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This research addresses the need for a predictive approach to detect security breaches in AI-

powered mobile cloud applications. We propose a novel approach combining Radial ResNet for 

advanced feature extraction with Random Forest (RF) for classification. This hybrid model is 

designed to analyze complex and dynamic datasets in real-time, enhancing the predictive 

capabilities for identifying potential security threats. Results indicate significant efficacy, with the 

algorithm achieving high accuracy and sensitivity in predicting security breaches. The Radial 

ResNet–RF combination achieved a training accuracy of 98.5%, with precision, recall, and F1-

score values of 97.8%, 98.2%, and 98.0%, respectively. On testing and validation datasets, the 

model demonstrated accuracies of 96.2% and 95.5%, respectively.  

Keywords: Mobile Cloud Applications, Security Breaches, Deep Random Forest Algorithm, 

Predictive Security. 

 

 

1. Introduction 

Mobile cloud applications are prone to diverse security threats such as data breaches, 

unauthorized access, and malicious attacks due to their reliance on cloud infrastructure and AI 

technologies [1]-[4]. The complexity of AI models, combined with the heterogeneous nature 

of cloud environments, exacerbates the challenge of securing these applications. AI models, 

particularly those used in mobile cloud settings, are susceptible to adversarial attacks and data 

poisoning, which can compromise their integrity and effectiveness [5]-[9]. Moreover, the large 

volume of data transmitted and processed in these applications creates numerous potential 

vulnerabilities that need to be monitored and managed effectively. 

The primary problem addressed in this study is the need for a predictive approach to 

preemptively detect and mitigate security breaches in AI-powered mobile cloud applications 

[10]-[12]. Traditional security mechanisms often react to threats after they occur, which can 

be inadequate for the sophisticated and adaptive attacks targeting AI systems [13]-[14]. There 

is a pressing need for advanced predictive models that can anticipate potential security issues 
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before they manifest. 

The objectives of this research are: 

1. To develop and evaluate a novel predictive model for detecting security breaches in 

AI-powered mobile cloud applications. 

2. To integrate Radial ResNet for feature extraction and Random Forest (RF) for 

classification to analyze complex and dynamic datasets in real-time. 

3. To compare the performance of the proposed model with existing methods, including 

RAPNet-BPOA-DenseNet201, NIDPS with Self-Taught Learning (STL), and Multi-modal 

LSTM-DAE. 

4. To assess the efficacy of the proposed approach in terms of accuracy, precision, recall, 

and F1-score, thereby demonstrating its potential to enhance security measures in mobile cloud 

environments. 

The novelty of this research lies in the integration of Radial ResNet and Random Forest 

algorithms to create a robust predictive model for security breach detection. Radial ResNet's 

advanced feature extraction capabilities, combined with RF’s powerful classification, provide 

a sophisticated approach to analyzing complex datasets. This combination addresses the 

limitations of traditional methods by offering a predictive framework that can preemptively 

identify potential threats. 

The contributions of this study are as follows: 

1. The proposed model leverages the strengths of Radial ResNet for deep feature 

extraction and RF for classification. 

2. The research provides a detailed comparative analysis of the proposed model against 

established methods, offering insights into its performance and effectiveness. 

3. By implementing a predictive model, this study contributes to advancing security 

practices in mobile cloud environments, potentially reducing the risk of security breaches and 

enhancing user privacy. 

 

2. Related Works 

In the paper [15] describes a special framework meant to achieve accurate assault detection 

and classification. Combining DenseNet convolutional neural networks with the strengths of 

rap music analysis techniques forms this system. The attention pyramid network (RAPNet) 

architecture is applied for feature extraction and the binary Pigeon algorithm is utilised to 

maximise the input data. Our solution comprises both of these procedures. Regarding feature 

selection, the next action is to leverage BPOA, a method of optimisation. We use the Densenet 

201 model to classify assaults in Bot-IoT, CICIDS2017, and CICIDS2019 among other 

datasets. We use deep learning methods to categorise assaults once we have determined the 

most desirable features. It was found that the Bot-IoT dataset, the CICIDS2017 dataset, and 

the CICIDS2019 dataset each had.  

The author of [16], proposes a network environment implements and evaluates the effective 
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IDPS by using a broad spectrum of machine learning techniques. Our aim is to create a model 

that can identify if a stream of network data is benign or malicious by modelling an intrusion 

detection system and intrusion prevention system. Within the framework of this study, an 

Enhanced ID3 is presented as a tool for spotting and grouping anomalies in network activity. 

To act as a benchmark, we build an auto encoder network alongside main component analysis 

and K-means clustering. Among the several criteria we tested were memory, recall, accuracy, 

and precision. 

First, the given multi-modal approach was investigated in an experimental setup under two 

crucial scenarios [17]. This was done to effectively confirm the approach. In the first scenario, 

we evaluate the performance of our AutoEncoder and anomaly detection model under their 

respective paces. The second scenario was used to evaluate the general performance of the 

cloud computing system. Evaluated were the adaption actions taken in response to the 

introduced anomaly detection; their effects on the execution performance of the cloud process 

were noted. Two main approaches used in the workflow shown are artificial intelligence 

models with one-class classification and clustering to discover anomalies and project when 

security enforcement would be used.  

Table 1: Summary 
Reference Method Methodology Outcomes 

[15] DenseNet with 

RAPNet and BPOA 

Uses DenseNet201 for attack classification, 

RAPNet for feature extraction, and Binary 

Pigeon Optimization Algorithm (BPOA) for 

feature selection. Datasets: Bot-IoT, 
CICIDS2017, CICIDS2019 

Exceptional precision in detection 

and classification. 

[16] Enhanced ID3, 

AutoEncoder, PCA, K-

Means Clustering, STL 

Implemented various machine learning 

techniques including Enhanced ID3, Random 

Forest, and linear regression. Applied Self-
Taught Learning (STL) on CICIDS2017.  

Compared performance of 

different models; STL used for 

deep learning with focus on 
accuracy, precision, recall, and 

memory. 

[17] LSTM-based 
AutoEncoder, One-

Class Classification, 

Clustering 

Tested AutoEncoder and anomaly detection 
models with a focus on cloud workflow 

performance. Evaluated using LSTM-based 

AutoEncoder, one-class classification, and 
clustering (k-means). 

Effective adaptation strategy to 
avoid resource wastage. 

Despite significant advancements in attack detection and classification through methods such 

as DenseNet with RAPNet and BPOA, Enhanced ID3, and various anomaly detection 

techniques, there remain notable research gaps. Many existing approaches, while effective in 

achieving high accuracy rates and performance metrics, tend to focus on specific datasets or 

narrow scenarios, which may limit their generalizability and adaptability to diverse real-world 

environments. Additionally, while methods like k-means clustering and STL have 

demonstrated effectiveness in certain contexts, they often do not address the full spectrum of 

dynamic and evolving threats in mobile cloud applications. There is a need for more 

comprehensive models that integrate multiple advanced techniques to handle a wider range of 

attack vectors and environmental variations  

 

3. Proposed Method  

The proposed method for predicting security breaches in AI-powered mobile cloud 

applications using the Deep Random Forest Algorithm can be explained in several steps as in 
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figure 1.  

 

Figure 1: Proposed Framework 

• Data Preprocessing:The dataset is preprocessed to ensure it is suitable for training the 

model. This includes normalizing data, handling missing values, and possibly augmenting the 

dataset to improve model robustness. Data from mobile cloud applications might include 

various logs, user activity patterns, or network traffic data, which need to be transformed into 

a format suitable for analysis. 

• Feature Extraction Process:The Radial ResNet processes the data through multiple 

layers of convolutions and residual blocks, extracting high-level features that capture both the 

global and local characteristics of the data. These features are then used as inputs for the 
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classification stage. The Radial ResNet, a variant of the Residual Neural Network (ResNet), 

for feature extraction from complex datasets. The network is designed to handle radial 

transformations in the feature space, which helps in extracting relevant features for the 

classification task. 

• Classification Using Random Forest:The extracted features are used as input for a 

Random Forest classifier. This helps in making robust predictions by aggregating the results 

from multiple decision trees. 

• Model Training:The Deep Random Forest Algorithm is trained using labeled datasets 

containing instances of both normal and malicious activities. The model is evaluated based on 

its accuracy and sensitivity, with the aim of achieving high performance in detecting security 

breaches.  

• Real-Time Prediction:Once trained, the model is deployed for real-time predictions. 

It continuously analyzes incoming data from mobile cloud applications to detect potential 

security breaches.  

Pseudocode 

# Pseudocode for Deep Random Forest Algorithm 

# Step 1: Data Preprocessing 

preprocessed_data = preprocess_data(raw_data) 

# Step 2: Feature Extraction Using Radial ResNet 

def extract_features(data): 

    # Initialize Radial ResNet model 

    radial_resnet = RadialResNet() 

    # Extract features 

    features = radial_resnet.forward(data) 

    return features 

features = extract_features(preprocessed_data) 

# Step 3: Classification Using Random Forest 

def train_random_forest(features, labels): 

    # Step 4: Model Training 

random_forest_model = train_random_forest(features, labels) 

# Step 5: Model Evaluation 

    accuracy = calculate_accuracy(predictions, test_labels) 

    sensitivity = calculate_sensitivity(predictions, test_labels) 

    return accuracy, sensitivity 
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accuracy, sensitivity = evaluate_model(random_forest_model, test_features, test_labels) 

# Step 6: Real-Time Prediction 

def predict_breach(model, new_data): 

    new_features = extract_features(new_data) 

    prediction = model.predict(new_features) 

    return prediction 

# Example usage 

new_data = get_new_data() 

prediction = predict_breach(random_forest_model, new_data) 

Radial ResNet for Feature Extraction 

Radial ResNet is a specialized variant of the Residual Neural Network (ResNet) designed to 

enhance feature extraction through radial transformations. The core idea of Radial ResNet is 

to improve the network's ability to capture and represent complex data patterns by applying 

radial transformations in the feature space. 

Residual Blocks: A residual block in a standard ResNet can be expressed as: 

y=F(x,{Wi})+x 

where,  

x - input to the block,  

F - represents the residual function (typically a stack of convolutional layers),  

Wi - weights, and  

y - output. This structure allows the network to learn residual mappings, which are easier to 

optimize than learning the direct mapping. 

Radial Transformations: In Radial ResNet, the conventional residual function Fis enhanced 

with radial transformations. Radial transformations adjust the feature space to better capture 

non-linear relationships by applying a radial function R(v) to the features: 

Fr(x,{Wi})=R(Wi⋅x) 

where  

R(v)- radial basis function or other non-linear transformation. For instance, a common choice 

is the Gaussian radial basis function: 

R(v)=exp(−∥v−c∥2
2/σ2) 

where,  

c - center of the radial basis function, and  

σ - width of the Gaussian function.  
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This transformation helps in capturing radial features that are invariant to certain 

transformations in the data. 

Feature Extraction Process: Radial ResNet processes the input data through multiple residual 

blocks, each incorporating radial transformations. The overall feature extraction process can 

be described as: 

Hn=Fr(Hn−1,{Wi})+Hn−1 

where,  

Hn- feature map after the nth residual block, and  

Hn−1 - feature map from the previous block. This iterative process allows Radial ResNet to 

extract hierarchical features from the input data. 

Output Features: After passing through the Radial ResNet layers, the extracted features are 

typically aggregated and transformed into a feature vector suitable for classification. The final 

feature vector Ffcan be obtained as: 

Ff=Pooling(Hn) 

where  

Pooling - pooling operation (e.g., global average pooling) that reduces the spatial dimensions 

of the feature maps while retaining essential information. 

Pseudocode 

# Pseudocode for Radial ResNet Feature Extraction 

# Define Radial Basis Function 

function radial_basis_function(v, c, sigma): 

    return exp(-norm(v - c)^2 / (2 * sigma^2)) 

# Define Residual Block with Radial Transformation 

function residual_block(x, weights, c, sigma): 

    # Apply radial basis function 

    radial_features = radial_basis_function(weights * x, c, sigma) 

    # Apply convolution or other transformations 

    transformed_features = convolution(radial_features, weights) 

    # Add residual (skip connection) 

    output = transformed_features + x 

    return output 

# Define Radial ResNet Model 

function radial_resnet(input_data, num_blocks, weights_list, c, sigma): 
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    x = input_data 

    for i in range(num_blocks): 

        # Use weights specific to each block 

        weights = weights_list[i] 

        # Apply residual block with radial transformation 

        x = residual_block(x, weights, c, sigma) 

    # Aggregate features (e.g., global average pooling) 

    feature_vector = global_average_pooling(x) 

    return feature_vector 

# Example usage 

input_data = load_data() 

num_blocks = 10 

weights_list = initialize_weights(num_blocks) # Initialize weights for each block 

c = initialize_radial_centers() # Radial centers 

sigma = initialize_sigma() # Radial width parameter 

# Extract features using Radial ResNet 

features = radial_resnet(input_data, num_blocks, weights_list, c, sigma) 

Random Forest (RF) for Classification 

The main strengths of RF include its ability to handle large datasets with high dimensionality 

and its robustness against overfitting. 

Bootstrap Aggregation (Bagging):Random Forest begins by generating multiple subsets of the 

training dataset. Each subset is created by randomly sampling the original dataset with 

replacement. 

Mathematically, if the original dataset is D={(xi,yi)}i=1
N 

where  

xi - features and  

yi - labels, then each bootstrap sample Dbis a subset of D obtained by sampling Nb examples 

with replacement: 

Db={(xi
b,yi

b)}i=1
N 

Decision Tree Construction:This process introduces diversity among the trees and helps 

prevent overfitting. 

Let F be the set of all features. At each node, a random subset Fs⊂Fis chosen. The split at each 
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node is based on a criterion such as Gini impurity: 

Gini=1−∑j=1
Cpj

2 

where  

pj- proportion of samples belonging to class jand  

Cis the number of classes. 

Tree Voting:Once all trees are constructed, each tree provides a classification for a given input 

sample.  

Pseudocode 

# Pseudocode for Random Forest Classification 

# Define Decision Tree Training 

function train_decision_tree(training_data, features_subset): 

    # Initialize Decision Tree 

    tree = DecisionTree() 

    # Grow tree using training data and features subset 

    while not stopping_criteria_met(tree): 

        # Select a random subset of features for splitting 

        random_features = select_random_features(features_subset) 

        # Find the best feature and split point 

        best_split = find_best_split(training_data, random_features) 

        # Split data into left and right child nodes 

        left_data, right_data = split_data(training_data, best_split) 

        # Recursively build left and right subtrees 

        tree.left = train_decision_tree(left_data, random_features) 

        tree.right = train_decision_tree(right_data, random_features) 

    return tree 

# Define Random Forest Training 

function train_random_forest(training_data, num_trees, features_subset): 

    forest = [] 

    for i in range(num_trees): 

        # Bootstrap sampling 

        bootstrap_sample = bootstrap_sample(training_data) 
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# Define Random Forest Prediction 

function predict_random_forest(forest, new_data): 

    predictions = [] 

    for tree in forest: 

        # Get prediction from each tree 

        tree_prediction = predict_tree(tree, new_data) 

        predictions.append(tree_prediction) 

    # Aggregate predictions using majority voting 

    final_prediction = majority_vote(predictions) 

    return final_prediction 

# Helper Functions 

function bootstrap_sample(data): 

    # Sample data with replacement 

    return sample_with_replacement(data) 

function select_random_features(features_subset): 

    # Randomly select a subset of features 

    return random_subset(features_subset) 

function find_best_split(data, features): 

    # Find the best feature and split point based on impurity or entropy 

    best_split = None 

    # Implement criterion to find the best split 

    return best_split 

function split_data(data, split): 

    # Split data into left and right child nodes based on the split 

    left_data, right_data = split_data_by_criteria(data, split) 

    return left_data, right_data 

function predict_tree(tree, data): 

    # Traverse the decision tree to get a prediction 

    return traverse_tree(tree, data) 

function majority_vote(predictions): 

    # Determine the majority vote from all tree predictions 
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    return mode(predictions) 

# Example usage 

training_data = load_training_data() 

num_trees = 100 

features_subset = get_feature_subset(training_data) 

# Train Random Forest 

forest = train_random_forest(training_data, num_trees, features_subset) 

# Predict on new data 

new_data = load_new_data() 

final_prediction = predict_random_forest(forest, new_data) 

 

4. Results and Discussion 

For the evaluation of Radial ResNet and Random Forest (RF) algorithms, the experiments 

were conducted using Python-based simulation tools, specifically leveraging libraries such as 

TensorFlow for deep learning models and scikit-learn for Random Forest implementations 

[18]. The simulations were performed on high-performance computing systems equipped with 

NVIDIA GeForce RTX 3090 GPUs and Intel Core i9 processors, ensuring efficient handling 

of the large datasets and complex computations required.  

The performance of Radial ResNet and RF was assessed against established methods: 

RAPNet-BPOA-DenseNet201, NIDPS with Self-Taught Learning (STL), and Multi-modal 

LSTM-DAE. RAPNet-BPOA-DenseNet201 and Multi-modal LSTM-DAE are known for 

their robustness in feature extraction and sequence modeling respectively, while NIDPS with 

STL provides a unique approach to anomaly detection through self-taught learning, making 

them suitable benchmarks for comparison. 

Table 2: Experimental Setup 
Parameter Value 

Number of Layers 10 

Number of Residual Blocks 5 

Radial Basis Function Type Gaussian 

Radial Basis Function Width (σ) 0.5 

Number of Trees 100 

Max Depth of Trees 10 

Number of Features per Split √(total features) 

Minimum Samples per Leaf 5 

Bootstrap Sample Size 70% of original data 

Optimizer Adam 

Number of Epochs 50 

Dataset: 

The dataset is derived from the CICIDS 2019 dataset, which includes various categories of 

modern network attacks along with benign traffic, ensuring a comprehensive range of 
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scenarios for model evaluation. For those interested in studying imbalanced datasets, the IoT 

DoS DDoS Attack dataset—also based on CICIDS 2019—offers a scenario with an unequal 

distribution of attack and benign instances. This balanced dataset allows researchers to train 

models to recognize and classify both normal and malicious traffic effectively. It serves as a 

critical tool for developing and benchmarking advanced detection algorithms, providing a 

robust framework for understanding and mitigating network threats in diverse environments. 

 

Figure 2: Accuracy (%) 

 

Figure 3: Precision (%) 
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Figure 4: Recall (%) 

 

Figure 5: F1-Score (%) 

The results show that Radial ResNet achieves the highest performance across all metrics and 

datasets compared to other methods. For the training set, Radial ResNet demonstrates an 

accuracy of 98.5%, with high precision (97.8%), recall (98.2%), and F1-score (98.0%). This 

indicates that Radial ResNet is highly effective at learning from the training data and making 

correct predictions. However, performance slightly decreases on the testing and validation 

sets, with accuracy values of 96.2% and 95.5%, respectively.  

Random Forest (RF) also performs well, with an accuracy of 97.8% on the training set. Its 

precision, recall, and F1-score values are slightly lower compared to Radial ResNet, indicating 

that while RF is effective, it may not capture complex patterns as well as Radial ResNet. The 

testing and validation accuracies (94.1% and 93.8%, respectively) show a more pronounced 

drop compared to Radial ResNet, suggesting that RF may be more prone to overfitting or 

might not generalize as well to new data. 
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RAPNet-BPOA-DenseNet201 and Multi-modal LSTM-DAE both show strong performance, 

but they are slightly outperformed by Radial ResNet. RAPNet-BPOA-DenseNet201 achieves 

high accuracy on the training set (98.0%), but its performance decreases on testing and 

validation sets, with accuracies of 95.8% and 94.6%, respectively. Multi-modal LSTM-DAE 

also exhibits competitive results but falls short of Radial ResNet in all metrics, particularly on 

the validation set where its F1-score is 89.7%. 

NIDPS with STL shows the lowest performance among the methods, with the lowest accuracy 

(96.5% training) and the lowest metrics across testing and validation sets. This suggests that 

while NIDPS with STL is effective for certain applications, it might not perform as well in 

classification tasks compared to the other methods tested. 

Inferences  

The experimental results provide a comprehensive view of the performance of Radial ResNet, 

Random Forest (RF), RAPNet-BPOA-DenseNet201, NIDPS with Self-Taught Learning 

(STL), and Multi-modal LSTM-DAE for classification tasks. The analysis of accuracy, 

precision, recall, and F1-score across training, testing, and validation sets yields several key 

insights into the effectiveness and suitability of each method.Radial ResNet exhibits the 

highest overall performance across all metrics and datasets, establishing itself as the most 

robust and effective model for classification among those tested. With an accuracy of 98.5% 

on the training set and high precision (97.8%), recall (98.2%), and F1-score (98.0%), Radial 

ResNet demonstrates exceptional learning capability from the training data. Its performance 

on the testing and validation sets, with accuracies of 96.2% and 95.5% respectively, reflects 

its strong generalization ability. The slight decrease in performance from training to testing 

and validation is typical and indicates that the model maintains a high level of robustness while 

handling new, unseen data. This suggests that Radial ResNet is well-suited for complex 

classification tasks where capturing intricate patterns is crucial.Random Forest (RF) also 

performs admirably, with a training accuracy of 97.8% and competitive precision (96.4%), 

recall (97.2%), and F1-score (96.8%). However, RF's performance shows a more pronounced 

decrease on the testing and validation sets, with accuracies of 94.1% and 93.8%, respectively. 

This drop may indicate that RF, while effective, is more susceptible to overfitting compared 

to Radial ResNet. The Random Forest’s reliance on bagging and decision trees, which are 

known for their robustness, still falls short in capturing the complexity of the data as effectively 

as Radial ResNet.RAPNet-BPOA-DenseNet201 and Multi-modal LSTM-DAE both show 

strong performance but are outperformed by Radial ResNet. RAPNet-BPOA-DenseNet201 

achieves a training accuracy of 98.0%, with precision (97.0%), recall (97.5%), and F1-score 

(97.2) that are slightly lower than those of Radial ResNet. The accuracy on testing and 

validation sets (95.8% and 94.6%, respectively) highlights its strong but not exceptional 

generalization ability. Multi-modal LSTM-DAE also performs well with a training accuracy 

of 97.0% and similar metrics, but its validation performance (F1-score of 89.7%) suggests that 

it may struggle more with unseen data compared to Radial ResNet.NIDPS with STL, while 

useful for certain anomaly detection applications, shows the lowest performance in this 

classification task. With a training accuracy of 96.5% and lower values across other metrics, 

NIDPS with STL appears less effective for standard classification compared to the other 

methods. Its performance on testing and validation sets is particularly lower, indicating that 

this method might not be as robust or generalizable for classification tasks as the others. Thus, 
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Radial ResNet stands out as the superior method for classification due to its high performance 

metrics and strong generalization capabilities. The comparative analysis reveals that while 

other methods like RF, RAPNet-BPOA-DenseNet201, and Multi-modal LSTM-DAE are 

effective, they do not match the overall performance and robustness of Radial ResNet. NIDPS 

with STL, although valuable for its specific applications, is less suited for classification tasks 

in this context. Radial ResNet's ability to handle complex data and maintain high performance 

across various metrics underscores its potential for advanced classification challenges. 

 

5. Conclusion  

The experimental evaluation of Radial ResNet, Random Forest (RF), RAPNet-BPOA-

DenseNet201, NIDPS with Self-Taught Learning (STL), and Multi-modal LSTM-DAE 

highlights Radial ResNet as the most effective method for classification tasks. Radial ResNet 

consistently achieves the highest accuracy, precision, recall, and F1-score across training, 

testing, and validation datasets, demonstrating its exceptional capability to learn from and 

generalize to new data. The performance drop from training to testing and validation is 

minimal, indicating robust generalization.Random Forest, while strong and competitive, 

shows a more pronounced performance drop, suggesting potential overfitting issues. RAPNet-

BPOA-DenseNet201 and Multi-modal LSTM-DAE perform well but fall short of Radial 

ResNet in terms of precision and recall, particularly on validation data. NIDPS with STL, 

though valuable for specific applications, shows the lowest performance in this classification 

context. 
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