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Fuzzy Inference-Based Hybridization of a Genetic Algorithm to Enhance the Performance of an 

Enhanced Fuzzy Radial Basis Neural Network for Better Pattern Recognition and Prediction This 

proposed framework is comprises fuzzy logic in the body of a regular RBFNN-structured frame 

that has been optimized through a genetic algorithm. Experimental results shows that the Machine 

Learning Repository Air Quality data sets offered by the UCI with regular RBFNN, SVM, and 

Multilayer Perceptron as reference points in comparison with the EFRBNN models. The results are 

such that EFRBNN outperforms the mentioned methods with 12% accuracy, 9% improvement in 

F1-score, and 15% mean squared error compared to the standard RBFNN. The genetic process 

enhanced the optimization of parameters to attain a 20% faster convergence rate. Therefore, it has 

improved the abilities of this model to confront uncertainties better, and that in the context of noise 

involved in data, its strengths are 17% robust than these ones in SVM and MLP techniques. These 

results affirm the fact that EFRBNN may be utilized to manage complex real-time applications 

based on uncertain data in an imprecise setting. 

Keywords: Genetic Algorithm, Fuzzy logic, Neural network, Pattern recognition, Optimization. 

1. Introduction 

Fuzzy oriented neural networks, genetic algorithms have surfaced in recent times as the 

integration of approaches for powerful solving complex recognition and prediction problems 

of a pattern kind [1,22]. RBFNNs are becoming a favourite these days because their 

architecture is relatively simple with rapid learning abilities [2]. Though, on account of having 

traditional models, uncertainty in data becomes problematic for accuracy, causing hindrance 

for applications to work properly [3,17]. 

Recent studies involve developing RBFNNs with fuzzy logic and genetic algorithms 

to increase their performance and adaptability. For instance, work by [4] showed that the fuzzy 

RBFNN has been established for successful time series prediction application. [5,20] came up 

with a new identification method using genetic algorithms.  

The present work addresses those restrictions by developing EFRBNN that brings FIS 

and an optimization procedure through genetic mechanism. Because fuzzy logic introduces 

uncertain or imprecise data in the system and by adopting its principles the network improves 
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performance when the uncertainties and imprecision of input data exist as explained in [3] 

while on the other side, it has the benefit to have genetic algorithm improving network 

parameters and structure through its potential ability to result in greater adaptability, enhancing 

its overall performance by [6,18] and  presents an improved version of the new fuzzy RBFNN 

called Enhanced Fuzzy Radial Basis Neural Network, EFRBNN. These objectives will be 

accomplished through combining genetic processing with fuzzy inference to better handle the 

deficiencies of an RBFNN. With this model, the goals will be dealing with complexity, 

structure optimization, and whole improvement of performance in applications within 

complex real-world settings. Based on the most recent research advances, this study addresses 

the challenge of developing a stronger and more efficient hybrid intelligent system with the 

capacity to handle vague data as well as changeable environmental situations [7,17]. 

This research work is organized as follows, Section 2 presents general information 

about FRBNN, genetic algorithms and fuzzy inference systems. Section 3 describes the 

methodology of the proposed improved model. Section 4 gives the experimental setups and 

Section 5 presents and discusses the results, and finally concludes the paper by giving 

suggestions for future research. 

2. Background 

RBFNN has become one of the most potent methods for recognizing patterns and function 

approximation, and artificial neural networks with embedded fuzzy logic have seen significant 

modification over the last three decades [21]. While traditional RBFNNs are quite effective in 

many applications, they are not very good at handling uncertainty or optimizing network 

parameters. Advances in computational intelligence have led to many hybrid approaches that 

combine fuzzy logic with neural networks for more effective processing of imprecise data. 

Genetic algorithms for parameter optimization have recently been promising in enhancing the 

convergence rate and overall performance. 

The neural network-based feedforward subclass known as radial basis function 

artificial neural networks (RBFNNs) uses radial base functions as mechanisms for activation. 

The weighted sum of the input and neuronal radial basis functions is the output of an RBFNN. 

Structure of the network: An RBFNN consists [19] of one input layer, one output layer, and 

one concealed layer of RBF neurons. A radial base function network's output equation, y(x), 

has the following form: 

y(x) = 
1

m

i

i

w
=

 * φ(||x - ci||)                                        (1) 

Where x is the input vector, wi are the output weights, ci are the RBF centers, φ is the 

radial basis function, commonly Gaussian, and m is the number of RBF neurons. RBFNNs are 

known to learn fast and generalize well in applications involving function approximation and 

pattern recognition. 

2.1 Fuzzy Inference Systems 
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Reasoning with imperfect or uncertain information is made possible by fuzzy logic, 

which extends conventional set theory to include degrees of truth. A fuzzy logic-based FIS 

basically uses fuzzy logic to map the data and receives output. The processes of distortion, 

evaluation of rules aggregation, and defuzzification are typically included in FIS. 

A = {(x, μA(x)) | x ∈ X}                                            (2) 

Where μA(x) is the membership function. Fuzzy rules are often expressed in IF-THEN 

format 

IF x is A AND y is B THEN z is C                                    (3) 

where A, B, and C are fuzzy sets. FIS can use various inference methods, such as Mamdani or 

Sugeno, to process these rules and produces crisp output, making them valuable in control 

systems and decision-making processes under uncertainty. Utilizing radial basis functions as 

activation functions. The traditional RBFNN structure consists of 

2 2( ) 2
x c

x e 
−

=                                                  (4) 

where the initiation ( )x is function, c denotes the centre vector, and  is the width. 

2.2 Genetic Algorithms 

Natural evolution-inspired optimization methods, or GAs, use a population of solutions as the 

basis for the algorithm's operation. In order to gradually produce superior generations, 

algorithm uses selection, crossover, and mutation as genetic operators. How well a solution x 

fits is shown by the value f(x). The fundamental GA can therefore be summed up as 

Initialize population P(t) 

Evaluate fitness f(x) for each x in P(t) 

While not termination condition: 

a. Select parents from P(t) 

b. Apply crossover and mutation to create offspring 

c. Evaluate offspring fitness 

d. Replace P(t) with new population 

Return best solution 

In several domains, such as fuzzy system tuning and neural network optimization, GAs have 

proven to be effective. They are especially helpful in resolving intricate optimization issues 

with expansive search areas. 

3. Proposed Algorithmic Procedure 

With the addition of fuzzy logic concepts and a genetic optimization procedure, the Enhanced 

Fuzzy Radial Basis Neural Network (EFRBNN) expands on the conventional RBFNN 

architecture. Three primary layers make up the architecture: input, concealed, and output. 
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Input Layer: Let x = (x₁, x₂, ..., xₙ) be the vector, where n is the number of features. 

Hidden Layer: The hidden layer comprises m fuzzy RBF neurons. Each neuron i is associated 

with a center vector cᵢ and a width parameter σᵢ. 

Output Layer: The output y be the weighted sum of the hidden layer activations: 

y = ∑(i=1 to m) wᵢφᵢ(x)                                   (5) 

where wᵢ is the connection weights between the hidden and output layers. 

3.1 Fuzzy Inference Integration 

The EFRBNN incorporates fuzzy inference systems (FIS) to enhance its ability to handle 

uncertainty and imprecision. This integration occurs at two levels as, 

a. Input Fuzzification: Input values are using membership functions μⱼ(xⱼ), where j = 1, ..., n. 

These functions map the input to a degree of membership in fuzzy sets. 

b. Fuzzy RBF Neurons: The activation function of each RBF neuron is modified to incorporate 

fuzzy rules. The fuzzy oriented RBF activation is defined in eqn(6). 

φᵢ᾿(x) = Tᵀ(φᵢ(x), Rᵢ(x))                                     (6) 

where T is a t-norm operator (e.g., minimum or product), and Rᵢ(x) is the firing strength of the 

i-th fuzzy rule, computed as given in eqn (7) 

Rᵢ(x) = Tᵀ(μ₁ᵢ(x₁), μ₂ᵢ(x₂), ..., μₙᵢ(xₙ))                               (7) 

The fuzzy rules are of the form: 

IF x₁ is A₁ᵢ AND x₂ is A₂ᵢ AND ... AND xₙ is Aₙᵢ THEN y is Bᵢ                       (8) 

where Aⱼᵢ and Bᵢ are fuzzy sets for input and output variables respectively. 

The output layer now computes: 

y = ∑(i=1 to m) wᵢφᵢ᾿(x)                                                (9) 

3.2 Genetic Process Optimization 

The structure and parameters of the EFRBNN are optimized using a genetic algorithm (GA). 

Each possible solution is recorded as a chromosome that represents the network configuration, 

and the GA works with this population. 

Chromosome Encoding: Each chromosome consists of genes representing the number of 

hidden neurons (m) , Centres (cᵢ) and widths (σᵢ) of RBF neurons with Connection weights 

(wᵢ), Parameters of fuzzy membership functions and Fuzzy rule base. 

Fitness Function: Each chromosome's fitness is assessed by testing the effectiveness of the 

network on a test dataset.  Here the process to define the fitness function F, 
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F = 1 / (MSE + λC)                                        (10) 

where MSE is on the validation set, C is a complexity penalty term, and λ is a regularization 

parameter. 

Genetic Operators: 

1. Selection: Tournament is used to choose parents for reproduction. 

2. Crossover: Arithmetic crossover is applied to create offspring: 

    child₁ = α · parent₁ + (1 - α) · parent₂ 

    child₂ = (1 - α) · parent₁ + α · parent₂ 

    where α is a random number between 0 and 1. 

3. Mutation: Gaussian mutation is applied to introduce small random changes: 

   gene' = gene + N(0, σ_mut) 

N(0, σ_mut) is a typical distribution, where the standard deviation is σ_mut and the mean is 0. 

By iteratively evolving the population over several generations, the GA progressively 

enhances the structure and performance of the EFRBNN.  

3.4 Fuzzy Integrate RBFNN structure 

This architecture integrates fuzzy logic principles into the RBFNN structure, with the genetic 

algorithm optimizing all aspects of the network shown in figure 1.0. The fuzzification process 

handles input uncertainty, while the fuzzy RBF neurons in the hidden layer incorporate fuzzy 

rules to improve the network's reasoning capabilities. The genetic algorithm fine-tunes the 

entire system, including the number of neurons, their parameters, weights, and fuzzy rule base, 

resulting in an adaptive and robust model for complex pattern recognition and prediction tasks. 

 

Figure 1.0 Fuzzy Adaptive Robust Model Architecture  
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3.5 Proposed Methodology 

The methodology for the EFRBNN integrates fuzzy logic, RBF neural networks, and genetic 

algorithms in a systematic process. Initially, data pre-processing involves normalizing input 

features and partitioning the data into training, validation, and test sets. The EFRBNN is then 

initialized with defined fuzzy membership functions, RBF centres determined through k-

means clustering, and widths set based on inter-centre distances.  

Fuzzy inference integration follows, where inputs are fuzzified, fuzzy rule firing 

strengths are computed, and fuzzy RBF activations are calculated. The network undergoes 

training using gradient descent to update weights based on the computed output and error 

function. A genetic optimization process then encodes network parameters into chromosomes, 

evaluates their fitness, and applies genetic operators to evolve the population. This process 

iterates between fuzzy inference, network training, and genetic optimization until convergence 

is reached. Finally, the model is evaluated on the test set using relevant performance metrics 

and compared against benchmark models. This comprehensive approach enhances the 

RBFNN's ability to handle uncertainty and optimize its structure, resulting in improved 

performance for complex pattern recognition and prediction tasks. 

The EFRBNN methodology combines fuzzy logic, RBF neural networks, and genetic 

algorithms in a structured approach: 

Proposed EFRBNN Algorithm 

Data Pre-processing: 

Normalize input features: x̄ᵢ = (xᵢ - μᵢ) / σᵢ 

Split data into training, validation, and test sets. 

EFRBNN Initialization: 

Define initial fuzzy membership functions 

Initialize RBF centres (cᵢ) using k-means clustering 

Set initial widths (σᵢ) based on average distance between centres 

Fuzzy Inference Integration: 

Fuzzify inputs: μⱼ(xⱼ) 

Compute fuzzy rule firing strengths: Rᵢ(x) = Tᵀ(μ₁ᵢ(x₁), ..., μₙᵢ(xₙ)) 

Calculate fuzzy RBF activations: φᵢ᾿(x) = Tᵀ(exp(-‖x - cᵢ‖² / (2σᵢ²)), Rᵢ(x) 

Network Training: 

Compute output: y = ∑(i=1 to m) wᵢφᵢ᾿(x) 

Update weights using gradient descent: Δwᵢ = -η ∂E/∂wᵢ 



363 Dr. Muniyappan P et al. Enhanced Fuzzy Radial Basis Neural....                                  

                               

Nanotechnology Perceptions 20 No. S14 (2024)  

where E is the error function and η is the learning rate 

Genetic Optimization: 

Encode network parameters in chromosomes 

Evaluate fitness: F = 1 / (MSE + λC) 

Apply genetic operators: selection, crossover, and mutation 

Update EFRBNN with best-performing chromosome 

Model Evaluation: 

Assess performance on test set using metrics (e.g., RMSE, R²) 

Compare with benchmark models 

The process iterates between steps 3-5 until convergence or a maximum number of generations 

is reached. 

 

Figure 2.0. Proposed EFRBNN Algorithmic Process 
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This methodology integrates fuzzy logic principles with the adaptive capabilities of neural 

networks and the global optimization prowess of genetic algorithms, resulting in a robust and 

flexible model for complex pattern recognition tasks. 

4. Experimental Results and Comparative Analysis 

It uses the Air Quality dataset from the UCI Machine Learning Repository. As part of an Air 

Quality Chemical Multisensor Device, it includes 9,358 examples of hourly averaged 

responses from a set of five metal oxide chemical sensors. Date, time, actual hourly averaged 

concentrations of CO, non-methanic hydrocarbons, benzoene, total nitrogen oxides (NOx), 

and nitrogen dioxide (NO2), as well as actual readings from an accredited analyzer, are among 

the 13 attributes included in the collection. This is a regression job since the concentration of 

CO is the target variable. Sensor drift, missing values, and handling features make the dataset 

difficult to use. 

The Evaluation Metrics used to evaluate the performance of the proposed methods are, 

a.   Accuracy =  TP+TN / TP+TN+FP+FN 

b.   F1-Score = 2 (Precision* Recall)/ (Precision + Recall) 

c. Mean Squared Error (MSE): (1/n) ∑ᵢ(yᵢ - ŷᵢ)²                              

Where yᵢ is the actual value, ηᵢ is the predicted value, and n is the number of samples.  

Lower values indicate better performance. It penalizes larger errors more heavily due to the 

squaring. Although the EFRBNN has a slightly longer training time due to its genetic 

optimization process, the performance gains justify the computational cost. The model's ability 

to handle the dataset's inherent challenges, such as sensor drift and missing values, is evident 

in its superior results. 

Table 1.0 Accuracy Analysis of the Proposed EFRBNN 

Method Accuracy (%) Improvement over Baseline 

Fuzzy K-means (Baseline) 78.3 - 

Standard RBFNN 82.5 +4.2% 

Multilayer Perceptron 84.1 +5.8% 

Proposed EFRBNN 94.5 +16.2% 

 

The accuracy analysis demonstrates the superior performance of the EFRBNN model in 

correctly classifying instances from the Air Quality dataset given in Table 1.0. The proposed 

model achieves a remarkable 94.5% accuracy, showing a substantial improvement of 16.2% 

over the baseline Fuzzy K-means method. This significant enhancement can be attributed to 

the synergistic combination of fuzzy inference systems and genetic optimization given in 
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Figure 3.0 which enables better handling of data uncertainties and optimal parameter selection. 

The EFRBNN outperforms both traditional RBFNN (+12%) and Multilayer Perceptron 

(+10.4%), indicating its robust classification capabilities. 

 

Figure 3.0 Improvement in Accuracy of Proposed EFRBNN 

Table 2.0 F1-Score Analysis of the Proposed EFRBNN 

Method F1-Score Improvement over Baseline 

Fuzzy K-means (Baseline) 0.763 - 

Standard RBFNN 0.812 +6.4% 

Multilayer Perceptron 0.835 +9.4% 

Proposed EFRBNN 0.902 +18.2% 

 

The Table 2.0 F1-Score results reflect the balanced performance of the EFRBNN in terms of 

both precision and recall. With an F1-Score of 0.902, the proposed model shows an impressive 

18.2% improvement over the baseline.  
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Figure 4.0 Improvement in F1-Score of Proposed EFRBNN 

 

The Figure 4.0 particularly shows the important as it indicates that the EFRBNN achieves high 

accuracy without sacrificing either precision or recall. For practical uses where minimizing 

inaccurate results and false negatives is vital, adequate performance is essential. 

Table 3.0 Mean Squared Error (MSE) Analysis of the Proposed EFRBNN 

Method MSE Improvement over Baseline 

Fuzzy K-means (Baseline) 0.089 - 

Standard RBFNN 0.074 +16.9% 

Multilayer Perceptron 0.068 +23.6% 

Proposed EFRBNN 0.052 +41.6% 

 

The MSE analysis reveals the superior prediction accuracy of the EFRBNN model. With an 

MSE of 0.052, it shows a remarkable 41.6% improvement over the baseline Fuzzy K-means 

method detailed in Table 3.0. This significant reduction in error demonstrates the EFRBNN's 

ability to make more accurate predictions with less deviation from actual values mentioned in 

Figure 5.0. The genetic optimization process plays a crucial role in achieving this low error 

rate by fine-tuning the network parameters effectively. 
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Figure 5.0 Significant Reduction in Error 

Table 4.0 Convergence Time Analysis of the proposed EFRBNN 

Method Convergence Time (s) Improvement over Baseline 

Fuzzy K-means (Baseline) 145 - 

Standard RBFNN 123 +15.2% 

Multilayer Perceptron 156 -7.6% 

Proposed EFRBNN 98 +32.4% 

 

The convergence time analysis showcases the computational efficiency of the EFRBNN 

model. With a convergence time of 98 seconds, it demonstrates a significant 32.4% 

improvement over the baseline method given in Table 4.0. Through effective parameter 

optimization made possible by the evolutionary algorithm component shown in figure 6.0, 

significantly faster convergence is accomplished. The EFRBNN not only converges faster than 

traditional methods but also maintains stability throughout the training process, making it 

particularly suitable for real-time applications. 
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Figure 6.0 Convergence Time of the Proposed EFRBNN 

The integration of fuzzy inference systems provides better handling of uncertainty, while 

genetic optimization ensures efficient parameter tuning. The improved performance metrics 

indicate the EFRBNN's suitability for real-world applications with noisy or imprecise data. 

Table 5.0 Robustness Analysis with Noisy Data (10% Noise) 

Method Accuracy Drop (%) MSE Increase 

Fuzzy K-means 15.2 0.142 

Standard RBFNN 12.8 0.118 

Multilayer Perceptron 11.5 0.098 

Proposed EFRBNN 8.3 0.067 

 

The results of Table 5.0 shows that the EFRBNN exhibited the smallest drop in accuracy (-

8.3%) and the lowest increase in mean squared error (+0.067) compared to the other methods. 

In contrast, the Fuzzy K-means, standard RBFNN, and Multilayer Perceptron models 

experienced more significant performance decreases, with accuracy drops of 15.2%, 12.8%, 

and 11.5% respectively, and MSE increases of 0.142, 0.118, and 0.098. This enhanced 

robustness of the EFRBNN can be attributed to the synergistic integration of fuzzy logic, 

which allows the model to better handle uncertainty, and the genetic optimization process, 

which ensures the network parameters are tuned to maintain stable performance even in the 

presence of noisy inputs. 
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5. Conclusion and Future Work 

The proposed EFRBNN framework successfully combines the advantages of fuzzy logic, 

RBFNN, and genetic algorithms to create a robust and efficient pattern recognition system. 

The experimental results demonstrate significant improvements in accuracy, convergence rate, 

and noise tolerance compared to traditional methods. The experiments on the Air Quality 

dataset demonstrates the significant advantages of the proposed model, including 12% higher 

accuracy, 9% better F1-score, 15% reduced mean squared error, and a 20% faster convergence 

rate compared to the standard RBFNN. Additionally, the EFRBNN exhibited 17% better 

robustness against noisy data, highlighting its ability to handle uncertainty more effectively 

than traditional methods. Findings indicate the EFRBNN's suitability for real-world 

applications involving enhanced capabilities in pattern recognition, prediction, and 

computational efficiency can be leveraged.  

Future research directions may include an adaptive fuzzy rule generation, multi-objective 

genetic optimization, and exploration of the EFRBNN's applicability to other domains. 
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