
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 20 No. S14 (2024) 748-763

Predicting Security Breaches in AI-

Powered Mobile Cloud Applications

Using Deep Random Forest Algorithm

S. Hassan Abdul Cader1, Dr. K. Nirmala2

1Research Scholar, Quaide Milleth Government College for Women, India,

hassannew2002@gmail.com
2Supervisor, Pg & Research Department of Computer Science, Quaid-E-Millath Govt.

College for Women, India, nimimca@gmail.com

This research addresses the need for a predictive approach to detect security breaches in AI-

powered mobile cloud applications. We propose a novel approach combining Radial ResNet for

advanced feature extraction with Random Forest (RF) for classification. This hybrid model is

designed to analyze complex and dynamic datasets in real-time, enhancing the predictive

capabilities for identifying potential security threats. Results indicate significant efficacy, with the

algorithm achieving high accuracy and sensitivity in predicting security breaches. The Radial

ResNet–RF combination achieved a training accuracy of 98.5%, with precision, recall, and F1-

score values of 97.8%, 98.2%, and 98.0%, respectively. On testing and validation datasets, the

model demonstrated accuracies of 96.2% and 95.5%, respectively.

Keywords: Mobile Cloud Applications, Security Breaches, Deep Random Forest Algorithm,

Predictive Security.

1. Introduction

Mobile cloud applications are prone to diverse security threats such as data breaches,

unauthorized access, and malicious attacks due to their reliance on cloud infrastructure and AI

technologies [1]-[4]. The complexity of AI models, combined with the heterogeneous nature

of cloud environments, exacerbates the challenge of securing these applications. AI models,

particularly those used in mobile cloud settings, are susceptible to adversarial attacks and data

poisoning, which can compromise their integrity and effectiveness [5]-[9]. Moreover, the large

volume of data transmitted and processed in these applications creates numerous potential

vulnerabilities that need to be monitored and managed effectively.

The primary problem addressed in this study is the need for a predictive approach to

preemptively detect and mitigate security breaches in AI-powered mobile cloud applications

[10]-[12]. Traditional security mechanisms often react to threats after they occur, which can

be inadequate for the sophisticated and adaptive attacks targeting AI systems [13]-[14]. There

is a pressing need for advanced predictive models that can anticipate potential security issues

http://www.nano-ntp.com/

749 S. Hassan Abdul Cader et al. Predicting Security Breaches in AI-Powered...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

before they manifest.

The objectives of this research are:

1. To develop and evaluate a novel predictive model for detecting security breaches in

AI-powered mobile cloud applications.

2. To integrate Radial ResNet for feature extraction and Random Forest (RF) for

classification to analyze complex and dynamic datasets in real-time.

3. To compare the performance of the proposed model with existing methods, including

RAPNet-BPOA-DenseNet201, NIDPS with Self-Taught Learning (STL), and Multi-modal

LSTM-DAE.

4. To assess the efficacy of the proposed approach in terms of accuracy, precision, recall,

and F1-score, thereby demonstrating its potential to enhance security measures in mobile cloud

environments.

The novelty of this research lies in the integration of Radial ResNet and Random Forest

algorithms to create a robust predictive model for security breach detection. Radial ResNet's

advanced feature extraction capabilities, combined with RF’s powerful classification, provide

a sophisticated approach to analyzing complex datasets. This combination addresses the

limitations of traditional methods by offering a predictive framework that can preemptively

identify potential threats.

The contributions of this study are as follows:

1. The proposed model leverages the strengths of Radial ResNet for deep feature

extraction and RF for classification.

2. The research provides a detailed comparative analysis of the proposed model against

established methods, offering insights into its performance and effectiveness.

3. By implementing a predictive model, this study contributes to advancing security

practices in mobile cloud environments, potentially reducing the risk of security breaches and

enhancing user privacy.

2. Related Works

In the paper [15] describes a special framework meant to achieve accurate assault detection

and classification. Combining DenseNet convolutional neural networks with the strengths of

rap music analysis techniques forms this system. The attention pyramid network (RAPNet)

architecture is applied for feature extraction and the binary Pigeon algorithm is utilised to

maximise the input data. Our solution comprises both of these procedures. Regarding feature

selection, the next action is to leverage BPOA, a method of optimisation. We use the Densenet

201 model to classify assaults in Bot-IoT, CICIDS2017, and CICIDS2019 among other

datasets. We use deep learning methods to categorise assaults once we have determined the

most desirable features. It was found that the Bot-IoT dataset, the CICIDS2017 dataset, and

the CICIDS2019 dataset each had.

The author of [16], proposes a network environment implements and evaluates the effective

 Predicting Security Breaches in AI-Powered… S. Hassan Abdul Cader et al. 750

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

IDPS by using a broad spectrum of machine learning techniques. Our aim is to create a model

that can identify if a stream of network data is benign or malicious by modelling an intrusion

detection system and intrusion prevention system. Within the framework of this study, an

Enhanced ID3 is presented as a tool for spotting and grouping anomalies in network activity.

To act as a benchmark, we build an auto encoder network alongside main component analysis

and K-means clustering. Among the several criteria we tested were memory, recall, accuracy,

and precision.

First, the given multi-modal approach was investigated in an experimental setup under two

crucial scenarios [17]. This was done to effectively confirm the approach. In the first scenario,

we evaluate the performance of our AutoEncoder and anomaly detection model under their

respective paces. The second scenario was used to evaluate the general performance of the

cloud computing system. Evaluated were the adaption actions taken in response to the

introduced anomaly detection; their effects on the execution performance of the cloud process

were noted. Two main approaches used in the workflow shown are artificial intelligence

models with one-class classification and clustering to discover anomalies and project when

security enforcement would be used.

Table 1: Summary
Reference Method Methodology Outcomes

[15] DenseNet with

RAPNet and BPOA

Uses DenseNet201 for attack classification,

RAPNet for feature extraction, and Binary

Pigeon Optimization Algorithm (BPOA) for

feature selection. Datasets: Bot-IoT,
CICIDS2017, CICIDS2019

Exceptional precision in detection

and classification.

[16] Enhanced ID3,

AutoEncoder, PCA, K-

Means Clustering, STL

Implemented various machine learning

techniques including Enhanced ID3, Random

Forest, and linear regression. Applied Self-
Taught Learning (STL) on CICIDS2017.

Compared performance of

different models; STL used for

deep learning with focus on
accuracy, precision, recall, and

memory.

[17] LSTM-based
AutoEncoder, One-

Class Classification,

Clustering

Tested AutoEncoder and anomaly detection
models with a focus on cloud workflow

performance. Evaluated using LSTM-based

AutoEncoder, one-class classification, and
clustering (k-means).

Effective adaptation strategy to
avoid resource wastage.

Despite significant advancements in attack detection and classification through methods such

as DenseNet with RAPNet and BPOA, Enhanced ID3, and various anomaly detection

techniques, there remain notable research gaps. Many existing approaches, while effective in

achieving high accuracy rates and performance metrics, tend to focus on specific datasets or

narrow scenarios, which may limit their generalizability and adaptability to diverse real-world

environments. Additionally, while methods like k-means clustering and STL have

demonstrated effectiveness in certain contexts, they often do not address the full spectrum of

dynamic and evolving threats in mobile cloud applications. There is a need for more

comprehensive models that integrate multiple advanced techniques to handle a wider range of

attack vectors and environmental variations

3. Proposed Method

The proposed method for predicting security breaches in AI-powered mobile cloud

applications using the Deep Random Forest Algorithm can be explained in several steps as in

751 S. Hassan Abdul Cader et al. Predicting Security Breaches in AI-Powered...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

figure 1.

Figure 1: Proposed Framework

• Data Preprocessing:The dataset is preprocessed to ensure it is suitable for training the

model. This includes normalizing data, handling missing values, and possibly augmenting the

dataset to improve model robustness. Data from mobile cloud applications might include

various logs, user activity patterns, or network traffic data, which need to be transformed into

a format suitable for analysis.

• Feature Extraction Process:The Radial ResNet processes the data through multiple

layers of convolutions and residual blocks, extracting high-level features that capture both the

global and local characteristics of the data. These features are then used as inputs for the

Preprocessing

Feature extraction using

Raidal ResNet

Classification using RF

Validation

Is classified?

No

Yes

Database

 Predicting Security Breaches in AI-Powered… S. Hassan Abdul Cader et al. 752

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

classification stage. The Radial ResNet, a variant of the Residual Neural Network (ResNet),

for feature extraction from complex datasets. The network is designed to handle radial

transformations in the feature space, which helps in extracting relevant features for the

classification task.

• Classification Using Random Forest:The extracted features are used as input for a

Random Forest classifier. This helps in making robust predictions by aggregating the results

from multiple decision trees.

• Model Training:The Deep Random Forest Algorithm is trained using labeled datasets

containing instances of both normal and malicious activities. The model is evaluated based on

its accuracy and sensitivity, with the aim of achieving high performance in detecting security

breaches.

• Real-Time Prediction:Once trained, the model is deployed for real-time predictions.

It continuously analyzes incoming data from mobile cloud applications to detect potential

security breaches.

Pseudocode

Pseudocode for Deep Random Forest Algorithm

Step 1: Data Preprocessing

preprocessed_data = preprocess_data(raw_data)

Step 2: Feature Extraction Using Radial ResNet

def extract_features(data):

 # Initialize Radial ResNet model

 radial_resnet = RadialResNet()

 # Extract features

 features = radial_resnet.forward(data)

 return features

features = extract_features(preprocessed_data)

Step 3: Classification Using Random Forest

def train_random_forest(features, labels):

 # Step 4: Model Training

random_forest_model = train_random_forest(features, labels)

Step 5: Model Evaluation

 accuracy = calculate_accuracy(predictions, test_labels)

 sensitivity = calculate_sensitivity(predictions, test_labels)

 return accuracy, sensitivity

753 S. Hassan Abdul Cader et al. Predicting Security Breaches in AI-Powered...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

accuracy, sensitivity = evaluate_model(random_forest_model, test_features, test_labels)

Step 6: Real-Time Prediction

def predict_breach(model, new_data):

 new_features = extract_features(new_data)

 prediction = model.predict(new_features)

 return prediction

Example usage

new_data = get_new_data()

prediction = predict_breach(random_forest_model, new_data)

Radial ResNet for Feature Extraction

Radial ResNet is a specialized variant of the Residual Neural Network (ResNet) designed to

enhance feature extraction through radial transformations. The core idea of Radial ResNet is

to improve the network's ability to capture and represent complex data patterns by applying

radial transformations in the feature space.

Residual Blocks: A residual block in a standard ResNet can be expressed as:

y=F(x,{Wi})+x

where,

x - input to the block,

F - represents the residual function (typically a stack of convolutional layers),

Wi - weights, and

y - output. This structure allows the network to learn residual mappings, which are easier to

optimize than learning the direct mapping.

Radial Transformations: In Radial ResNet, the conventional residual function Fis enhanced

with radial transformations. Radial transformations adjust the feature space to better capture

non-linear relationships by applying a radial function R(v) to the features:

Fr(x,{Wi})=R(Wi⋅x)

where

R(v)- radial basis function or other non-linear transformation. For instance, a common choice

is the Gaussian radial basis function:

R(v)=exp(−∥v−c∥2
2/σ2)

where,

c - center of the radial basis function, and

σ - width of the Gaussian function.

 Predicting Security Breaches in AI-Powered… S. Hassan Abdul Cader et al. 754

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

This transformation helps in capturing radial features that are invariant to certain

transformations in the data.

Feature Extraction Process: Radial ResNet processes the input data through multiple residual

blocks, each incorporating radial transformations. The overall feature extraction process can

be described as:

Hn=Fr(Hn−1,{Wi})+Hn−1

where,

Hn- feature map after the nth residual block, and

Hn−1 - feature map from the previous block. This iterative process allows Radial ResNet to

extract hierarchical features from the input data.

Output Features: After passing through the Radial ResNet layers, the extracted features are

typically aggregated and transformed into a feature vector suitable for classification. The final

feature vector Ffcan be obtained as:

Ff=Pooling(Hn)

where

Pooling - pooling operation (e.g., global average pooling) that reduces the spatial dimensions

of the feature maps while retaining essential information.

Pseudocode

Pseudocode for Radial ResNet Feature Extraction

Define Radial Basis Function

function radial_basis_function(v, c, sigma):

 return exp(-norm(v - c)^2 / (2 * sigma^2))

Define Residual Block with Radial Transformation

function residual_block(x, weights, c, sigma):

 # Apply radial basis function

 radial_features = radial_basis_function(weights * x, c, sigma)

 # Apply convolution or other transformations

 transformed_features = convolution(radial_features, weights)

 # Add residual (skip connection)

 output = transformed_features + x

 return output

Define Radial ResNet Model

function radial_resnet(input_data, num_blocks, weights_list, c, sigma):

755 S. Hassan Abdul Cader et al. Predicting Security Breaches in AI-Powered...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

 x = input_data

 for i in range(num_blocks):

 # Use weights specific to each block

 weights = weights_list[i]

 # Apply residual block with radial transformation

 x = residual_block(x, weights, c, sigma)

 # Aggregate features (e.g., global average pooling)

 feature_vector = global_average_pooling(x)

 return feature_vector

Example usage

input_data = load_data()

num_blocks = 10

weights_list = initialize_weights(num_blocks) # Initialize weights for each block

c = initialize_radial_centers() # Radial centers

sigma = initialize_sigma() # Radial width parameter

Extract features using Radial ResNet

features = radial_resnet(input_data, num_blocks, weights_list, c, sigma)

Random Forest (RF) for Classification

The main strengths of RF include its ability to handle large datasets with high dimensionality

and its robustness against overfitting.

Bootstrap Aggregation (Bagging):Random Forest begins by generating multiple subsets of the

training dataset. Each subset is created by randomly sampling the original dataset with

replacement.

Mathematically, if the original dataset is D={(xi,yi)}i=1
N

where

xi - features and

yi - labels, then each bootstrap sample Dbis a subset of D obtained by sampling Nb examples

with replacement:

Db={(xi
b,yi

b)}i=1
N

Decision Tree Construction:This process introduces diversity among the trees and helps

prevent overfitting.

Let F be the set of all features. At each node, a random subset Fs⊂Fis chosen. The split at each

 Predicting Security Breaches in AI-Powered… S. Hassan Abdul Cader et al. 756

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

node is based on a criterion such as Gini impurity:

Gini=1−∑j=1
Cpj

2

where

pj- proportion of samples belonging to class jand

Cis the number of classes.

Tree Voting:Once all trees are constructed, each tree provides a classification for a given input

sample.

Pseudocode

Pseudocode for Random Forest Classification

Define Decision Tree Training

function train_decision_tree(training_data, features_subset):

 # Initialize Decision Tree

 tree = DecisionTree()

 # Grow tree using training data and features subset

 while not stopping_criteria_met(tree):

 # Select a random subset of features for splitting

 random_features = select_random_features(features_subset)

 # Find the best feature and split point

 best_split = find_best_split(training_data, random_features)

 # Split data into left and right child nodes

 left_data, right_data = split_data(training_data, best_split)

 # Recursively build left and right subtrees

 tree.left = train_decision_tree(left_data, random_features)

 tree.right = train_decision_tree(right_data, random_features)

 return tree

Define Random Forest Training

function train_random_forest(training_data, num_trees, features_subset):

 forest = []

 for i in range(num_trees):

 # Bootstrap sampling

 bootstrap_sample = bootstrap_sample(training_data)

757 S. Hassan Abdul Cader et al. Predicting Security Breaches in AI-Powered...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

Define Random Forest Prediction

function predict_random_forest(forest, new_data):

 predictions = []

 for tree in forest:

 # Get prediction from each tree

 tree_prediction = predict_tree(tree, new_data)

 predictions.append(tree_prediction)

 # Aggregate predictions using majority voting

 final_prediction = majority_vote(predictions)

 return final_prediction

Helper Functions

function bootstrap_sample(data):

 # Sample data with replacement

 return sample_with_replacement(data)

function select_random_features(features_subset):

 # Randomly select a subset of features

 return random_subset(features_subset)

function find_best_split(data, features):

 # Find the best feature and split point based on impurity or entropy

 best_split = None

 # Implement criterion to find the best split

 return best_split

function split_data(data, split):

 # Split data into left and right child nodes based on the split

 left_data, right_data = split_data_by_criteria(data, split)

 return left_data, right_data

function predict_tree(tree, data):

 # Traverse the decision tree to get a prediction

 return traverse_tree(tree, data)

function majority_vote(predictions):

 # Determine the majority vote from all tree predictions

 Predicting Security Breaches in AI-Powered… S. Hassan Abdul Cader et al. 758

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

 return mode(predictions)

Example usage

training_data = load_training_data()

num_trees = 100

features_subset = get_feature_subset(training_data)

Train Random Forest

forest = train_random_forest(training_data, num_trees, features_subset)

Predict on new data

new_data = load_new_data()

final_prediction = predict_random_forest(forest, new_data)

4. Results and Discussion

For the evaluation of Radial ResNet and Random Forest (RF) algorithms, the experiments

were conducted using Python-based simulation tools, specifically leveraging libraries such as

TensorFlow for deep learning models and scikit-learn for Random Forest implementations

[18]. The simulations were performed on high-performance computing systems equipped with

NVIDIA GeForce RTX 3090 GPUs and Intel Core i9 processors, ensuring efficient handling

of the large datasets and complex computations required.

The performance of Radial ResNet and RF was assessed against established methods:

RAPNet-BPOA-DenseNet201, NIDPS with Self-Taught Learning (STL), and Multi-modal

LSTM-DAE. RAPNet-BPOA-DenseNet201 and Multi-modal LSTM-DAE are known for

their robustness in feature extraction and sequence modeling respectively, while NIDPS with

STL provides a unique approach to anomaly detection through self-taught learning, making

them suitable benchmarks for comparison.

Table 2: Experimental Setup
Parameter Value

Number of Layers 10

Number of Residual Blocks 5

Radial Basis Function Type Gaussian

Radial Basis Function Width (σ) 0.5

Number of Trees 100

Max Depth of Trees 10

Number of Features per Split √(total features)

Minimum Samples per Leaf 5

Bootstrap Sample Size 70% of original data

Optimizer Adam

Number of Epochs 50

Dataset:

The dataset is derived from the CICIDS 2019 dataset, which includes various categories of

modern network attacks along with benign traffic, ensuring a comprehensive range of

759 S. Hassan Abdul Cader et al. Predicting Security Breaches in AI-Powered...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

scenarios for model evaluation. For those interested in studying imbalanced datasets, the IoT

DoS DDoS Attack dataset—also based on CICIDS 2019—offers a scenario with an unequal

distribution of attack and benign instances. This balanced dataset allows researchers to train

models to recognize and classify both normal and malicious traffic effectively. It serves as a

critical tool for developing and benchmarking advanced detection algorithms, providing a

robust framework for understanding and mitigating network threats in diverse environments.

Figure 2: Accuracy (%)

Figure 3: Precision (%)

 Predicting Security Breaches in AI-Powered… S. Hassan Abdul Cader et al. 760

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

Figure 4: Recall (%)

Figure 5: F1-Score (%)

The results show that Radial ResNet achieves the highest performance across all metrics and

datasets compared to other methods. For the training set, Radial ResNet demonstrates an

accuracy of 98.5%, with high precision (97.8%), recall (98.2%), and F1-score (98.0%). This

indicates that Radial ResNet is highly effective at learning from the training data and making

correct predictions. However, performance slightly decreases on the testing and validation

sets, with accuracy values of 96.2% and 95.5%, respectively.

Random Forest (RF) also performs well, with an accuracy of 97.8% on the training set. Its

precision, recall, and F1-score values are slightly lower compared to Radial ResNet, indicating

that while RF is effective, it may not capture complex patterns as well as Radial ResNet. The

testing and validation accuracies (94.1% and 93.8%, respectively) show a more pronounced

drop compared to Radial ResNet, suggesting that RF may be more prone to overfitting or

might not generalize as well to new data.

761 S. Hassan Abdul Cader et al. Predicting Security Breaches in AI-Powered...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

RAPNet-BPOA-DenseNet201 and Multi-modal LSTM-DAE both show strong performance,

but they are slightly outperformed by Radial ResNet. RAPNet-BPOA-DenseNet201 achieves

high accuracy on the training set (98.0%), but its performance decreases on testing and

validation sets, with accuracies of 95.8% and 94.6%, respectively. Multi-modal LSTM-DAE

also exhibits competitive results but falls short of Radial ResNet in all metrics, particularly on

the validation set where its F1-score is 89.7%.

NIDPS with STL shows the lowest performance among the methods, with the lowest accuracy

(96.5% training) and the lowest metrics across testing and validation sets. This suggests that

while NIDPS with STL is effective for certain applications, it might not perform as well in

classification tasks compared to the other methods tested.

Inferences

The experimental results provide a comprehensive view of the performance of Radial ResNet,

Random Forest (RF), RAPNet-BPOA-DenseNet201, NIDPS with Self-Taught Learning

(STL), and Multi-modal LSTM-DAE for classification tasks. The analysis of accuracy,

precision, recall, and F1-score across training, testing, and validation sets yields several key

insights into the effectiveness and suitability of each method.Radial ResNet exhibits the

highest overall performance across all metrics and datasets, establishing itself as the most

robust and effective model for classification among those tested. With an accuracy of 98.5%

on the training set and high precision (97.8%), recall (98.2%), and F1-score (98.0%), Radial

ResNet demonstrates exceptional learning capability from the training data. Its performance

on the testing and validation sets, with accuracies of 96.2% and 95.5% respectively, reflects

its strong generalization ability. The slight decrease in performance from training to testing

and validation is typical and indicates that the model maintains a high level of robustness while

handling new, unseen data. This suggests that Radial ResNet is well-suited for complex

classification tasks where capturing intricate patterns is crucial.Random Forest (RF) also

performs admirably, with a training accuracy of 97.8% and competitive precision (96.4%),

recall (97.2%), and F1-score (96.8%). However, RF's performance shows a more pronounced

decrease on the testing and validation sets, with accuracies of 94.1% and 93.8%, respectively.

This drop may indicate that RF, while effective, is more susceptible to overfitting compared

to Radial ResNet. The Random Forest’s reliance on bagging and decision trees, which are

known for their robustness, still falls short in capturing the complexity of the data as effectively

as Radial ResNet.RAPNet-BPOA-DenseNet201 and Multi-modal LSTM-DAE both show

strong performance but are outperformed by Radial ResNet. RAPNet-BPOA-DenseNet201

achieves a training accuracy of 98.0%, with precision (97.0%), recall (97.5%), and F1-score

(97.2) that are slightly lower than those of Radial ResNet. The accuracy on testing and

validation sets (95.8% and 94.6%, respectively) highlights its strong but not exceptional

generalization ability. Multi-modal LSTM-DAE also performs well with a training accuracy

of 97.0% and similar metrics, but its validation performance (F1-score of 89.7%) suggests that

it may struggle more with unseen data compared to Radial ResNet.NIDPS with STL, while

useful for certain anomaly detection applications, shows the lowest performance in this

classification task. With a training accuracy of 96.5% and lower values across other metrics,

NIDPS with STL appears less effective for standard classification compared to the other

methods. Its performance on testing and validation sets is particularly lower, indicating that

this method might not be as robust or generalizable for classification tasks as the others. Thus,

 Predicting Security Breaches in AI-Powered… S. Hassan Abdul Cader et al. 762

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

Radial ResNet stands out as the superior method for classification due to its high performance

metrics and strong generalization capabilities. The comparative analysis reveals that while

other methods like RF, RAPNet-BPOA-DenseNet201, and Multi-modal LSTM-DAE are

effective, they do not match the overall performance and robustness of Radial ResNet. NIDPS

with STL, although valuable for its specific applications, is less suited for classification tasks

in this context. Radial ResNet's ability to handle complex data and maintain high performance

across various metrics underscores its potential for advanced classification challenges.

5. Conclusion

The experimental evaluation of Radial ResNet, Random Forest (RF), RAPNet-BPOA-

DenseNet201, NIDPS with Self-Taught Learning (STL), and Multi-modal LSTM-DAE

highlights Radial ResNet as the most effective method for classification tasks. Radial ResNet

consistently achieves the highest accuracy, precision, recall, and F1-score across training,

testing, and validation datasets, demonstrating its exceptional capability to learn from and

generalize to new data. The performance drop from training to testing and validation is

minimal, indicating robust generalization.Random Forest, while strong and competitive,

shows a more pronounced performance drop, suggesting potential overfitting issues. RAPNet-

BPOA-DenseNet201 and Multi-modal LSTM-DAE perform well but fall short of Radial

ResNet in terms of precision and recall, particularly on validation data. NIDPS with STL,

though valuable for specific applications, shows the lowest performance in this classification

context.

References
1. Aoudni, Y., Donald, C., Farouk, A., Sahay, K. B., Babu, D. V., Tripathi, V., & Dhabliya, D.

(2022). Cloud security based attack detection using transductive learning integrated with

Hidden Markov Model. Pattern recognition letters, 157, 16-26.

2. Sriramulugari, S. K., Gorantla, V. A. K., Gude, V., Gupta, K., (2024, March). Exploring

mobility and scalability of cloud computing servers using logical regression framework. In

2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 488-493). IEEE.

3. Balasubramaniam, S., Vijesh Joe, C., Sivakumar, T. A., Prasanth, A., Satheesh Kumar, K.,

Kavitha, V., & Dhanaraj, R. K. (2023). Optimization Enabled Deep Learning‐Based DDoS

Attack Detection in Cloud Computing. International Journal of Intelligent Systems, 2023(1),

2039217.

4. Dhanasekaran, S., Rajput, K., Aeri, M., Shukla, R. P., & Singh, S. K. (2024, May). Utilizing

Cloud Computing for Distributed Training of Deep Learning Models. In 2024 Second

International Conference on Data Science and Information System (ICDSIS) (pp. 1-6). IEEE.

5. Kumar, P., Gupta, G. P., & Tripathi, R. (2021). An ensemble learning and fog-cloud

architecture-driven cyber-attack detection framework for IoMT networks. Computer

Communications, 166, 110-124.

6. Gorantla, V. A. K., Gude, V., Sriramulugari, S. K., & Yadav, P. (2024, March). Utilizing

hybrid cloud strategies to enhance data storage and security in e-commerce applications. In

2024 2nd International Conference on Disruptive Technologies (ICDT) (pp. 494-499). IEEE.

7. SaiSindhuTheja, R., & Shyam, G. K. (2021). An efficient metaheuristic algorithm based

feature selection and recurrent neural network for DoS attack detection in cloud computing

763 S. Hassan Abdul Cader et al. Predicting Security Breaches in AI-Powered...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

environment. Applied Soft Computing, 100, 106997.

8. Waqas, M., Kumar, K., Laghari, A. A., Saeed, U., Rind, M. M., Shaikh, A. A., ... & Qazi, A.

Q. (2022). Botnet attack detection in Internet of Things devices over cloud environment via

machine learning. Concurrency and Computation: Practice and Experience, 34(4), e6662.

9. Kushwah, G. S., & Ranga, V. (2020). Voting extreme learning machine based distributed

denial of service attack detection in cloud computing. Journal of Information Security and

Applications, 53, 102532.

10. Abdullayeva, F. J. (2021). Advanced persistent threat attack detection method in cloud

computing based on autoencoder and softmax regression algorithm. Array, 10, 100067.

11. Virupakshar, K. B., Asundi, M., Channal, K., Shettar, P., Patil, S., & Narayan, D. G. (2020).

Distributed denial of service (DDoS) attacks detection system for OpenStack-based private

cloud. Procedia Computer Science, 167, 2297-2307.

12. Arivazhagan, N., Somasundaram, K., Vijendra Babu, D., Gomathy Nayagam, M., Bommi, R.

M., Mohammad, G. B., ... & Prabhu Sundramurthy, V. (2022). Cloud‐Internet of Health Things

(IOHT) Task Scheduling Using Hybrid Moth Flame Optimization with Deep Neural Network

Algorithm for E Healthcare Systems. Scientific Programming, 2022(1), 4100352.

13. Souri, A., Norouzi, M., & Alsenani, Y. (2024). A new cloud-based cyber-attack detection

architecture for hyper-automation process in industrial internet of things. Cluster Computing,

27(3), 3639-3655.

14. Kannan, S., & Dhiman, G. (2022). Task scheduling in cloud using aco. Recent Advances in

Computer Science and Communications (Formerly: Recent Patents on Computer Science),

15(3), 348-353.

15. Adekunle, T. S., Alabi, O. O., Lawrence, M. O., Adeleke, T. A., Afolabi, O. S., Ebong, G. N.,

... & Bamisaye, T. A. (2024, March). An intrusion system for internet of things security

breaches using machine learning techniques. In Artificial Intelligence and Applications (Vol.

2, No. 3, pp. 188-194).

16. Srilatha, D., & Thillaiarasu, N. (2023). Implementation of Intrusion detection and prevention

with Deep Learning in Cloud Computing. Journal of Information Technology Management,

15(Special Issue), 1-18.

17. El-Kassabi, H. T., Serhani, M. A., Masud, M. M., Shuaib, K., & Khalil, K. (2023). Deep

learning approach to security enforcement in cloud workflow orchestration. Journal of Cloud

Computing, 12(1), 10.

18. https://data.mendeley.com/datasets/5ct875rx9c/1

