
Nanotechnology Perceptions  
ISSN 1660-6795 

www.nano-ntp.com  

 

Nanotechnology Perceptions 20 No. S14 (2024) 879-904                                 

Advanced Hybrid Feature Selection 

Using Harvest Algorithm, 

Convolutional Neural Networks and 

CFS  

Preethi K1, Dr.Ramakrishnan M2 

 
1Research Scholar, Department of Computer Applications, School of Information 

Technology, Madurai Kamaraj University, Madurai, Tamilnadu, India, 

mail2preethi06@gmail.com    
2Professor & Head, Department of Computer Applications, School of Information 

Technology, Madurai Kamaraj University, Madurai, Tamilnadu, India, 

ramkrishod@mkuniversity.org  

  

 
Predictive modeling and data analysis are severely hampered by the enormous dimensionality and 

complexity of medical datasets. Enhancing model performance, interpretability, and computing 

efficiency all depend on careful feature selection. In order to extract the most pertinent 

characteristics from the Medical Information Mart for Intensive Care III (MIMIC-III) dataset, this 

paper offers a novel hybrid feature selection method that combines the Harvest Algorithm, 

Convolutional Neural Networks (CNN), and Correlation-Based Feature Selection (CFS). De-

identified medical records, including diagnostic codes, vital signs, prescriptions, and other clinical 

observations, are all included in the MIMIC-III dataset. Our suggested approach makes use of CNN 

for deep feature extraction, the Harvest Algorithm for the first feature subset creation, and CFS for 

the final feature selection based on correlation measures. Test findings show that when compared 

to conventional feature selection techniques Random Forest with Information Gain Method (RF-

IG) and SVM with Recursive Feature Elimination (SVM-RFE), our hybrid strategy greatly 

increases the accuracy and efficiency of prediction models. The chosen characteristics demonstrate 

the potential of our approach in clinical decision support and medical data analysis by offering 

significant insights into important variables influencing patient outcomes.  

Keywords: Feature Selection, Hybrid Methods, Harvest Algorithm, Convolutional Neural 

Networks (CNN), Correlation-Based Feature Selection (CFS), MIMIC-III Dataset, Medical Data 

Analysis. 

 

 

1. Introduction 

The rapid expansion of data produced by diagnostic procedures, treatment plans, and medical 

records in the field of healthcare brings with it both potential and difficulties. High-

dimensional datasets with useful insights that might enhance patient outcomes and guide 

http://www.nano-ntp.com/


                                                       Advanced Hybrid Feature Selection Using… Preethi K et al. 880  
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

clinical decision-making include the Medical Information Mart for Intensive Care III (MIMIC-

III). To improve the performance of predictive models and guarantee interpretable outputs, 

however, the sheer volume and complexity of such data require effective and fast feature 

selection techniques.  

A crucial stage in the machine learning process is feature selection, particularly in the analysis 

of medical data, where the inclusion of redundant or unnecessary features can cause 

overfitting, raise computing costs, and impair model performance. Traditional feature 

selection methods, while useful, often struggle with the high dimensionality and intricate 

correlations inherent in medical datasets. Consequently, there is a growing need for advanced 

techniques that can handle these complexities and extract meaningful features that contribute 

to accurate and robust predictions [1][2]. In medical data analysis, feature selection is crucial 

for several reasons: 

✓ Improved Model Performance: Models can be made more accurate, precise, and 

durable by choosing the most essential elements. Overfitting can occur as a result of redundant 

or irrelevant features, which impair model performance. 

✓ Reduced Computational Complexity: Training models on high-dimensional datasets 

necessitates substantial computational resources. By reducing the dimensionality of the input, 

feature selection speeds up and improves the effectiveness of the learning process. 

✓ Enhanced Interpretability: Model interpretability is critical in medical research. In 

order to act on model outputs, clinicians and researchers must comprehend which aspects are 

impacting the forecasts they can trust. The process of feature selection aids in determining the 

important factors that influence the judgments made by the model. 

✓ Data Storage and Processing: Processing and storage of huge datasets with plenty of 

features might be difficult. By selecting features, the amount of data is decreased and becomes 

more manageable. 

✓ Noise Reduction: Oftentimes, noisy data in medical datasets can mask important 

patterns. Feature selection aids in noise reduction, producing insights that are more trustworthy 

and clear. 

A sizable collection of de-identified medical records gathered from critical care units is made 

available to the public through the Medical Information Mart for critical Care III (MIMIC-III) 

dataset [3][4]. It contains specific details including lab results, prescriptions, vital signs, and 

diagnostic codes. There are over 112,000 clinical reports in the collection, with an average of 

709.3 tokens and 1,159 top-level ICD-9 codes per report. Each report is given an average of 

7.6 ICD-9 codes, demonstrating the dataset's high dimensionality and complexity. The 

MIMIC-III dataset has a wide range of clinical characteristics and patient outcomes, which 

makes it a great resource for the development and testing of advanced feature selection 

techniques. 

In order to tackle the difficulties associated with feature selection in high-dimensional medical 

datasets, this research presents a novel hybrid approach that combines the advantages of 

Correlation-Based Feature Selection (CFS) [9] [10], Convolutional Neural Networks (CNN) 

[7] [8], and the Harvest Algorithm [5] [6]. To extract the most pertinent features from the 

MIMIC-III dataset, the suggested approach makes use of the correlation analysis of CFS, the 
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deep learning-based feature extraction capacity of CNNs, and the optimization skills of the 

Harvest Algorithm. 

The remainder of this paper is organized as follows ,In  Section 2, Literature Review  provides 

an overview of existing feature selection techniques, hybrid methods, and their applications in 

medical data analysis, along with a detailed discussion of the Harvest Algorithm, CNNs, and 

CFS. In Section 3: Discussed two kind of hybrid feature selection methods are Random Forest 

with Information Gain Method (RF-IG) and SVM with Recursive Feature Elimination (SVM-

RFE). In Section 4: Methodology describes the MIMIC-III dataset and the preprocessing steps, 

followed by a detailed explanation of the proposed hybrid feature selection method and its 

components. In Section 5: Experimental Setup outlines the experimental design, performance 

metrics, and implementation details used to evaluate the proposed method. Finally, In Section 

6: Conclusion and future research directions. 

 

2. Literature Review 

 Guyon, I. et al.'s [11] selection is a crucial machine learning preprocessing stage that seeks to 

pinpoint the most pertinent characteristics for model construction. Feature selection techniques 

fall into three primary categories: wrapper, embedding, and filter techniques. Filter Methods: 

These techniques assess a feature's importance by using statistical metrics like mutual 

information, correlation, or Chi-square scores. Despite their computational efficiency, they 

might not take into account feature interactions. Correlation coefficient, Chi-square, and 

information gain are a few examples. Wrapper Methods: These techniques assess feature 

subsets using a predictive model, and then choose the best set based on the model's output. 

Although they require more computing power, they are more accurate than filter techniques. 

Sequential feature selection and Recursive Feature Elimination (RFE) are two examples. 

Embedded Techniques: These techniques carry out feature selection while the model is being 

trained. Lasso (L1 regularization) and tree-based techniques (like Random Forest and Gradient 

Boosting) are two examples. In order to capitalize on their advantages and minimize their 

disadvantages, hybrid approaches integrate filter, wrapper, and embedded techniques. Usually, 

they consist of many steps: first, a filter method decreases the feature space; then, a wrapper 

or embedding approach is used for fine-tuning. Because hybrid approaches strike a balance 

between accuracy and computing economy, they are especially helpful for high-dimensional 

data. For example, Sun et al. (2019) [12] improved feature selection for high-dimensional 

biological data by combining filter techniques and genetic algorithms. 

A disease's diagnosis and prognosis can be aided by the identification of important biomarkers 

and clinical characteristics through feature selection. Liu et al. (2018) [13], for instance, 

employed feature selection strategies to find important features for diabetes mellitus 

prediction. Models can be customized to match the unique patient profile by choosing pertinent 

features, which will result in more individualized therapy suggestions.  

In order to discover the best answers, Fathian, M. et al. (2007) [14] employed the Harvest 

Algorithm, which replicates the process of growing and harvesting crops. It entails cycles of 

growth (improving solutions) and harvest (choosing the best solutions). An optimization 

method called the Harvest Algorithm was inspired by the harvesting of crops. Because of its 
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capacity to effectively explore the solution space, it has been used to a wide range of 

optimization issues.  The algorithm has been used in feature selection, scheduling, and other 

combinatorial optimization problems.  

LeCun et al., 2015 [15], CNNs are a type of deep learning models that are very good at 

extracting features from structured data, including photos and time-series data. CNNs are 

effective for complicated pattern identification because their convolutional layers 

automatically learn the spatial hierarchies of features from the input data. High-level features 

can be extracted from raw data using CNNs, and these features can then be included into 

conventional feature selection techniques. CNNs have been used, for instance, to extract 

features from medical imaging data in order to classify diseases. According to Hall, M. A. et 

al. (1999) [16], CFS determines the value of a subset of features by taking into account each 

feature's unique predictive capacity as well as the degree of redundancy among them. Feature 

subsets having minimal inter-correlation among themselves but strong correlation with the 

target variable are chosen by CFS. This guarantees that every feature chosen enriches the 

model with distinct data. CFS is extensively utilized in several fields, such as medical data 

analysis, where it aids in the discovery of useful and non-redundant features. 

  

3. Feature Selection Methods 

3.1. Information Gain Method 

 The Information Gain (IG) approach is a filter-based feature selection strategy that measures 

the decrease in entropy (uncertainty) of the target variable when a feature is utilized in order 

to assess the relevance of features. Given the large dimensionality and diversified nature of 

the data in the MIMIC-III dataset—which includes vital signs, drugs, laboratory measures, and 

diagnostic codes—IG can be very useful in this setting [17]. To apply information gain on the 

MIMIC-III dataset, follow these steps: 

Step 1: Preprocessing the Data  

- Handling Missing Data: Impute missing values using techniques like mean/mode 

imputation, or advanced methods like multiple imputations. Calculate mean imputation as, 

xi =
∑ xi
n
i=1

n
 

- Normalization: Normalize continuous variables to ensure they are on a comparable 

scale. Calculate as Min-Max Normalization, 

x′ =
x − xmin

xmax − xmin
 

- Encoding Categorical Variables: Convert categorical variables into numerical format 

using techniques like one-hot encoding.  

• Step 2: Calculation of Entropy  

- Entropy of the Target Variable (H(Y)): Calculate the entropy of the target variable 

(e.g., mortality) to measure its uncertainty. 
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H(Y) =  −∑ P(yi
n

i=1
)log2P(yi) 

• Step 3: Calculation of Conditional Entropy  

- Entropy of the Target Variable Given a Feature (H(Y|X)) : Calculate the conditional 

entropy of the target variable given each feature. 

H(Y|X) =  −∑ P(xi
n

i=1
)∑ P(xi|yi

n

i=1
)log2P(yi|xi) 

• Step 4: Information Gain Calculation  

- Information Gain (IG) : Calculate the IG for each feature by subtracting the 

conditional entropy from the entropy of the target variable. 

IG(X) = H(Y) - H(Y|X)  

• Step 5: Feature Ranking and Selection  

- Rank Features: Rank features based on their IG scores, with higher scores indicating 

greater relevance. 

- Select Top Features: Choose the top-ranked features for further modeling. 

Information Gain (IG) works on MIMIC-III, 

▪ The MIMIC-III dataset include patient information such as lab results, prescriptions, 

vital signs, and diagnostic codes. Numerous characteristics in every record can be utilized to 

forecast various outcomes, such as length of stay or patient mortality.  

▪ Establish the prediction goal variable, such as duration of stay (continuous outcome) 

or death (binary outcome).  

▪ Utilize data such as patient demographics, vital signs (blood pressure, heart rate), 

laboratory test results, prescribed drugs, and ICD-9 diagnosis codes. 

▪ Determine the IG for every feature in the dataset in relation to the target variable. To 

estimate patient mortality, compute the IG for each ICD-9 code, blood pressure, and heart rate, 

for instance. Sort the features according to their IG scores, then choose the top N features to 

use in the construction of prediction models. 

Example Workflow, 

✓ Entropy Calculation: Calculate the entropy of the target variable (e.g., patient 

mortality). 

- If mortality is binary (0 or 1), and P(mortality=1) = 0.2, P(mortality=0) = 0.8: 

H(Y) =− (0.2log20.2+0.8log20.8) 

✓ Conditional Entropy Calculation : Calculate the conditional entropy for a feature, such 

as heart rate: 
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- For each heart rate value (xj), calculate H (Y|X = xj), then average over all possible 

values of heart rate. 

✓ Information Gain : 

- Calculate IG for heart rate: 

- IG(Heart Rate) = H(Y) - H(Y | Heart Rate) 

Random Forest with Information Gain Method (RF-IG)  

Combining Random Forest with the Information Gain method for feature selection can 

leverage the strengths of both techniques to enhance predictive modeling, especially with 

complex and high-dimensional datasets like MIMIC-III. Here’s how these methods can work 

together: 

Information Gain (IG) is a measure of how much information a feature contributes to the 

prediction of the target variable. It quantifies the reduction in entropy (uncertainty) of the target 

variable given a feature. Features with higher IG are considered more informative [18][19]. 

Random Forest is an ensemble learning method that constructs multiple decision trees during 

training and outputs the mode of the classes (classification) or mean prediction (regression) of 

the individual trees [20][21]. 

• Steps in Random Forest: 

o Bootstrap Sampling: Randomly select samples with replacement from the dataset. 

o Feature Selection: Randomly select a subset of features at each split in the decision 

tree. 

o Tree Building: Build a decision tree using the selected samples and features. 

o Aggregation: Aggregate the predictions from all trees to produce the final prediction. 

3. Combining Information Gain with Random Forest 

1. Data Preprocessing: 

o Handle missing data, normalize continuous variables, and encode categorical 

variables as described previously. 

2. Initial Feature Selection Using Information Gain: 

o Calculate IG for each feature with respect to the target variable (e.g., mortality). 

o Rank features based on their IG scores and select the top features. This step reduces 

the dimensionality of the dataset and retains the most informative features. 

3. Random Forest Implementation: 

o Use the selected features from the IG method as input to the Random Forest algorithm. 

o Train the Random Forest model using the selected features. 

o Evaluate the performance of the Random Forest model using appropriate metrics such 

as accuracy, precision, recall, and AUC-ROC. 
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Advantages of Combining Information Gain with Random Forest are Reduces the number of 

features, mitigating the curse of dimensionality and improving computational efficiency. 

Focuses on the most informative features, potentially improving the predictive accuracy of the 

Random Forest model. Enhances interpretability by highlighting the most important features 

influencing the target variable. 

3.2. Recursive Feature Elimination (RFE)  

 Recursive feature elimination, or RFE, is a feature selection technique that works by 

iteratively analyzing progressively smaller subsets of features in order to choose features. In 

order to get the required number of features, it fits a model and eliminates the least significant 

feature [22]. RFE improves the interpretability and efficacy of predictive models by helping 

to find the most pertinent features for clinical outcome prediction when applied to the MIMIC-

III dataset. How to Use RFE,  

1. Data Preprocessing: 

o Handle Missing Data: Impute missing values using methods such as mean/mode 

imputation or more advanced techniques like multiple imputations. 

o Normalization: Normalize continuous variables to ensure they are on a 

comparable scale. 

o Encoding Categorical Variables: Convert categorical variables into numerical 

format using techniques like one-hot encoding. 

2. Initial Model Training: 

o Select a machine learning model to use with RFE. Common choices include 

Support Vector Machines (SVM), Logistic Regression, and Random Forest. 

o Train the initial model using all available features. 

3. Recursive Elimination Process: 

o Feature Ranking: Rank all the features based on their importance scores from the 

model. 

o Feature Elimination: Remove the least important feature(s) and re-train the model. 

o Repeat: Continue this process iteratively, removing features and retraining the 

model, until the desired number of features is achieved. 

SVM with Recursive Feature Elimination (SVM-RFE) 

Combining Support Vector Machine (SVM) with Recursive Feature Elimination (RFE) is a 

powerful approach for feature selection, especially for high-dimensional datasets like MIMIC-

III. This combination leverages the predictive power of SVM and the systematic feature 

reduction process of RFE to enhance model performance and interpretability. 

Recursive Feature Elimination (RFE) is a feature selection technique that recursively removes 

the least important features and builds the model on the remaining features. It ranks the 

features based on their importance to the model's performance [23] [24]. 
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Support Vector Machine (SVM) is a supervised learning model used for classification and 

regression tasks. It works by finding the hyperplane that best separates the classes in the feature 

space [25] [26]. 

Detailed Workflow for MIMIC-III Dataset 

1. Dataset Preparation: 

o Target Variable: Define the target variable (e.g., patient mortality or length of 

stay). 

o Feature Set: Include features such as patient demographics, vital signs, laboratory 

test results, medications administered, and ICD-9 diagnostic codes. 

2. Example: Applying SVM with RFE: 

o Step 1: Normalize the continuous variables in the dataset.  

x′ =
x − xmin

xmax − xmin
 

o Step 2: Encode categorical variables using one-hot encoding. 

o Step 3: Initialize the SVM model (e.g., linear SVM). 

o Step 4: Use RFE with the SVM model to fit the data and rank features. 

o Step 5: Remove the least important feature and re-train the SVM model. 

o Step 6: Repeat the process until the desired number of features is selected. 

3. Model Performance Evaluation: 

o Evaluate the model using the selected features on the validation set. 

o Use metrics such as accuracy, precision, recall, F1 score, and AUC-ROC to 

compare performance. 

Advantages of Using SVM with RFE on MIMIC-III Dataset are RFE effectively reduces the 

number of features, which helps in managing the high-dimensional nature of the MIMIC-III 

dataset. By selecting the most relevant features, RFE improves the SVM model’s predictive 

accuracy. Focusing on a smaller set of important features makes the model more interpretable 

and actionable for clinical decision-making.  

 

4. Methodology 

4.1. MIMIC-III Dataset 

The Medical Information Mart for Intensive Care III (MIMIC-III) is a comprehensive, publicly 

available dataset containing de-identified health-related data associated with over 40,000 

patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between 

2001 and 2012. This dataset is widely used in clinical research due to its richness and depth of 

information [27]. Key Components of the MIMIC-III Dataset are, 
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• Patient Demographics: Ranges from neonates to elderly patients, providing a diverse 

population sample , Includes male and female patients and Detailed records of patient ethnicity 

to support diverse population studies. 

• Clinical Measurements: Regularly recorded vital signs such as heart rate, blood 

pressure, respiratory rate, and temperature. Comprehensive lab test results including blood 

tests, electrolyte levels, blood gas measurements, and more. Information on medications 

administered, dosages, and timing. 

• Observations and Notes: Detailed notes and observations made by healthcare 

providers during patient care. Includes assessments, interventions, and patient responses 

recorded by nursing staff. Summarized reports of patient condition, treatments administered, 

and instructions at the time of discharge. 

• Procedures and Diagnoses :  ICD-9 Codes - Detailed diagnostic and procedural codes 

(International Classification of Diseases, Ninth Revision) including top-level codes and sub-

codes for specific details. Detailed records of procedures performed during ICU stays, such as 

surgeries, intubations, and catheterizations. 

• Temporal Data: Each clinical measurement, medication administration, and procedure 

is time-stamped, allowing for detailed temporal analysis. Duration of patient stays in the ICU 

and hospital. 

• Outcomes: Total duration of hospital admission, Duration of ICU admission and 

Includes information on in-hospital mortality and survival status post-discharge. 

• Additional Data: Records of fluid intake and output, which are crucial for managing 

critically ill patients. Textual reports of imaging studies such as X-rays, CT scans, and MRIs. 

Data Characteristics 

▪ Volume: The dataset contains information on over 58,000 hospital admissions for 

more than 40,000 unique patients.  

▪ Granularity: Average clinical report length is approximately 709.3 tokens, and each 

report is typically associated with about 7.6 ICD-9 codes. 

▪ Diversity: The dataset covers a wide range of medical conditions and treatments, 

providing a broad spectrum of clinical scenarios. 

▪ Longitudinal Nature: The dataset includes time-series data, enabling longitudinal 

studies of patient progress and outcomes. 

4.2. Preprocessing Steps for the MIMIC-III Dataset 

Preprocessing the MIMIC-III dataset is crucial to ensure that the data is clean, consistent, and 

suitable for analysis. The following steps outline a comprehensive preprocessing pipeline, 

addressing common challenges such as missing data, normalization, and data transformation. 

Step 1: Handling Missing Data 

Missing data is a prevalent issue in medical datasets and needs to be addressed to avoid biases 

and inaccuracies in the analysis. 
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▪ Identify Missing Data: Determine the extent and pattern of missing data by calculating 

the percentage of missing values for each feature. 

▪ Imputation : 

o Simple Imputation: Replace missing values with mean, median, or mode for numerical 

features, and with the most frequent category for categorical features. 

Mean imputation replaces missing values with the mean of the non-missing values for that 

feature.  For a feature X with missing values, the imputed value for Xiis calculated as: 

𝑋𝑖 = {

𝑋𝑖     𝑖𝑓 𝑋𝑖𝑖𝑠 𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

1

𝑁
∑ 𝑋𝑗

𝑁

𝑗=1
   𝑖𝑓𝑋𝑖𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

 

Where, N is the number of non-missing values in the feature X. 

Median imputation replaces missing values with the median of the non-missing values for that 

feature. 

𝑋𝑖 = {
𝑋𝑖    𝑖𝑓 𝑋𝑖𝑖𝑠 𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)   𝑖𝑓𝑋𝑖𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔
 

Where, median(X) is the median of the non-missing values in the feature X. 

Mode imputation replaces missing values with the mode (most frequent value) of the non-

missing values for that feature. 

𝑋𝑖 = {
𝑋𝑖    𝑖𝑓 𝑋𝑖𝑖𝑠 𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔
𝑚𝑜𝑑𝑒(𝑋)   𝑖𝑓𝑋𝑖𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

 

Where, mode(X) is the mode of the non-missing values in the feature X. 

Simple imputation is a straightforward approach to handle missing data by substituting missing 

values with the mean, median, or mode of the existing data. These methods are easy to 

implement and computationally efficient but may not always capture the complexity of the 

data. For MIMIC-III datasets, advanced imputation techniques may be more appropriate. 

o Advanced Imputation: Use techniques like K-nearest neighbors (KNN) imputation, 

multivariate imputation by chained equations (MICE), or matrix factorization for more 

complex scenarios. 

K-nearest neighbors (KNN) Imputation, 

𝑋𝑖 =
1

𝑘
∑ 𝑋𝑗

𝑗∈𝐾𝑁𝑁(𝑖)

 

Where, KNN (i) are the indices of the k-nearest neighbors of instance iii. 

o Exclude Features/Instances: If a feature or instance has a high percentage of missing 

values (e.g., more than 50%), consider excluding it from the analysis. 

o Indicator Variables: Create binary indicator variables to mark instances with missing 

values, allowing models to account for the presence of missing data. 
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Step 2: Normalization 

Normalization ensures that features are on a similar scale, which is important for many 

machine learning algorithms. 

▪ Min-Max Scaling: Scale numerical features to a specified range, typically [0, 1]. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 

▪ Z-Score Standardization: Transform features to have zero mean and unit variance. 

  

𝑋𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑋 −  𝜇

𝜎
 

▪ Log Transformation: Apply log transformation to skewed features to reduce the 

impact of outliers. 

𝑋𝑙𝑜𝑔 = 𝑙𝑜𝑔 (𝑋 + 1) 

Step 3: Data Transformation and Feature Engineering 

Enhance the dataset by creating new features and transforming existing ones. 

▪ Temporal Alignment: Align time-stamped events to a common timeline to facilitate 

time-series analysis. For example, resample data to regular intervals (e.g., hourly or daily).let 

Xt be the value at time t. Resample to h-hour intervals 

𝑋ℎ =
1

ℎ
∑𝑋𝑡

ℎ=1

𝑡=0

 

▪ Aggregate Features: Create aggregate features such as mean, median, and variance for 

time-series data over specified windows (e.g., 24-hour periods). 

Mean over a window of size w:  

𝑋𝑚𝑒𝑎𝑛 =
1

𝑤
∑𝑋𝑖

𝑤

𝑖=1

 

Variance over a window of size w:  

𝑋𝑣𝑎𝑟 =
1

𝑤
∑(𝑋𝑖

𝑤

𝑖=1

− 𝑋) 2 

Where, X is the mean of X over the window. 

▪ Text Processing : 

▪ Tokenization: Split text data (e.g., clinical notes) into tokens (words or phrases). 

▪ Stopword Removal: Remove common words that do not contribute meaningful 

information. 
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▪ Stemming/Lemmatization: Reduce words to their base or root form. 

o Vectorization: Convert text data into numerical representations using techniques like 

TF-IDF (Term Frequency-Inverse Document Frequency) or word embeddings. 

𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑)𝑥 𝑙𝑜𝑔 (
𝑁

𝑑𝑓(𝑡)
) 

Where, tf(t,d) is the term frequency of term t in document d, N is the total number of 

documents, and df(t) is the document frequency of term t. 

▪ ICD-9 Code Mapping : Map ICD-9 codes to higher-level categories or groupings to 

reduce dimensionality and simplify analysis. 

Step 4: Data Integration and Consistency 

Ensure that data from different sources or tables within the MIMIC-III dataset are integrated 

correctly. 

▪ Join Tables: Use unique identifiers (e.g., patient IDs, admission IDs) to join tables and 

consolidate data from different sources. 

dfjoined=df1.merge(df2,on=id) 

Where, id is the unique identifier (e.g., patient ID). 

▪ Check Consistency: Verify that data is consistent across different tables (e.g., ensure 

that dates and times match between related records). 

Step 5: Handling Categorical Data 

Convert categorical variables into a format suitable for machine learning algorithms. 

▪ One-Hot Encoding: Convert categorical variables into binary vectors. Convert 

categorical feature X with categories {A,B,C} into binary vectors: 

𝑋 = {

(1,0,0)  𝑖𝑓 𝑋 = 𝐴

(0,1,0) 𝑖𝑓 𝑋 = 𝐵
(0,0,1) 𝑖𝑓 𝑋 = 𝐶

 

For example, a categorical feature with three categories (A, B, C) can be transformed into three 

binary features. 

▪ Label Encoding: Assign a unique integer to each category. This method is suitable for 

ordinal categorical features. 

𝑋 =  {

1  𝑖𝑓 𝑋 = 𝐴
2  𝑖𝑓 𝑋 = 𝐵
3 𝑖𝑓 𝑋 = 𝐶

 

Step 6: Data Sampling 

Address class imbalance and prepare data subsets for training and evaluation. 

▪ Class Balancing : 
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▪ Oversampling: Increase the number of instances in the minority class (e.g., using 

techniques like SMOTE - Synthetic Minority Over-sampling Technique). 

▪ Undersampling : Reduce the number of instances in the majority class. 

▪ Train-Test Split: Split the data into training and testing sets, ensuring that the split is 

stratified to maintain class distribution. 

train_test_split(X,y,test_size=0.2,stratify=y) 

▪ Cross-Validation: Use k-fold cross-validation to ensure robust evaluation of the 

model. 

CV_indices=KFold(n_splits=k,shuffle=True,random_state=seed) 

Step 7: Dimensionality Reduction 

Reduce the feature space to enhance model performance and reduce computational 

complexity. 

• Principal Component Analysis (PCA): Transform features into a lower-dimensional 

space while preserving as much variance as possible. 

Xpca=XW 

 Where, W is the matrix of principal components. 

• Feature Selection: Apply techniques such as recursive feature elimination (RFE) or 

mutual information to select the most relevant features. Iteratively remove the least important 

features based on model performance:   

RFE(estimator,n_features_to_select) 

Preprocessing the MIMIC-III dataset involves multiple steps to ensure that the data is clean, 

consistent, and ready for analysis. Handling missing data, normalization, data transformation, 

and feature engineering are essential to prepare the dataset for effective feature selection and 

predictive modeling. By following these preprocessing steps, researchers can extract 

meaningful insights and build robust models from the MIMIC-III dataset. 

 

5. Proposed Hybrid Feature Selection Method 

In this section, we propose a hybrid feature selection method that combines the Harvest 

Algorithm (HA) with Convolutional Neural Networks (CNNs) and Correlation-Based Feature 

Selection (CFS) to enhance the performance of machine learning models on the MIMIC-III 

dataset. The hybrid approach leverages the strengths of both evolutionary algorithms and deep 

learning while utilizing statistical correlation measures for robust feature selection. 

The proposed method involves three key stages: 

1. Initial Feature Selection using Harvest Algorithm (HA)  

2. Feature Extraction using Convolutional Neural Networks (CNNs)  

3. Refinement using Correlation-Based Feature Selection (CFS)  
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5.1. INITIAL FEATURE SELECTION USING HARVEST ALGORITHM (HA) 

The Harvest Algorithm (HA) is an evolutionary algorithm inspired by natural selection 

processes. It is particularly effective for exploring large feature spaces and identifying subsets 

of features that are most relevant for a specific predictive task. Below is a detailed description 

of the steps involved in using HA for initial feature selection, including necessary formulas. 

Steps Involved in HA for Feature Selection 

Step 1. Initialization 

The initial step involves generating a random population of feature subsets. Each subset can 

be represented as a binary string, where each bit indicates whether a particular feature is 

included (1) or excluded (0). 

Example: For a dataset with 5 features [X1,X2,X3,X4,X5], a possible initial population could 

be: 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

{
 
 

 
 
[1,0,1,0,1]

[0,1,1,1,0]
[1,1,0,0,1]

…
…
…

 

Step 2. Evaluation 

Each feature subset in the population is evaluated using a fitness function, which typically 

involves training a machine learning model and measuring its performance (e.g., classification 

accuracy). 

Fitness Function: 

Fitness(S) =A(S) 

Where, A(S) is the classification accuracy of a model trained on the feature subset S. 

Example: If subset [1,0,1,0,1][1, 0, 1, 0, 1][1,0,1,0,1] achieves 85% accuracy, its fitness score 

is 0.85. 

3. Selection 

Select the best-performing feature subsets based on their fitness scores. This can be done using 

methods like roulette wheel selection, tournament selection, or rank-based selection. 

Roulette Wheel Selection: 

𝑃(𝑆𝑖) =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑖)

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑗)
𝑁
𝑗=1

 

Where, P (Si) is the probability of selecting subset Siand N is the population size. 

Example: For a population of size 3 with fitness scores [0.85,0.75,0.90], the selection 

probabilities would be: 



893 Preethi K et al. Advanced Hybrid Feature Selection Using...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

𝑃(𝑆1) =
0.85

0.85 + 0.75 + 0.90
≈ 0.33 

 

𝑃(𝑆2) =
0.75

0.85 + 0.75 + 0.90
≈ 0.29 

 

𝑃(𝑆3) =
0.90

0.85 + 0.75 + 0.90
≈ 0.35 

4. Crossover and Mutation 

Crossover: Combine pairs of selected feature subsets to create new subsets. This is typically 

done using single-point or multi-point crossover. 

Single-Point Crossover:  

Given two parent subsets P1=[1,0,1,0,1] and P2=[0,1,0,1,0], a crossover point is chosen (e.g., 

after the second bit), resulting in offspring O1=[1,0,0,1,0] and O2=[0,1,1,0,1].  

Mutation: Introduce random changes to individual bits in the feature subsets to maintain 

diversity in the population. 

Mutation Operation: For a given subset S=[1,0,1,0,1] and a mutation rate p, each bit has a 

probability p of being flipped. If p=0.1, a bit in S might change from 1 to 0 or from 0 to 1. 

Example:  

Original subset: S=[1,0,1,0,1]  

Mutated subset: S=[1,0,0,0,1] (third bit flipped from 1 to 0) 

Step 5. Iteration 

Repeat the evaluation, selection, and crossover/mutation steps for several generations until 

convergence or a predefined number of iterations is reached. 

5.2. FEATURE EXTRACTION USING CONVOLUTIONAL NEURAL NETWORKS 

(CNNS) 

Convolutional Neural Networks (CNNs) are highly effective for feature extraction, especially 

when dealing with high-dimensional data. In the context of the MIMIC-III dataset, CNNs can 

be utilized to extract high-level, abstract features that capture complex patterns and 

interactions in the data. Below is a detailed description of the steps involved in feature 

extraction using CNNs. Steps Involved in Feature Extraction using CNNs are, 

Step 1. Preprocessing 

Before feeding the data into a CNN, it must be preprocessed to ensure compatibility with the 

network's requirements. 

 Normalization: Scale the data to a standard range, typically [0, 1] or [-1, 1]. 
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𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

Reshaping: Reshape the data to fit the input shape expected by the CNN. For instance, if the 

input data is 1-dimensional, it might need to be reshaped into a 2D or 3D format. 

Example, If the input data consists of time-series measurements for each patient, it might be 

reshaped from  (nsamples, nfeatures) to  (nsamples, nfeatures, 1). 

Step 2. Defining the CNN Architecture 

Define a CNN architecture that suits the data and the problem at hand. A typical CNN consists 

of several types of layers: convolutional layers, pooling layers, and fully connected layers. For  

Example Architecture : 

✓ Input Layer: Accepts the preprocessed data. 

✓ Convolutional Layer: Applies convolution operations to extract local features. 

✓ Pooling Layer: Reduces the dimensionality of the feature maps. 

✓ Fully Connected Layer: Combines the extracted features to produce the final output. 

Convolution Operation: 

(𝑋 ∗𝑊)𝑖,𝑗 =∑∑𝑋𝑖+𝑚,𝑗+𝑛
𝑛𝑚

𝑊𝑚,𝑛 

Where, X is the input feature map, W is the convolution filter, and (i, j) are the spatial 

dimensions. 

Activation Function (ReLU) : 

f(x) = max(0, x) 

Pooling Operation (Max Pooling) : 

𝑃𝑖,𝑗 = 𝑚𝑎𝑥𝑚,𝑛𝑋𝑖+𝑚,𝑗+𝑛 

Where,  P  is the pooled feature map. 

Step 3. Training the CNN 

Train the CNN on the preprocessed data to learn feature representations. This involves feeding 

the data into the network, performing forward and backward propagation, and updating the 

network's weights based on the loss. 

Step 4. Feature Extraction 

Once the CNN is trained, use it to extract features from the data. Typically, features are 

extracted from one of the intermediate layers (e.g., the last convolutional layer or the first fully 

connected layer). 

Step 5. Using Extracted Features for Further Analysis 



895 Preethi K et al. Advanced Hybrid Feature Selection Using...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

The extracted features can be used for various purposes, such as training other machine 

learning models or further feature selection processes. 

By using CNNs for feature extraction, we can capture complex, high-level features from the 

MIMIC-III dataset. These features are likely to be more informative and discriminative than 

the original raw features, leading to improved performance in downstream tasks. This step in 

the hybrid feature selection method ensures that the subsequent refinement process starts with 

a strong set of candidate features. 

5.3. REFINEMENT USING CORRELATION-BASED FEATURE SELECTION (CFS) 

Correlation-Based Feature Selection (CFS) is a filter-based feature selection method that 

evaluates the worth of a subset of features by considering the individual predictive ability of 

each feature along with the degree of redundancy among them. The goal is to select subsets 

where features are highly correlated with the target variable but uncorrelated with each other. 

This step refines the feature set obtained from the CNN, enhancing its relevance and reducing 

redundancy. 

Step 1. Calculate Feature-Target Correlation 

Compute the correlation coefficient between each feature and the target variable. For 

continuous target variables, Pearson’s correlation is commonly used. For categorical target 

variables, other measures like point-biserial correlation may be applied. 

𝑟𝑐𝑓 = 
∑(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)

√∑(𝑋𝑖 − 𝑋)
2∑(𝑌𝑖 − 𝑌)

2
 

Where Xi is the feature value, Yi is the target value, X is the mean of the feature, and Y is the 

mean of the target. 

Example, For feature  X  and target  Y  with values  X = [1, 2, 3, 4]  and  Y = [2, 3, 4, 5] : 

 

Step 2. Calculate Feature-Feature Correlation 

Compute the correlation coefficients between each pair of features to assess redundancy. High 

correlation between features indicates redundancy. 

𝑟𝑐𝑓 = 
∑(𝑋𝑖 − 𝑋)(𝑍𝑖 − 𝑍)

√∑(𝑋𝑖 − 𝑋)
2∑(𝑍𝑖 − 𝑍)

2
 

Where, Xi and Zi are values of two different features, X and Z are their means. 

Example, For features X = [1, 2, 3, 4] and Z = [2, 4, 6, 8]: 

 

Step 3: Evaluate Feature Subsets 

Evaluate the merit of feature subsets using a correlation-based merit function. The merit of a 
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feature subset S is high if the features in S have high correlation with the target and low inter-

correlation among themselves. Merit Function, 

𝑀𝑒𝑟𝑖𝑡(𝑆) =  
𝑘𝑟𝑐𝑓

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓
 

Where, k is the number of features in subset S, rcf is the average feature-target correlation, rff 

 is the average feature-feature inter-correlation. 

Example, For a subset S = [X1, X2]  with  k = 2 , rcf= 0.8 , and rff = 0.2: 

𝑀𝑒𝑟𝑖𝑡(𝑆) =  
2.0.8

√2 + 2(2 − 1). 0.2
=
1.6

√2.4
≈ 1.03 

Step 4: Select the Optimal Feature Subset 

Select the feature subset that maximizes the merit function. This involves evaluating multiple 

subsets and choosing the one with the highest merit score. 

Algorithm: 

• Generate candidate feature subsets. 

• Calculate the merit score for each subset. 

• Select the subset with the highest merit score. 

Example, Consider three subsets with merit scores [0.95, 1.03, 0.89] . The subset with the 

merit score of 1.03 is selected as the optimal subset. 

The refinement step using Correlation-Based Feature Selection (CFS) enhances the initial set 

of features obtained from CNNs by ensuring that the selected features are highly relevant to 

the target variable and minimally redundant. This leads to more efficient and effective feature 

sets for downstream machine learning tasks, improving the overall performance of the 

predictive model. 
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Figure 1: The flow chart of the proposed method 

The proposed hybrid feature selection method effectively addresses the challenges of high-

dimensional medical data analysis by combining the Harvest Algorithm (HA), Convolutional 

Neural Networks (CNNs), and Correlation-Based Feature Selection (CFS). This integrated 

approach leverages the strengths of each technique to identify the most relevant and non-

redundant features from the extensive MIMIC-III dataset, which includes a wide range of 

clinical data such as vital signs, medications, laboratory measurements, and diagnostic codes. 

Figure 1 shown flowchart of proposed method. 

The process begins with initial feature selection using the Harvest Algorithm. HA is an 

evolutionary algorithm that explores the feature space by generating a population of random 

feature subsets. These subsets are evaluated using a simple machine learning model, such as a 

Random Forest classifier, to assess their predictive performance. The best-performing subsets 

are selected and undergo crossover and mutation to create new feature subsets, iterating over 
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several generations until convergence. This step effectively reduces the dimensionality of the 

data by selecting a preliminary set of potentially relevant features. Next, the selected features 

from the HA are processed using Convolutional Neural Networks for deep feature extraction. 

CNNs are particularly adept at capturing high-level, abstract features from data. The selected 

features are normalized and reshaped to fit the input requirements of the CNN. The CNN is 

then trained on the preprocessed data to learn intricate patterns and representations. Features 

are extracted from an intermediate layer of the trained CNN, resulting in a set of high-level 

features that capture complex relationships within the data. The final step involves refining the 

features using Correlation-Based Feature Selection (CFS). CFS evaluates the merit of feature 

subsets by considering both their individual predictive abilities and the redundancy among 

them. It calculates the correlation between each feature and the target variable, as well as the 

correlations between pairs of features. The merit of a subset is determined by a function that 

maximizes relevance to the target while minimizing redundancy. By applying CFS, the method 

ensures that the final set of features is both highly relevant to the predictive task and minimally 

redundant, enhancing the overall efficiency and effectiveness of the feature selection process. 

Applied to the MIMIC-III dataset, this hybrid approach efficiently navigates the high-

dimensional and complex nature of the data. The initial reduction of features through HA, 

followed by the deep extraction of meaningful features via CNNs, and the final refinement 

using CFS, ensures that the selected features provide robust predictive power for machine 

learning models. This results in improved model performance for various clinical tasks, such 

as disease diagnosis, patient outcome prediction, and treatment recommendations, ultimately 

contributing to better healthcare decision-making and patient care. 

 

6. Experimental Results 

6.1. Experimental Design 

The experimental setup for the proposed research was conducted on a system running 

Windows 7, equipped with 4GB RAM and a 1TB hard disk. The experiments were 

programmed in Python, utilizing libraries such as Scikit-learn, TensorFlow/Keras, Pandas, 

NumPy, and Matplotlib. 

The dataset used was the Medical Information Mart for Intensive Care III (MIMIC-III) dataset. 

This dataset contains 112,000 clinical reports, with an average length of 709.3 tokens. It 

includes 1,159 top-level ICD-9 codes, with each report assigned to an average of 7.6 codes. 

The data comprises various types, including vital signs, medications, lab measurements, 

observations and notes, fluid balance, procedure codes, diagnostic codes, imaging reports, 

hospital length of stay, and survival data. 

For the feature selection and classification models, specific hyperparameters were set. For the 

Random Forest with Information Gain (RF-IG) method, the number of trees was set to 100, 

with no maximum depth (allowing nodes to expand until all leaves are pure), and a minimum 

samples split of 2. The SVM with Recursive Feature Elimination (SVM-RFE) method used a 

linear kernel, a regularization parameter (C) of 1.0, and the number of features to select was 

determined based on cross-validation. The proposed hybrid method, which integrates the 

Harvest Algorithm (HA) with Convolutional Neural Networks (CNNs) and Correlation-Based 
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Feature Selection (CFS), had specific configurations. The CNN model consisted of 5 layers, 

including 2 convolutional layers, 2 pooling layers, and 1 fully connected layer, with ReLU as 

the activation function, Adam as the optimizer, and a learning rate of 0.001. The CFS step 

involved setting a threshold for correlation to refine the feature set. 

To evaluate the models' performance, various metrics were used, including accuracy (the ratio 

of correctly predicted instances to the total instances), precision (the ratio of correctly 

predicted positive observations to the total predicted positives), recall (the ratio of correctly 

predicted positive observations to all observations in the actual class), F1 score (the weighted 

average of precision and recall), and AUC-ROC (Area Under the Receiver Operating 

Characteristic Curve). 

6.2. Performance Evaluation  

We employed three distinct techniques in our feature selection pipeline: Random Forest with 

Information Gain (RF-IG), SVM with Recursive Feature Elimination (SVM-RFE), and our 

proposed Hybrid Method (HA-CNN-CFS). Each method aimed initially to identify the top 15 

features from our analytic dataset. Subsequently, our objective was to determine the optimal 

K value for enhanced pattern detection, exploring values of K = {4, 8, 12, 16, 20, 24} across 

the methods. Table 1 displays the top 15 features selected by each technique in our pipeline. 

The results indicate strong performance from both classifiers, with seven features consistently 

appearing in the top 15 selected by the Hybrid Method (HA-CNN-CFS) independently. 

Table 1: Top 15 features selected by the feature selection pipeline 

RF-IG liver disease, coagulopathy, congestive heart failure, alcohol abuse, angus, hypertension, 

SpO2 Mean, TempC Mean, DiasBP Mean, RespRate Mean, fluid electrolyte, cardiac 
arrhythmias, vent first hour, deficiency anemias 

SVM-RFE SysBP Meanplatelet first icu intime, marital status, angus, ethnicity, EndoTrachFlag, 

diabetes complicated, chronic pulmonary, day name icu intime, SpO2 Mean, DiasBP 

Mean. 

Proposed Hybrid Method (HA-

CNN-CFS) 

liver disease, EndoTrachFlag, DiasBP Mean, day name icu intime, TempC Mean, 

diabetes complicated , vent first hour, peripheral vascular disease, SpO2 Mean, marital 

status, RespRate Mean, angus, ethnicity, 

Precision: Precision measures the ratio of correctly predicted positive observations to the total 

predicted positives. It is an indicator of the quality of the positive predictions. 

Precision = TP/ (TP+FP) 

Where TP is the number of true positives and FP is the number of false positives. 

Recall: Recall (or Sensitivity) measures the ratio of correctly predicted positive observations 

to all the observations in the actual class. It shows how well the model can identify positive 

instances. 

Recall = TP/ (TP+FN) 

Where TP is the number of true positives and FN is the number of false negatives. 

F1 Score: The F1 score is the weighted average of Precision and Recall. It is useful for 

evaluating the balance between precision and recall. 
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F1Score = 2⋅(Precision⋅Recall) / Precision+Recall 

Accuracy: Accuracy measures the ratio of correctly predicted instances to the total instances. 

It is a general measure of how well the model is performing. 

Accuracy = (TP+TN) / (TP+TN+FP+FN) 

Where TP is the number of true positives, TN is the number of true negatives, FP is the number 

of false positives, and FN is the number of false negatives. 

AUC-ROC (Area under the Receiver Operating Characteristic Curve):  The AUC-ROC metric 

evaluates the performance of a binary classifier by plotting the true positive rate (TPR) against 

the false positive rate (FPR) at various threshold settings. The area under this curve represents 

the model's ability to distinguish between positive and negative classes.  

The ROC curve is created by plotting:  

TPR= TP / (TP+FN) against FPR= FP/(FP+TN) 

The AUC value ranges from 0 to 1, with a higher value indicating better model performance. 

Table 2: Feature Selection Methods with K = 15 (Recall, Precision, F-Score and AUC-

ROC). 

Feature Selection 

Methods 

Recall Precisio

n 

F- 

Score 

AUC-

ROC 

RF-IG 0.6859 0.6524 0.6958 0.4578 

SVM-RFE 0.7154 0.7231 0.7698 0.6689 

HA-CNN-CFS 0.8215 0.8465 0.8693 0.8965 

The Precision, Recall, F1-Score of the RF-IG, SVM-RFE are shown in Figure 2 and Table 2. 

The Random Forest algorithm is known for its robustness and ability to handle large datasets 

with higher dimensionality. The use of Information Gain as a criterion for feature selection 

helps in identifying the most relevant features that contribute significantly to the prediction. 

This method benefits from ensemble learning, reducing the variance and avoiding overfitting. 

Additionally, the randomness introduced in feature selection helps in capturing diverse aspects 

of the data, leading to higher precision and recall. The AUC-ROC for RF-IG can be high due 

to the ensemble nature of Random Forests, which combines multiple decision trees to improve 

prediction accuracy and robustness. This method benefits from reduced variance and increased 

generalization.  SVM-RFE is effective in ranking features based on their importance and 

iteratively eliminating the least significant ones. This method is particularly good at handling 

high-dimensional data and finding the optimal subset of features that maximizes the 

classification accuracy. The use of a linear kernel makes the computation efficient, while the 

regularization parameter ensures that the model generalizes well to unseen data. The RFE 

process helps in improving the precision and recall by focusing on the most relevant features. 

The AUC-ROC for SVM-RFE is generally strong due to the effectiveness of SVMs in finding 

the optimal hyperplane that maximizes the margin between classes. RFE further refines the 

feature set to enhance model performance.   
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Figure  2: Feature Selection Methods in K = 15 (Recall, Precision, F-Score and AUC-ROC). 

 

Figure 3: Accuracy of Feature Selection Methods in K = 15 

The proposed Hybrid Method (HA-CNN-CFS) outperforms for precision, recall, F1 score and 

accuracy with traditional methods such as Random Forest with Information Gain (RF-IG) and 

SVM with Recursive Feature Elimination (SVM-RFE) due to its comprehensive approach to 

feature selection and extraction. The Accuracy of the RF-IG, SVM-RFE and HA-CNN-CFS 

were 86.87, 91.58 and 96.78 respectively, difference shown in Figure 3. The Harvest 

Algorithm efficiently narrows down the vast feature space by selecting the most relevant 

features initially. This step helps in reducing the computational complexity and focusing on 

more meaningful data. Feature Extraction with Convolutional Neural Networks (CNNs) is 

powerful in capturing complex patterns and representations in high-dimensional data. By 

utilizing CNNs, the method extracts deep features that are likely to be more informative and 

discriminative compared to shallow features used in traditional methods. Refinement with 

Correlation-Based Feature Selection (CFS) are The final step of using CFS helps in 

eliminating redundant features that might have been introduced during feature extraction. This 

ensures that the final feature set used for classification is not only informative but also non-

redundant, enhancing the model's performance. The AUC-ROC for the HA-CNN-CFS method 

is expected to be the highest among the three methods due to its comprehensive feature 

selection and extraction process.  The AUC-ROC of the RF-IG, SVM-RFE and HA-CNN-

CFS were 0.4578, 0.6689 and 0.8965 respectively. 
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The combination of HA, CNN, and CFS ensures a thorough and multi-faceted approach to 

feature selection, capturing both shallow and deep features. The integration of CNNs allows 

the model to handle the high-dimensional nature of the MIMIC-III dataset more effectively. 

Traditional methods might struggle with such high-dimensional data due to the curse of 

dimensionality, leading to suboptimal performance. The combination of HA, CNN, and CFS 

ensures a balanced trade-off between selecting relevant features and avoiding redundancy. 

This balance is crucial for building a robust model that generalizes well to unseen data. The 

proposed hybrid method is adaptable to different types of data and can be fine-tuned for 

various datasets. Its flexibility allows it to be tailored to the specific characteristics of the 

MIMIC-III dataset, leading to better performance. 

 

7. Conclusion  

In this paper, we proposed a novel hybrid feature selection method that integrates the Harvest 

Algorithm (HA) with Convolutional Neural Networks (CNNs) and Correlation-Based Feature 

Selection (CFS) to improve the performance of predictive models on high-dimensional 

medical data from the MIMIC-III dataset. The experimental results demonstrated that the 

Proposed Hybrid Method (HA-CNN-CFS) significantly outperforms traditional feature 

selection methods such as Random Forest with Information Gain (RF-IG) and SVM with 

Recursive Feature Elimination (SVM-RFE). 

Our proposed approach effectively addresses the challenges of high-dimensional data by 

leveraging the Harvest Algorithm to perform initial feature reduction, CNNs for robust feature 

extraction, and CFS for final refinement of the feature set. This comprehensive method ensures 

that the most relevant and non-redundant features are selected, leading to superior performance 

in terms of AUC-ROC, precision, recall, F1-score, and accuracy metrics. The hybrid 

approach’s ability to combine the strengths of each individual technique results in a model that 

is not only more accurate but also more resilient to the complexities of medical data, including 

noise and redundancy. The superior performance of the HA-CNN-CFS method indicates its 

potential for enhancing predictive analytics in medical research and improving decision-

making in clinical settings. Building on the promising results of this study, future research can 

explore several avenues to further enhance the proposed hybrid feature selection method: 

▪ Optimization of Hyper parameters: Investigate automated hyper parameter tuning 

techniques such as Bayesian optimization or grid search to fine-tune the parameters of the 

Harvest Algorithm, CNNs, and CFS for optimal performance. 

▪ Exploration of Advanced Deep Learning Architectures : Examine the use of more 

advanced deep learning architectures, such as Long Short-Term Memory (LSTM) networks 

or Transformer models, for feature extraction to capture temporal dependencies and complex 

relationships in the data. 

▪ Cross-Dataset Validation: Validate the robustness and generalizability of the proposed 

method by applying it to other large-scale medical datasets, such as eICU or PhysioNet, to 

confirm its applicability across different clinical environments. 

By pursuing these future research directions, we aim to further advance the capabilities of 

hybrid feature selection methods and contribute to the development of more accurate, 
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interpretable, and clinically useful predictive models in the field of medical data analysis. 
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