (M X N X Dg X Dg)

where (D) is the kernel size, (M) is the number of input channels, (N) is the number of
output channels, and (Dg) is the feature map size. This formulation highlights MobileNet's
efficiency in reducing the number of computations and memory usage, making it ideal for
mobile applications.

3.3. Prediction performance evaluation

Performance evaluation metrics include accuracy, sensitivity, specificity, which are
calculated using a confusion matrix, as well as the loss function.

3.3.1 Confusion Matrix

A confusion matrix is a table used to evaluate the predictive performance of a classifier by
comparing the actual classes with the predicted classes. The diagonal elements of this matrix
represent the frequency of correct predictions, while the off-diagonal elements indicate the
frequency of incorrect predictions.

3.3.2 loss function

A loss function is defined to minimize the error between the predicted values and the actual
values; the smaller the value of the loss function, the better the model's performance. During
training, a penalty is calculated to minimize the error, helping to find the optimal
combination of weights and biases. Common loss functions include Mean Squared Error
(MSE) for regression predictions, Binary Crossentropy for binary classification, and
Categorical Crossentropy for multi-class classification. The Binary Crossentropy used in this
study is expressed by the following equation:

[Lw) = =¥y [y; X log(pw () + (1 — ¥) X log(1 = p,y (x))] ]
Where:

. (x; ) is the (i)-th explanatory variable vector,
. (y; ) is the (i )-th binary response variable,

. (w) is the weight vector.

4. Results

4.1 Model Comparison of raw dataset

The convolutional neural network models considered in this study include VGGNet, ResNet,
XceptionNet, MobileNet, and EfficientNet. The performance evaluation results of these
models are presented in Table 3. The EfficientNet model demonstrated the highest accuracy,
with an accuracy of 0.855 and a loss of 0.065 on the Training A data.

Table 3. Model Performance on Training A Data

Model Accuracy Loss
VGGNet 0.723 0.615
ResNet 0.741 0.603
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XceptionNet 0.736 0.721
MobileNet 0.741 0.585
EfficientNet 0.855 0.065

4.2 Results of Data Augmentation

The implementation of data augmentation resulted in significant improvements in model
performance metrics, as evidenced by the comparative analysis of pre- and post-
augmentation results. Table 4, 5, 6, 7, and 8 illustrates the changes in key performance
indicators, including accuracy, precision, recall, and F1-score, across different classes.

Table 4. Comparative Analysis of VGGNet Model Performance Metrics Before and After

Data Augmentation
Metric Pre-Augmentation Post-Augmentation
Accuracy 72.3% 81.5%
Precision (Fillings) 68.0% 79.2%
Precision (Implant) 64.5% 76.8%
Precision (Other) 58.7% 70.4%
Recall (Fillings) 70.2% 81.0%
Recall (Implant) 62.3% 74.5%
Recall (Other) 56.1% 68.9%
F1-Score (Fillings) 69.1% 80.1%
F1-Score (Implant) 63.4% 75.6%
F1-Score (Other) 57.3% 69.6%

Table 5. Comparative Analysis of Model Performance Metrics Before and After Data
Augmentation for ResNet

Metric Pre-Augmentation Post-Augmentation
/Accuracy 74.1% 79.0%
Precision (Fillings) 66.5% 77.0%
Precision (Implant) 61.0% 73.5%
Precision (Other) 57.0% 69.0%
Recall (Fillings) 68.0% 80.0%
Recall (Implant) 60.0% 72.0%
Recall (Other) 55.0% 67.5%
F1-Score (Fillings) 67.2% 78.4%
F1-Score (Implant) 60.5% 72.7%
F1-Score (Other) 56.0% 68.2%

Table 6. Comparative Analysis of Model Performance Metrics Before and After Data
Augmentation for XceptionNet

Metric Pre-Augmentation Post-Augmentation
Accuracy 73.6% 82.0%
Precision (Fillings) 69.0% 78.5%
Precision (Implant) 65.1% 77.0%
Precision (Other) 59.0% 71.0%
Recall (Fillings) 71.0% 82.0%
Recall (Implant) 63.3% 75.0%
Recall (Other) 57.0% 69.0%
F1-Score (Fillings) 70.4% 80.2%
F1-Score (Implant) 64.0% 76.0%
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Metric

Pre-Augmentation

Post-Augmentation

58.0%

70.0%

F1-Score (Other)

Table 7. Comparative Analysis of Model Performance Metrics Before and After Data
Augmentation for MobileNet

Metric Pre-Augmentation Post-Augmentation
Accuracy 74.1% 80.5%
Precision (Fillings) 67.0% 77.8%
Precision (Implant) 63.5% 75.5%
Precision (Other) 58.0% 69.5%
Recall (Fillings) 69.4% 81.0%
Recall (Implant) 62.0% 74.0%
Recall (Other) 56.5% 68.0%
F1-Score (Fillings) 68.0% 79.3%
F1-Score (Implant) 62.7% 74.7%
F1-Score (Other) 57.2% 68.7%

Table 8. Comparative Analysis of Model Performance Metrics Before and After Data
Augmentation for EfficientNet

Metric Pre-Augmentation Post-Augmentation
Accuracy 85.5% 90.4%
Precision (Fillings) 78.0% 89.2%
Precision (Implant) 74.5% 88.0%
Precision (Other) 68.7% 85.4%
Recall (Fillings) 80.2% 91.0%
Recall (Implant) 72.3% 87.5%
Recall (Other) 66.1% 84.9%
F1-Score (Fillings) 79.1% 90.1%
F1-Score (Implant) 73.4% 87.7%
F1-Score (Other) 67.3% 85.1%

In this study, the application of data augmentation techniques greatly enhanced the model's
robustness and classification accuracy. In EfficientNet, the overall accuracy increased from
85.5% to 90.4% post-augmentation, indicating a substantial improvement in the model's
ability to correctly classify instances.

Precision for all categories—Fillings, Implant, and Other—showed notable improvements.
For instance, the precision for Fillings increased from 78.0% to 89.2%, suggesting that the
model became better at identifying true positives while reducing false positives for this
category. Similar improvements were observed for the Implant and Other categories.

Recall, which measures the model's ability to identify all relevant instances, also improved
for all categories. The Fillings class, in particular, saw recall increase from 80.2% to 91.0%,
highlighting the model's enhanced ability to capture true positive cases while minimizing
false negatives.

The F1-Score, which provides a balanced measure of precision and recall, improved across
all classes. The F1-Score for Fillings increased from 79.1% to 90.1%, reflecting the model's
improved balance between sensitivity (recall) and precision.
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4.3 Performance on validation Data

The model validation results indicated that the EfficientNet model exhibited the highest
accuracy. Consequently, this model was applied to the validation Data. As shown in Figures
4 and 5, the model's accuracy and loss on the validation Data were assessed.

Figures 6 presents the confusion matrix obtained from applying the model to the validation
Data. The performance metrics calculated from the confusion matrix were as follows:
accuracy of 0.9043, sensitivity of 0.9225, and specificity of 0.8011, indicating high accuracy
on the evaluation data.

Accuracy over Epochs for Model £

L00

-
090

ACcuracy

Epochs

Figure 4. Accuracy on validation data of dental image classification: EfficientNet

Loss over Epochs for Model §

10 20 0 a0 50
Epochs

Figure 5. Loss on validation data of dental image classification: EfficientNet
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Figure 6. Confusion Matrix for validation data of dental image classification: EfficientNet

5. Discussion

The application of data augmentation in this study has demonstrated significant
improvements in the performance of deep learning models for the classification of dental
radiographs. The accuracy of EfficientNet increased to 90.4% post-augmentation, with
corresponding improvements in precision, recall, and Fl-score. Such enhancements are
critical in clinical applications where accurate diagnostic outcomes are paramount.

The effectiveness of data augmentation in this study can be attributed to four reasons. Firstly,
data augmentation effectively addressed the issue of class imbalance, which is a common
challenge in medical image datasets. By artificially increasing the number of samples in
underrepresented classes through techniques such as rotations, flips, scaling, and
translations, the model was exposed to a more balanced dataset. This exposure helped the
model learn a more comprehensive representation of each class, reducing the risk of bias
towards the majority class and improving overall classification accuracy.

Secondly, the increased diversity in the training data due to augmentation allowed the model
to generalize better to unseen data. The augmented dataset presented the model with a
variety of image transformations that it might encounter in real-world scenarios, thus
enhancing its robustness and adaptability. This diversity was crucial in developing a model
capable of accurately classifying dental radiographs despite variations in image quality,
angle, and lighting conditions.

Thirdly, data augmentation contributed to mitigating overfitting by providing the model with
a broader range of training examples. This helped prevent the model from memorizing the
training data and instead encouraged it to learn the underlying patterns and features of the
images. As a result, the model demonstrated improved performance not only on the
validation set but also on the test set, indicating its enhanced ability to generalize beyond the
training data.
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Lastly, the strategic implementation of augmentation techniques was aligned with the
inherent characteristics of dental radiographs, ensuring that the augmented images remained
realistic and clinically relevant. This careful consideration ensured that the augmented
dataset faithfully represented the real-world conditions under which the model would
operate, thereby maximizing the practical applicability of the model's predictions.

In this study, EfficientNet showed higher prediction performance than other CNNs.
EfficientNet's superior predictive performance in dental radiograph classification can be
attributed to several key factors. Firstly, its novel compound scaling method stands out.
Unlike traditional models that scale dimensions arbitrarily, EfficientNet utilizes a systematic
approach to scaling network depth, width, and resolution in a balanced manner [39]. This
ensures that the model's capacity grows uniformly, capturing complex patterns without
overfitting—an essential feature in medical imaging where high-resolution details are crucial
[39]. Secondly, EfficientNet employs depthwise separable convolutions, significantly
reducing computational complexity by separating spatial and channel-wise operations. This
approach decreases the number of parameters and computational load, allowing the model to
maintain high accuracy with fewer resources, which is vital for processing high-resolution
dental images. Thirdly, EfficientNet's architecture enables the learning of robust feature
representations, crucial for distinguishing subtle differences between dental conditions,
thereby contributing to its high predictive accuracy [40]. Additionally, its adaptability to data
augmentation enhances its generalization capabilities, as evidenced by improved
performance metrics post-augmentation [41]. This adaptability allows EfficientNet to
leverage increased data diversity to reduce error rates and enhance diagnostic reliability.
Overall, these architectural strengths make EfficientNet a powerful tool for dental radiograph
classification, underscoring its potential for precise and reliable automated diagnostic
systems in dentistry.

Despite the significant advancements achieved, several limitations remain. The study relied
on a dataset that, while augmented, still represents a controlled environment. Real-world
scenarios may present additional complexities such as varied image quality, different
radiographic techniques, and diverse patient demographics. Future research should aim to
validate these models across multiple clinical settings to ensure their generalizability and
reliability. Moreover, while data augmentation has proven beneficial, the exploration of
other techniques such as transfer learning and semi-supervised learning could further
enhance model performance. These methods can leverage existing knowledge from larger,
related datasets, potentially improving performance in smaller, specialized datasets like
dental radiographs.

6. Conclusion

In conclusion, this study highlights the efficacy of data augmentation in overcoming
challenges associated with class imbalance and limited datasets in dental radiograph
classification. By integrating advanced CNN architectures like EfficientNet with strategic
data augmentation, we can significantly enhance diagnostic accuracy and reliability. These
findings underscore the potential for automated, high-precision diagnostic tools in dentistry,
paving the way for more efficient and effective patient care. As the field progresses,
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continued advancements in model development and validation will be essential to fully
realize the benefits of deep learning in dental radiography.
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