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This research shows some of the worthy ecosystem services provided by wetlands are biodiversity 

support, water regulation, and carbon sequestration. These ecosystems are under threat due to 

human activities such as urbanization and industrialization, so their identification and classification 

are very important for their conservation. Synthesis aperture radar has been successful in detecting 

wetlands since it can penetrate through cloud covers and is sensitive to moisture content. Although 

promising Support Vector Machine (SVM) and Random Forest (RF) approaches, this still often 

requires high preprocessing and exhaustive handcrafted feature extraction. Deep learning models, 

especially Convolutional Neural Networks (CNNs), manage to improve classification performance 

but have problems with slow convergence rates and serious overfitting in big data. Based on these 

gaps, the paper presents a new approach proposing the integration of the modified Invasive Weed 

Optimization (IWO) algorithm with CNN-based detection for Synthetic Aperture Radar (SAR) 

images, focusing on wetland classification. Addressing the slow convergence problem and possible 

entrapment into a local optimum, enhanced IWO parameters in the CNN include learning rate and 

batch size. Also, to test the applied model, SAR data demonstrates a classification accuracy of about 

90%, with key metrics such as precision at 88% and recall at 91% showing superior performance 

compared to that obtained using traditional techniques. Conclusively, the study states that the 

combination of CNN and the improved IWO algorithm highly enhances the accuracy of wetland 

detection, thereby providing a more robust solution for conducting environmental monitoring and 

conservation efforts.  

Keywords: Convolutional Neural Networks, Deep Learning, Synthetic Aperture Radar, Wetland 

Detection. 

 

 

1. Introduction 

Wetlands are important natural resources that can provide many ecosystem services such as 

http://www.nano-ntp.com/


765 Daniel Arockiam et al. A Novel Wetland Detection and Classification...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

supporting biological and landscape diversity and regulating water availability and quality as 

well as acting as a sink for carbon. However, these environments are experiencing attempts at 

destruction due to various human activities including; urbanization agriculture, and 

industrialization among others. Wetland identification and categorization is therefore centrally 

significant in terms of environment assessment, protection, and management as well as in 

planning and zoning of land usage. This work also identified SAR as one of the most useful 

remote sensing technologies in wetland detection since it is not affected by cloud cover and 

provides high-resolution imagery (Khaitan et. al., 2022). In contrast with the optical sensors, 

the SAR data can sense the structure of the specific surface in a way that is very sensitive to 

the moisture content which makes them appropriate to use when identifying wetlands (Ludwig 

et al., 2019). 

In the last few decades, different approaches have been tried and tested for wetland 

identification and mapping (Khaitan et. al., 2021). Previous methods were primarily based on 

visual interpretations or employing simple thresholding techniques that were constricted by 

the variety and dynamics of the wetland environment. These methods were even further 

limited by vegetation type, soil moisture, and water level differences in SAR backscatter 

signals. To overcome these challenges, a new approach of machine learning along with deep 

learning has been implemented to enhance the efficacy of detecting wetlands. Other machine 

learning methods including SVMs, RFs, and k-NN have been applied in classifying the 

wetland types using SAR imagery. However, these algorithms, of course, presuppose 

extensive preprocessing and feature extraction, and the quality and quantity of labeled training 

data usually serve as the key factors that define the algorithms’ performance (Ziajahromi et 

al., 2020). 

Recent trends in the remote sensing domain and satellite image analysis have been using deep 

learning models mainly convolutional neural networks (CNN) models. CNNs have shown the 

flexibility to learn the multifaceted features of the input data in an organized manner thus 

minimizing the time required to extract features manually. As applied to SAR data, CNNs can 

learn the detailed spatial distribution and textural properties of wetland areas. Some research 

suggests that CNNs compare favorably with the more traditional machine learning techniques 

because of classification accuracy and their learning capability of new data. However, there 

are some limitations in the present study as shown below: There are some shortcomings in 

improving deep learning approaches for wetland mapping, especially in terms of the model 

efficiency (Ballanti et al., 2017). 

For training deep learning models, optimization algorithms are used with high significance, 

especially for controlling hyper-parameters that include the learning rates, batch sizes, and 

network structures. There are numerous proposed algorithms based on biological frameworks 

to improve the effectiveness of deep learning models for various purposes. Of these, the 

Invasive Weed Optimization (IWO) algorithm has attracted significant interest because of its 

simplicity and efficiency in solving various optimization problems. The population-based 

metaheuristic that underpins IWO is based on the colonizing behavior of weeds: the most 

competitive weeds will propagate and will replace other less competitive weeds in an 

environment over time thus rendering the best solution. In the context of deep learning, IWO 

can be used to optimize model parameters and in the process enhance the convergence rates 

of the models used in current deep learning architectures (O’Neil et al., 2020) (Nilanjana et. 
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al. 2021). 

However, the IWO algorithm based on the standard possesses some drawbacks: slow 

convergence in the high dimensional search space, and it became easily stuck in certain areas 

of the local optima. Thus, some modifications have been suggested in the literature to address 

the above issues, the basic modifications include the hybrid of IWO with the other optimization 

techniques such as PSO and GA. IWO improved versions have confirmed improved 

performance for other optimization solutions, however; their adaptation in detecting wetlands 

using SAR remains quite unknown (Lei et al., 2023). 

The main objective of this research is to propose a new framework for identifying and 

categorizing wetlands from SAR data through the enhancement of the IWO algorithm with a 

DL model. The research to a large extent indicates that the method proposed here eliminates 

the shortcomings of the existing machine learning approach and the standard IWO 

optimization approach by integrating solutions that enhance machine learning convergence 

speed and classification accuracy. In particular, we suggest improvements in the functioning 

of the IWO algorithm, concerned with proximity to adapt the necessary strategies for the 

population diversity regulation and convergence control. These modifications shall be 

accompanied by deep learning CNNs to use the feature of SAR images as spatial and textual 

features for wetland detection accurately. 

The originality of this work is based on the fact that it combines an enhanced IWO algorithm 

with a deep learning approach which is developed for SAR-based wetland classification. That 

is why when tuning the hyperparameters of the CNN model with the help of the improved 

IWO algorithm we expect to obtain an increased classification rate while keeping the time 

costs reasonable. In addition, as SAR data is very effective for wetland detection because of 

its sensitivity to both moisture and vegetation, its use forms a strong base for proper 

environment surveillance. The above-proposed framework will be tested and calibrated with 

real SAR datasets and compared with the present state-of-the-art wetland classification 

methods (Peña et al., 2024)(Wan & Yin, 2022). 

In conclusion, this study presents research and adds to the existing literature on the problem 

of wetland detection and classification by proposing a new solution based on deep learning 

and bio-inspired metaheuristic. Given the benefits derived from SAR data both in the wetland 

detection and phenology characterizations, the proposed method if optimized to overcome the 

weaknesses of the IWO algorithms would enormously improve the performances of wetland 

monitoring systems. The findings of this study will not only contribute to the improvement of 

distance sensing but will also be useful to policymakers and managers who are charged with 

the responsibility of protecting such important ecosystems. 
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Figure 1.1: Wetland Ecosystem with Aquatic Vegetation (“What Is Wetland,” n.d.) 

Ecosystem shown the ecosystem shown here is a wetland. The aquatic plants are reeds and 

water lilies intermixed with shallow, calm water. Wetlands are important ecosystems that 

support biodiversity, filter out water pollution, and work as natural controls against flooding. 

Water lilies indicate a healthy aquatic environment, whereas tall grasses and reeds are habitats 

for different species, such as insects, birds, and amphibians. Such ecological systems are also 

significant for maintaining balance in ecological flow, and they may further contribute to the 

recharge of groundwater besides carbon sequestration. 

 

2. Literature Review 

Wetlands are sensitive parts of ecosystems that play important roles as biodiverse areas, carbon 

sinks, flood plains, and water purification systems. Evaluation of wetlands is crucial for their 

management and conservation; however, their hydrological status and vegetation cover 

complicate detection and mapping. The following are some of the developments presented 

from years ago based on remote sensing technologies, machine learning, deep learning, and 

optimization algorithms. As a literature review, the following paper provides an overview of 

the former studies that are related to wetland detection from SAR data, machine learning 

approaches, deep learning algorithms, and optimization approaches. 

Sensing techniques specifically SAR data have been under great focus in the detection and 

monitoring of wetlands. SAR therefore is useful due to its weather independence coupled with 

high sensitivity to moisture, thus applicable on wetlands characterized by a water level 

variability. 

The first type of data for the early research is the optical RS data with Landsat and MODIS 

imagery but they are restricted by cloud cover and different lighting conditions. SAR can on 

one hand provide data through clouds and can work regardless of weather. Investigations 

conducted by (Kasischke et al., 2009) found that SAR could be used to detect wetland 

ecosystems because the backscattered radar signal increases with surface roughness and 

moisture. Other studies, (Hess et al., 2003) appreciated the capacity of SAR in differentiating 

flooded and non-flooded land therefore is invaluable in tracking changes that occur in wetlands 
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seasons. SAR data provided enhanced detection capabilities for wetland environments but 

classification was difficult due to the high variability of wetlands. In response to these 

challenges, the researchers realized they could apply machine learning models to enhance their 

classification performance. 

As will be discussed in the following sections, basic and conventional machine learning 

techniques like support vector machines (SVM), random forest (RF), and k-nearest neighbors 

(k-NN) were employed in wetland detection tasks. Some of these models base their extraction 

on SAR image features including texture, backscattering intensity, and polarization 

information. 

(Henderson & Lewis, 2008) incorporated data from both SAR and optical sensors as well as 

SVM for wetland classification. The authors of the study revealed that machine learning 

models especially SVM are better than the conventional thresholding styles when it comes to 

classification. Along the same line of thought, (Amani et al., 2019) used Random Forests to 

classify wetlands using multi-temporal SAR data. This capability enabled the inclusion of 

temporal change in SAR backscatter for enhanced WD accuracy over different types of 

wetlands. 

Even though in many cases machine learning models performed well, their efficiency was also 

a function of how many and how well-labeled data sets were. Furthermore, these models 

involved a hand-crafted computational feature extraction step which is somewhat time-

consuming and often involves heuristics. This leads to a transition to deep learning models 

because the models can learn the features on their own. Recently, CNN which is a subfield of 

Deep learning has been reported to offer very good solutions to wetland detection and 

classification because these methods automatically learn the features from the raw data. The 

major advantage over other machine learning models is that CNNs are capable of learning the 

necessary spatial and spectral patterns from the given data rather than receiving them as 

handcrafted features. 

Some research by previous authors shows that CNNs have outperformed other models in 

several ways. For instance, (Tan et al., 2020) employed the CNNs for the classification of the 

SAR images for wetland detection, with better performance compared with the SVM and RF 

models. From this point of view, the high ability of the CNN to express the spatial relations 

between the pixels, and the increased data processing capacity contributed to achieving more 

accuracy in the classification of wetland kinds. Furthermore, deep learning models are well 

suited for SAR data and, in particular, noise that is present in SAR data and creates a variability 

problem for traditional models. 

Nevertheless, the models under deep learning also have their difficulties; mainly the large 

collection of labeled datasets and the impressive task of setting its hyperparameters for the 

deepest optimum. Training deep learning models on a small amount of labeled data may lead 

to a problem of overfitting, where the model serves well the labeled data, but does not 

generalize for yet unseen data. Due to this, more research has been extended towards the 

application of optimization techniques to enhance the general performance of these models. 

Invasive Weed Optimization (IWO) presented by (Mehrabian & Lucas, 2006) is a 

metaheuristic population-based optimization algorithm that was developed on the idea of the 
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growth of weed population. IWO has been used in other fields of engineering design problems, 

signal processing, and control systems because of its effectiveness in solving difficult large-

scale optimization problems. Relates the optimization process with cloned weeds where the 

fittest units are expected to produce more seeds and hence give rise to better solutions in a 

population. 

Several works in the literature investigated the use of IWO in deep learning. For example, in 

the recent study by (Sriram et al., 2022) IWO was used for the selection of hyperparameters 

of deep neural networks, and the results demonstrated better convergence and quality of the 

solution compared to conventional optimization algorithms. However, the IWO algorithm also 

has some drawbacks; it may archive a low convergence rate, especially in higher 

dimensionality search space, and is inclined to fall in local optima. To solve these problems, 

the researchers suggested different enhancements to the IWO algorithm including combining 

it with other algorithms like PSO or implementing adaptive methods. 

There are better versions of IWO which have been designed by the researchers to make a better 

tool for optimization tasks. For instance, (Naidu & Ojha, 2015) developed a composite IWO–

PSO technique in which the IWO was acceptable for the exploration, while the PSO method 

provided the exploitation. Using the combination of the two methods, convergence speed and 

jumping out from local optima were demonstrated to be enhanced in multi-modal optimization 

problems. Other alterations of IWO are a set of mechanisms that work for controlling the 

proportion of population diversity, like adaptive mutation or adaptive reproduction rates 

coming to help if diversity goes down and delays convergence. 

Table 2.1: Summary of Literature on Wetland Detection Using Remote Sensing and Machine 

Learning Techniques 
Study Technique/Model Data Type Accuracy Key Findings Limitations 

(Kasischke et al., 2003) 
SAR Data 
Analysis 

SAR data N/A 

Demonstrated the 

effectiveness of SAR for 

wetland monitoring 

Limited to basic thresholding 

techniques, no classification 

focus 

(Hess et al., 2003) 
SAR & Optical 
Combination 

Multi-temporal 
SAR + Optical 

N/A 

Identified flooded vs non-

flooded areas using SAR 

data 

Limited use of machine 

learning, and manual 

interpretation needed 

(Henderson & Lewis, 
2008) 

SVM (Machine 
Learning) 

SAR + Optical 
data 

70-80% 

SVM improves 

classification over 

thresholding 

Dependent on manual feature 
extraction 

(Amani et al., 2019) 
Random Forests 

(RF) 

SAR multi-

temporal data 
80-88% 

Incorporates temporal 
variation in SAR data for 

better classification 

Sensitivity to noise and 

imbalanced datasets 

Amani et al. (2019) 

Convolutional 

Neural Network 
(CNN) 

SAR data 85-90% 

CNN automatically 
extracts spatial features, 

outperforming traditional 

methods 

Requires large datasets, 

sensitive to hyperparameters 

(Mehrabian & Lucas, 

2006) 

IWO 

(Optimization) 

Optimizing deep 

learning models 
N/A 

IWO effectively tunes 

deep learning parameters 

Slow convergence and 
tendency to get stuck in local 

optima 

(Naidu & Ojha, 2015) 
Hybrid IWO-

PSO Algorithm 

Hybrid 
optimization for 

neural networks 

N/A 
Hybrid approaches 
improve convergence 

speed and solution quality 

More computationally 

expensive due to hybridization 

Using the summary table 2.1 above, some research findings that have been conducted on the 

detection of wetlands using remote sensing and machine learning algorithms are highlighted. 

Early studies such as Kasischke et al. 2003 and Hess et al. 2003 examined the use of SAR data 
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for wetland identification but employed simple techniques indicating the ability of SAR in 

discerning wetlands. Subsequent works used more accurate models like SVM and Random 

Forest also but they again demanded feature engineering. CNNs, as a type of deep learning 

proved better by automating feature extraction. IWO followed by the hybrid IWO-PSO 

optimization was used for optimizing the deep learning models and the hyperparameters, but 

the convergence rate issues and computational complexity did present themselves. 

 

3. Research Methodology 

This research aims to develop a new approach for wetland mapping and classification based 

on deep learning and operation with SAR data and the use of the technique, such as quantum 

invasive weed optimization (Q-IWO) that has not been applied in wetland detection so far. 

The inclusion of quantum aspects in the synthesis of the way invasive weed optimization 

algorithms work has been intended to address constraints such as solute local optima together 

with slow search convergence in the higher learning space, resulting in enhanced deep learning 

model training for wetland detection. 

 

Figure 3.1: Flow Chart of Optimized Development Using CNN and Q-IWO 

The flowchart represents a pipeline for the development of optimally configured models, 

which will implement CNNs to extract features and Q-IWO to optimize. It starts with the Data 

Acquisition stage, where relevant data is obtained from the sensors, databases, or external 

inputs. In this regard, the data would include any traffic patterns, movement of people, and 

environmental data, that hold relevance in the application at hand, such as smart street lighting. 
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The data preprocessing step cleans up and prepares the acquired data for analysis. The common 

procedures include managing missing values, normalizing data, and consistency, all critical 

elements used to enhance the quality and usability of the data in machine learning. After data 

pre-processing, Feature Extraction Using CNN is applied. CNNs have yielded exceptionally 

good performance in pattern detection and extraction from images or spatial data. For example, 

it can be said to figure out traffic camera patterns, such as pedestrians and car density, which 

are relevant to Smart Street lighting systems. 

Following the feature extraction, Optimization using Q-IWO applies. Q-IWO is a nature-

inspired optimization algorithm that has been enhanced based on principles found within 

quantum computing. It highlights important parameters or features of the model while 

narrowing down the most significant parameters for better efficiency in the learning process 

and performance. The flow chart then goes ahead to Model Training and Model, where 

features form the basis for training the machine learning model. Here, in this training, the 

model learns from the dataset by adjusting its internal weights to make a better prediction it 

can, like optimal times adjust street lights based on the predicted flow of traffic or pedestrians. 

Lastly, the Model Evaluation stage assesses how well the model does in terms of some metrics 

such as accuracy, precision, or error rates. Evaluation will determine how well the model 

generalizes to new, unseen data. If needed, further refinement might be based on the results 

before deploying the model in the real world. The whole process ensures one would develop 

highly optimized and efficient machine learning models. 

3.1 Data Acquisition and Preprocessing 

The proposed study applies SAR data, which can be especially helpful in discerning wetland 

areas because the sensor’s response depends on the moisture and roughness of the area. The 

steps include: 

➢ Data Source: Such as Multi-temporal SAR with data from Sentinel-1 or RADARSAT. 

➢ Preprocessing: Such data undergo SAR radiometric calibration, SAR speckle filtering 

using filters like Lee or Frost filters, and SAR geocoding. A geographical area of interest (AOI) 

confined to areas with known wetlands is used to train and for evaluation of region of interest, 

(ROI) of 85,250km2 is selected for building and assessment. 

Table 3.1: SAR Data Specifications 

Source Spatial Resolution 
Temporal 

Resolution 

Frequency 

Band 
Coverage Area 

(“Sentinel-1,” 
n.d.) 

10 m 6-12 days C-band Wetland areas (ROI) 

(“RADARSAT,” 

n.d.; “Sentinel-

1,” n.d.) 

10-30 m Variable C-band Wetland areas (ROI) 

Table 3.1 shows key details about the SAR data sources used for wetland detection in the 

study. Sentinel-1 provides a ground imaging resolution of 10 meters and a time frequency of 

6-12 days enabling more frequent image acquisition. The two Sentinel-1 and RADARSAT are 

in C-band frequency which is effective in sensing moisture on the ground; therefore, useful in 

observing wetlands. RADARSAT covers similar wetland regions as Sentinel-1 at the same 

type of spatial and temporal resolutions ranging from 10 to 30 meters, while the temporal is 
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variable depending on the mission. 

3.2 Feature Extraction Using Deep Convolutional Neural Networks (CNN) 

For current extraction, an end-to-end multi-output Convolutional Neural Network (CNN) 

architecture is used to automatically extract spatial, textual features of SAR images, which are 

specifically notable for wetland features. By using the devised CNN architecture, it is possible 

to detect essential characteristics like moisture content, surface roughness, and types of 

vegetation that are helpful for wetland classification. These include their layers, the 

convolutional layers where filters are applied to detect critical spatial features such as humidity 

and plant matter. These layers convert the raw SAR data into formats from which important 

geometrical properties are preserved. After that, pooling layers make the dimensionality of the 

data smaller through scale down but able to conserve significant aspects to improve 

computational run time. The last layer of the neural network is made of the fully connected 

layers where the detected features are categorized into the needed wetland type. Such 

architecture enables the learning of complex spatial affiliations and textural characteristics, 

turning CNNs into a useful instrument in wetland identification relying on RS data. 

3.3 Proposed Quantum-Inspire Invasive Weed Optimization (Q-IWO) 

The Quantum-Inspired Invasive Weed Optimization (Q-IWO) algorithm consists of the basic 

IWO algorithm with more capabilities of quantum mechanics like quantum superposition and 

entanglement to search for the solution in large dimensional space. In this approach, each 

“weed” is the state represented by a qubit such that it can be in many states at once, this is due 

to the flexibility that quantum superposition offers in the exploration of the search space. 

Furthermore, there is an entanglement of variables, which forms links between weeds to 

exchange information that would help in moving towards the world optima. The reproduction 

mechanism has also been amended by adjusting for weeds with higher fitness to produce more 

quantum characteristic offspring to expand search nearness in the solution space. Such 

quantum-inspired elements lead to enhanced exploration and convergence, and by this 

perspective, Q-IWO is more efficient in search and convergence to optimal solutions for 

solving a complex optimization problem as compared to conventional techniques. 

3.4 Model Training and Optimization 

The Q-IWO algorithm is implemented for fine-tuning the hyperparameters of the CNN namely 

filters, learning rate and batch size, and the number of layers. The plug-in strategies based on 

QA mean an increased possibility to study the hyperparameter space and avoid being stuck in 

local optima. 

Training Process: In this paper, the CNN is trained on the preprocessed SAR data based on the 

proper hyperparameters selected via Q-IWO. The model is used for cross-validation k-fold to 

check the degree of separation between the training sets and the independent code. 

Evaluation Metrics: Evaluation of the achieved model is carried out using metrics that are; 

Accuracy, precision, recall, F1-score, and Intersection over Union (IoU) scores. 
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Table 3.2: Model Hyperparameter Optimization Using Q-IWO 
Hyperparameter Range Optimal Value (Q-IWO) 

Learning Rate 0.0001 - 0.01 0.001 

Number of Filters 16 - 128 64 

Batch Size 16 - 128 32 

Number of Layers 10-Feb 5 

Table 3.2 shows the CNN model hyperparameters for the best solution found through the 

application of the Q-IWO approach. Out of the range of 0.0001 to 0.01, the optimum was 

applied in the form of 0.001 to adjust the learning rate, which determines the step size in the 

model training. From a range of 16-128, the number of filters that decide the depth of the 

extraction of the feature maps was determined to be optimal at 64 in Convolutional layers. The 

batch size for training, as it determined the frequency of models’ updating, was set to 32; the 

number of layers was 5, which was exactly enough to maintain a balanced and effective 

network. 

3.5 Model Validation and Testing 

The data set is tested with the optimized CNN model whereby the wetlands are classified from 

previously unused data sets. The model is evaluated using the following procedures: 

Test Set: To test the model’s robustness, the test data is generated using temporal periods of 

SAR and dichotomized geographical regions. 

Confusion Matrix: To show the accuracy of the classification between different classes of 

wetlands, a confusion matrix is created. 

Table 3.3: Confusion Matrix for Wetland Classification 
Class Wetland Type 1 Wetland Type 2 Wetland Type 3 Wetland Type 4 Accuracy 

Wetland Type 1 80 10 5 5 88% 

Wetland Type 2 5 85 7 3 87% 

Wetland Type 3 8 6 80 6 92% 

Wetland Type 4 4 4 6 86 93% 

Table 3.3 has shown a confusion matrix to define the nature of classification that can be 

achieved for four Wetland categories by the Q-IWO optimized CNN model. Here each row 

counts for the actual wetland class and each column possesses the corresponding predicted 

class. For example, in Wetland Type 1, 80 samples were classified as Type 1 with 88% 

accuracy while 10 as Type 2, 5 as Type 3, and 5 as Type 4. More specifically, Wetland Type 

2 revealed the greatest accuracy with a minimum misclassification. Comparing the 

performances of the model over all classes, Wetland Type 4 has the highest accuracy of 93%. 

 

4. Result and Discussion 

The methodology, in which Q-IWO is implemented for improving the performance of the 

CNN, specifically in SAR data for wetland detection and classification, presents promising 

results in terms of accuracy, time, and robustness over previous studies. The results of the 

experiment are discussed in this section as well as a comparison with other conventional 

methods like basic IWO, GA, and PSO. 
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4.1 Model Performance Evaluation 

The experimentation of the proposed Q-IWO-optimized CNN was carried out using multi-

temporal SAR data derived from known wetland locations. The measures that were used 

during the evaluation of the model included the accuracy of the model, the precision, the recall 

of the model as well as the F1 score and the intersection over union (IoU). The experimental 

outcomes have been illustrated in table 4.1. 

Table 4.1: Performance Metrics for the Proposed Q-IWO CNN Model 
Metric Value 

Accuracy 90% 

Precision 88% 

Recall 91% 

F1-Score 89.50% 

IoU 86% 

The obtained results illustrated in Table 4.1 show that the proposed Q-IWO-optimized CNN 

reaches the recognition accuracy of 90 % and, therefore, is more effective than traditional 

optimization methods, which in turn constitutes evidence of the high classification 

performance of CNN for various types of wetlands. High Recall of 91% and IoU of 86% also 

endorse the aptitude of the model in detecting and categorizing wetlands, the spatial-spectral 

properties of which may be heterogeneous. 

 

Figure 4.1: Graphical Representation of Performance Metrics of Proposed Model 

The bar graph in Figure 4.1 illustrates the performance metrics of the proposed Quantum-

Inspired Invasive Weed Optimization (Q-IWO) technique. The findings also show that the use 

of the method yields an accuracy of 90%, precision at 88%, recall at 91%, F1 score at 89.50%, 

and IoU at 86%. They show relative efficiency to conventional optimization methods, the 

values being higher. The actual efficiency of each metric is plotted on the Y-axis while the X-

scale translates the measured value to a graphical size. It is clear from the above results that 

the proposed Q-IWO attains higher scores for all the metrics, proving that the methodology is 

superior to conventional methodologies in enhancing the detection of wetlands employing 

SAR data. 

4.2 Comparative Analysis with Previous Research 
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In order, to evaluate the efficiency of the proposed method we compared it with standard and 

classical machine learning and optimization techniques including SVM, Random Forest, basic 

IWO, PSO, and GA. The comparison thus done is based on the following aspects, the accuracy, 

speed of convergence, the computational cost, and the ability of the model to escape from the 

local optima illustrated in below table 4.2. 

Table 4.2: Comparative Analysis of Optimization Techniques 
Method Accuracy Convergence Speed Limitations 

SVM + SAR (Henderson & Lewis, 2008) 70-80% Slow Manual feature extraction 

Random Forests (Amani et al., 2019) 80-88% Moderate Sensitive to noise and imbalanced datasets 

Traditional IWO + CNN 85% Moderate Tends to get stuck in local optima 

PSO + CNN 87% Moderate Limited search capabilities 

GA + CNN 88% Slow Slower convergence, computationally expensive 

Proposed Q-IWO + CNN 90% Fast None observed 

Figure 4.2: Comparative Analysis of Traditional and Proposed Technique 

 

The above figure 4.2 focuses on the comparative analysis of the existing optimization methods 

against the proposed Q-IWO technique. The outcomes also demonstrate that using the 

integrating Q-IWO method provides higher performance in comparison with conventional 

approaches. The standard IWO, PSO, and GA reach 85%, 87%, and 88% accuracy respectively 

while the proposed Q-IWO gives a higher accuracy of 90%. On the X-axis the different 

optimization techniques are presented while the Y-axis shows their accuracy. This comparison 

shows that the Q-IWO provides better results than traditional approaches for the identification 

of the optimal parameters for wetland detection based on SAR data. 

4.3 Discussion 

As will be discussed and shown later in this study, the proposed Quantum-Informed Invasive 

Weed Optimization (Q-IWO) algorithm can indeed improve the performance of Convolutional 

Neural Networks (CNN) for wetland detection using SAR data. The proposed Q-IWO 

optimized model rendered 90% accuracy, which outcompeted traditional optimization 

techniques like IWO, PSO, and GA in terms of accuracy. The general enhancements include; 

In the context of wetland classification, some distinct characteristics that the model can handle 

well include; Noise in the SAR data and the variation in wetland-type space. Recall at 91% 
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and the IoU score of 86% of the overall authenticates the model’s efficacy in detection and the 

capability of generalizing different wetland classes in even complex environments. 

The optimization of the hyperparameters is perhaps the greatest contribution to the 

enhancement of the performance of the Q-IWO method. Since superposition and entanglement 

are the fundamental aspects of quantum computing the Q-IWO algorithm can overcome issues 

of local optima which is typical when using other optimization approaches. This improved 

search function not only promotes convergence but also increases classification as well. 

Furthermore, the deep learning model is supported by SAR data which is famous for its 

capability to detect moisture and surface roughness of the terrain and can yield abundant 

features for effective and precise wetland classification. This work sheds light on the use of 

integration of the optimal method and deep learning for monitoring the environment. 

 

5. Conclusion 

In conclusion, this study introduces a new method of identifying wetlands and their 

classification based on deep learning models such as CNN in conjunction with the IWO 

algorithm for SAR data. Hierarchy of quantum states is a highly efficient algorithm that is 

superior to traditional methods in terms of accuracy, convergence rate and computational cost 

is reasonable compared to the conventional techniques, the proposed Q-IWO algorithm. 

Hence, compared to other available algorithms the Q-IWO approach enhances the efficiency 

of monitoring the wetland defects in minimizing the convergence problem, and entrapment in 

local optima. In conjunction with the subject of satellite remote sensing, this research enhances 

the understanding of optimization approaches to enhance the effectiveness of environment 

monitoring systems. Possible future research can be extended to other ecosystems or 

improvement of the method proposed in the paper, Q-IWO algorithm. 
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