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Query optimization is a well-studied problem in the database industry, with numerous solutions 

proposed over the last several decades. The success of deep reinforcement learning (DRL) has 

generated new opportunities in query optimization. One of the most difficult tasks in query 

optimization and query plan generation is determining the order in which join operations between 

tables are done (i.e. relations). Even if the final results of a query remain identical regardless of join 

order, the order in which the tables of a query are joined can have a significant impact on query 

execution time. Deep reinforcement learning, in particular a data-driven method to reasoning about 

enumeration heuristics, provides a novel algorithmic viewpoint on join enumeration. We must now 

control what training data the model views and how that data is featured, rather than the standard 

tunable parameters of a query optimizer. The algorithm makes few assertions about the cost model's 

structure or the search space's topology. We demonstrate that Q learning optimizes plans well across 

many different cost models for a small set of training queries. On the TPC-H database, the Query 

Optimization Algorithms Q-Learning and PSO (Particle Swarm Optimization) are assessed. During 

the evaluation, the optimizer failed to complete one query within the maximum time permitted, 

whereas the deep reinforcement learning-based models (Q-Learning) and heuristics model (PSO) 

managed. Of course, the standard join ordering problem is NP-hard, and practical algorithms use 

heuristics to make the search for a good plan efficient. A novel method for Query Optimization 

using Particle Swarm Optimization (QOPSO) and Deep Q Learning (DQL) for parameter tuning of 

Join Operation Cost and Processing Cost is suggested in this paper.  

Keywords: Query Optimization, Deep Reinforcement Learning, Particle Swarm Optimization, 

Machine Learning, Join Query, Neural Networks. 

 

 

1. Introduction 

To achieve high performance in database systems, a query optimizer that can considerably 
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reduce query execution time is required. On the one hand, writing a decent optimizer today 

takes a lot of man-hours, so only a small group of experts have complete control over their 

craftsmanship. Worse, search optimization methods require repair work, — particularly as the 

system's completion as well as combustion engine capacity grow and develop. As a result, all 

completely accessible public information request optimization methods aspire to match its 

production. Yes, overseas business machines, Intel, and Microsoft's advertising take various 

forms. So, while query processing appears to be heuristic-based, there have been intensive 

efforts in recent generations to improve search optimization techniques by requiring them to 

learn. To find the best plan for sequential DBMSs, query planner optimization can be done 

and developed using a variety of planner creation and choosing algorithms. Because jobs take 

longer to complete than relational searches, query optimization algorithms and more complex 

algorithms are needed. To optimize a query rapidly, make sure it runs quickly and employs 

the best optimization strategies available. To reduce the plan search area, most databases 

evaluate only left-depth plans. The execution of queries, on the other hand, is more essential 

for efficiency, so there is no pipeline between the original data and the operator [1][2]. 

Query optimization is in charge of selecting the best alternative strategy for executing a query 

while taking into account a variety of parameters. Among the variables are Computational 

power, I/O operations, selection, projection, join ordering, division, and communication cost. 

The query engine in DBMS handles this task. The query processor is in charge of locating 

tables that are needed in a distributed query, which may be distributed and/or duplicated, 

incurring communication costs. Query response time is increased since data access from 

multiple sites [3]. 

The method of improving a database query's processing technique is known as query 

optimization. As a consequence, it is a critical stage in query processing. The word "query 

handling" refers to the operations that occur when information is obtained from a database [4]. 

Because these queries are given to the DBMS in an elevated code, these activities include 

query translation into expressions that can be applied at the file system level, query 

optimization steps, transformations, and query evaluation [5]. Subscribe several times Query 

optimization is a difficult problem in any relational database system, not just SQL server [6] 

[7]. The query is converted into standard format, i.e. a query graph, after the parser first checks 

for syntax crimes When you type in (5)the search engine analyzes your query and creates a 

plan based on what it thinks looks best. The query prosecution machine is also urged to use 

this formal query plan; it is evaluated and the query result is returned. 

The process of selecting the best query plan from a collection of alternatives by taking into 

account Query optimization is the process of determining which queries, based on the data and 

the user's specific requirements, can be run quickly on the database. Even when the best query 

plans are used, the results can be inaccurate or take longer than required to process. This is 

due to the fact that the underlying models used to generate the plans are sometimes inaccurate, 

and the plans themselves aren't always tailored to the requirements of the user.  

We want a scheduler that can use data from past queries to improve future ones more 

effectively. We've come up with a new query optimization technique called Deep Q Learning 

(DQL) and Particle Swarm Optimization (QOPSO). These methods use deep reinforcement 

learning to give better query plans faster. 
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2. Problem Formation 

The objective of the optimization technique is to start creating a query processing strategy that 

cuts down on overall query processing time. Conventional query optimizers use cost-based 

and logically sound optimization. When applied to action plans, The principles of heuristic 

processing are to do things in a certain order, to use the operations that are the most 

constrained, and to start with the operations that are the easiest. This almost always leads to a 

shorter processing time.The same optimizer analysts evaluate and analyse During cost-based 

optimization, the expenses of query execution are estimated using statistics and cardinality. 

After that, the strategy with the lowest projected cost is selected. By doing so, the query is run 

as few times as feasible to achieve the lowest cost. 

Example 1: Consider the subsequent TPC-H [8] [9] Database example: utilizing the retail 

database for the We look at data from TPC-H [10] to figure out what might be a good plan for 

our work. This includes figuring out what products we might sell, what kinds of orders we 

might receive, and where the parts for those products might come from, access methods, unary 

selections, and binary combine operators. As a running example, we'll use the database below, 

which contains three relations that each important current about a student and a join relation: 

 

 

To begin running this query, join the orders and client relations. The above produces the 

connect graph shown in Figure 1. It includes, in particular, freshly constructed orders and 

customer relationships. Performing a nested loop join on purchases, customers, and nations is 

one option from here. In order to determine the q-value of carrying out this action in the current 

state, the action and state must be encoded as a fixed size vector that the trained neural network 

model expects as input. In this case, the move and query would be encoded as: 
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Figure 1: Join Graph 

Before conducting the join action, the 1-hot encrypts the tables from the left and right input 

relations. Its first 4 connections are on the left, and the next four are on the right. Despite the 

fact that customers and purchases are connected on the left, the first two rows are each one 

and the third and fourth are both zero. The actual join operator, which may be a mergejoin, 

hashjoin, or nested loop join, is then 1-hot encoded for the join operation. Next, encode the 

left and right input links predicted by the PostgreSQL [11][12] optimizer. Encode the 

relationships that are displayed in the end query return. 

Encode whether the equijoin predicate exists for each of the three groups of tables. Three of 

these items are non-zero, corresponding to the query's three equijoin predicates. 

 

3. Deep Reinforcement Learning  

Using neural networks to estimate Q-values or a policy given a state, Deep Reinforcement 

Learning (DRL) is a hybrid of Reinforcement Learning and Deep Learning that forms the basis 

for action selection. Many challenging problems and real-world issues have been successfully 

solved in this field of research. For multi-dimensional problems, a family of stochastic 

optimization techniques called reinforcement learning (RL) [13] is used (MDPs). An RL 

algorithm uses random sampling to create a model that predicts how decisions will affect the 

overall reward. This model can then be used to help make better decisions in the future. When 

deep neural networks are used for reinforcement learning, The final result is deep 

reinforcement learning. Deep neural networks are the agents that learn to link state-action 

combinations to rewards. The neural network is either encouraged or discouraged by the 

outcome of the action done on this input in the future, depending on the outcome. Numerous 

domains have made significant use of deep reinforcement learning [14]. It is especially utilised 

in fields where an agent may receive a reward or a reprimand for any behavior. 

Our main finding is that join ordering and reinforcement learning have a close algorithmic 

relationship (RL). The issue formation that underlies RL and the sequential structure of join 

ordering are the same. This algorithm allows us to integrate RL models into traditional query 
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optimization systems, making it much simpler to use RL models [15]. This realisation enables 

us to rapidly integrate RL models into other optimization systems by leveraging System R's 

architecture. When compared to earlier suggestions for a "learning optimizer," we secondly 

use the problem's layered structure to drastically lower training costs. 

To better understand how rl relates to join ordering, think about the conventional "bottom-up" 

dynamic programming approach. A plan is created by breaking it down into smaller parts, and 

then following an algorithm that will always result in the best possible solution. In order to 

create a succession of 1-step optimal decisions, enumerated subplans are stored in a lookup 

table. Then, because of its powerful expressiveness, rl uses deep rl techniques to recall the 

various states (DRL). Deep neural networks are also capable of predicting future states based 

on the past states. The environment, or database management system, is how the user, or 

planner, interacts with it. The environment currently generates a set of valid actions on which 

two tables can be joined and records the present state, which is the immediate join plan. Deep 

neural networks are used to assess the value of actions and states, and The optimizer selects 

an activity from the activity basis of a set on its likelihood of producing the intended result. 

The chosen action is then rewarded by the DBMS by switching to the following state with the 

selected combo. When a full join plan is created and all the tables are joined, this MDP process 

halts. An episode is the word for the entire process from the initial state to the forming limit, 

which is followed by another episode that repeats the process until the model coincide.  

 

 

Figure 2: DRL-based join order selection procedure. 
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Figure 2 depicts a possible scenario for a query involving four relations: Customer as TC, 

Order as TO, Nation as TN, and Region as TR. s1 = TC, TO, TN, TR is the starting state. The 

action set A1 includes for each ordered pair of relations, each element, such as (1, 2) A1 for 

joining TC with TO and (2, 3) A1 for joining TN with TR. The agent selects the action (1, 3), 

which represents the decision to combine TC and TN. s2 = TC |X| TO, TN, TR is the next 

province. The agent then selects the action (2, 3) that represents the decision to combine TN 

and TR. The next state is s3 = { TC |X| TO, TN |X| TR}. The agent has only two options left at 

this point, A3 = {(1, 2), (2, 1)}. If the entity chooses the option (1, 2), the subsequent state s4 

= { (TC |X| TO)|X| TN |X| TR} represents a terminal state.  

A linear function of each condition is required to join data. This representation contains details 

about the join tree topology as well as the join/selection predicates. Then, to show that 

reinforcement learning strategies can work well even with little input data, we outline a 

straightforward vectorization approach for capturing this information. Trunk's Composition 

data about the tree topology, Since there are n total links in the database, We create a row 

vector of size n for each binary subtree x sj. If the ith relation is in x, then the value vi is equal 

to 1 h(i,x); if it is not in x, then the value vi is equal to zero. h(i, x) is the height of the relation 

ri in the subtree x. (the distance from the root). the second-to-last state's first entry in the tree 

vector, TC |X| TO, TN |X| TR, equates to (TC |X| TN) in the example in Figure 2.The subtree 

C has a height of 2 according to the number 12 in the third column of the first row. The second 

column of the first block is empty because relation B is not contained in the subtree, which 

results in a number of zero. We produce  n  n binary symmetric matrix m for each show to 

hold important join predicates data. The valuemi, j is one when a join condition connects the 

ith and jth relations; otherwise, it is zero. All feasible equi-joins procedures are covered by 

this simple representation. Figure 3 shows a sample of this array. Because of the condition TC, 

the valuem2,1 = m1,2 = 1. TO.O Custkey = C Custkey. Because there is no join predicate 

linking B and C, the valuem 2,3 = m3,2 = 0. A k-dimensional vector, where k is the amount 

of characteristics in the database, makes up the selection predicate vector (the actual number 

of attributes shared by all relations). If the provided query has a selection predicate for the ith 

attribute, the ith number is one; otherwise, it is zero. This shows the traits that are used or are 

not used to sort tuples. 

RL is a kind of learning where you try to figure out how to do something by figuring out what 

rewards (like points or money) you get when you do it. However, RL doesn't work with data 

that's already labelled, like a dataset of past actions. You need to have this data available before 

you can train your learning model. And once your model is trained, you can use it to predict 

future actions. 

 

In Q-Learning [16][17], all potential state-action combinations (St, at) and their corresponding 

Q-values are kept in a table (referred to as a Q-table). In Equation (1), Q (St, at) is an evaluated 

value (also known as the Q-value) that tells us what action to take when we see the present 

state at St. This value is used to determine which action to take based on the current conditions. 

In our case, there are numerous containers on which a single inquiry can be performed. As a 

result, the Q-table could hold a large number of state-action pairs.Iterating over a large Q-table 
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adds time to query processing. The value-based reinforcement learning technique Q-Learning 

is well-known [10]. In Q-Learning, a table (referred to as a Q-table) is used to record all 

possible state-action pairs (St, at) as well as the evaluated Q-value linked with each pair. After 

consulting the Q-table, the agent finds the Q-value for each possible action, and then chooses 

the action with the highest value. This is important for reinforcement learning, as it helps keep 

the value of the action through proper evaluation. This number can be between 0 and 1, 

depending on how often the agent wants to learn from the experience.  

 

When the optimizer gets a query, it converts it into a QEP (logical plan). The QEP is then 

transformed into a vector representation. As a result, the current QEP accurately represents the 

current condition and can be fed into a deep net. To show this vector, we use a one-hot vector, 

a technique adapted from recent work. This vector is sent to the RL model, which is a neural 

network. The RL model will assess the Q-values for all feasible steps to execute the following 

query operator. Each of these operations has two parts: the best physical operator and the best 

receptacle for the next query operator to be performed. The DBMS will then select and perform 

the move with the highest Q-value. The completed function is then removed from the QEP, 

and the time and resources spent on its execution are used to calculate the reward for this 

activity. In the Bellman Equation, the reward is updated to account for the time and expense 

of executing the operator, and the updated reward also affects the expected Q-value (3).The 

neural network weights are properly updated using the back- propagation method. This process 

is repeated for each operator in the QEP and is completed when all of the operators in the QEP 

have been executed. The query's results are then sent to the recipient. The reward function is 

critical to the entire programme. According to the Bellman equation, if the reward for 

completing a prior action At-1 is high on state St-1, the Q-value will be high as well. This 
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means that, given the same state, the action with the best prior performance will be chosen 

more frequently. 

 

4. QUERY OPTIMIZATION USING PARTICLE SWARM OPTIMIZATION 

(QOPOS) 

The optimization of join queries is an NP-hard [18][19] issue. The number of query execution 

plans (QEP) corresponding to a query grows exponentially as the number of joins increases, 

resulting in a very large computational complexity of the multi-join query optimization issue. 

Solving problems with heuristic algorithms has recently become popular. Selfish Algorithm 

[20], Genetic Algorithm [21], Ant Colony optimization Algorithm [22], and others are 

examples. PSO represents the most effective efficient algorithm influenced by intelligent 

swarm movement. PSO is a tried-and-true technique for resolving social interaction problems. 

the quantity acting as agents that move around in the solution domain in search of the best 

solution. Each particle changes depending on personal experience as well as the experiences 

of other particles. Individually and globally, each particle is accelerated towards the finest 

particle for them [23] [24]. 

PSO does not require too many parameters to be adjusted and is gradient information, making 

it straightforward and easy to implement. Additionally, the early rapid convergence rate is 

significant. Although the traditional particle swarm algorithm has some impact on query 

optimization [25] [26], it has limited local search capability and is susceptible to local optimal 

flaws. The user can search with new inquiries to users of real information need, and reduce the 

results of the inquiry that has nothing to do with the user's desires, so the accuracy of the 

returned results is improved. The weight of the inquiries vector is continuously adjusted. 

Documents and queries are represented as vectors, and the initial population is built using the 

findings of the first query optimization deployment of the evolutionary algorithm and particle 

swarm mixed algorithm. 

 



935 Karthikeyan M P et al. Analysis of Query Optimization Using...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

The fitness function structure and the starting population generation this paper's information 

retrieval paradigm is based on the vector space model. In a multidimensional space, In order 

to describe records and queries, a vector is used, with one vector for each dimension having 

the weight of representative keywords. Documents and the vector's query structure Documents 

and queries the Angle vector in the vector space model to show the distance between two 

vectors. The greater the cosine of two vectors, the more comparable they are to one another. 

By comparing the query with the similarity of each record size, the document is then sorted in 

decreasing order. An n-dimensional vector representing any text dj D has the following 

expressions: dj = (w1j, w2j,..., wnj), where the vector components wij are the first I feature 

words ki in text dj, and n is the overall number of key words in the system. Wij's value scope 

is in the continuous real number range [0, 1] due to the vector space model's "partial matching" 

strategy. The user's queries are also expressed as an n-dimensional vector q = (w1q, w2q,... 

wnq), where wiq denotes the first I keyword ki's weight value inquiry. 

Initial Population: This initialization generation starts with both the initial query retrieval as 

well as employing In order to calculate how similar two papers are, angle cosine is used. This 

enables us to better reflect user requirements, leading to improved search results. 

Fitness Function: The degree of similarity between documents and queries can be seen; the 

more similar, the better it will serve the requirements of users; the more top, the smaller the 

angle; and the more similar, the better it will convert for the most amount of objective function. 

The angle of the orientation in the aforementioned formula illustrates how comparable the 

vector representation and the query vector function cosine (di, q) are for values [0, 1]. 

Let us choose the fitness function to determine the best query strategy. The cost of creating a 

left deep tree is the fitness function for the query optimization issue. The selectivity and 

cardinality of the data are estimated to determine this expense. The number of triples that fit a 

specific pattern is known as its cardinality. The number of triples meeting both TC.C Custkey 

= TO.O Custkey is the measure of the selectivity of a join between two triples, TC.C and 

TC.O. Ri should represent cardinality, and fi,j should represent choice. Selectivity can be 

defined as in the following if pi,j is the join condition between Ri and Rj (3): 

 

The PSO has the advantage of requiring fewer parameters to adjust the requirements. The 

effectiveness and accuracy of the algorithm are significantly impacted by these variables in 

any situation. In our optimization issue, every particle represents a possible allocation 
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optimization solution. The optimal allocation can be expressed as an N-dimensional vector, 

Xi = Xi1, Xi2,..., Xin, due to the fact that there are N jobs in grid labour. the j-th job has been 

assigned to resource Xij for execution, as indicated by each part of Xij. As an illustration, four 

tasks have been given to three resources. Table 1 shows that Xi1 = 2, Xi2 = 1, Xi3 = 3, and 

Xi4 = 2 have been assigned by the i-th particle, Xi1 = 2. This means that job 1 has been 

assigned to resource 2 for processing. 

 

5. Performance Evaluation 

PostgreSQL 8.4 modified query optimizer and query engine were used in the experiments. The 

data is spread among these VPSs. The TPC-H database benchmark is used to create the 

searches and database tables. TPC-H Database is based on A wealth of data on clients, orders, 

line items, sections, part distributors, distributors, countries, and regions can be found in the 

retail database from TPC-H benchmark. TPC-H is still the most popular relational system 

benchmark, and most join searches involve three or more tables. [13]. To illustrate the join 

ordering challenge, the following four tables are used (customer, orders, nation and region). 

Our The basic row size is the scale factor of 1 that is used in TPCH experiments (equals 1GB 

raw data). We run 50,000 queries, with query templates selected at random from the 

benchmark's 22 query templates. 

Query latency:Figure 3 depicts the effectiveness of the query plan that the PostgreSQL 

optimizer chose versus the latency of the performed query plans produced by QOPSO and 

DQL. Throughout this instance, each test query is executed 15 times with a chilled cache. The 

graph shows the minimum, maximum, and median delay increases. The plans generated by 

DQL join ordering always perform better than or are on par with the plans generated by 

PostgreSQL. Consequently, DQL can produce plans that are easier to implement (not just a 

lower cost according to the cost model). Once again, QOPSO's performance is considerably 

worse than DQL's, demonstrating that DQL is not simply speculating on a random join 

sequence. 

 

Figure 3: Query Latency 



937 Karthikeyan M P et al. Analysis of Query Optimization Using...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

Optimization Latency: The time it takes to create a query strategy, or optimization latency, for 

QOPSO and DQL is compared in Figure 4. Each point represents one of the TPC-H queries, 

and spots above The queries represented by the black curve were those for which DQL had a 

quicker optimization time than QOPSO. The amount of relations joined in the query is colour 

coded on the points. Even though QOPSO avoids Because of the overhead of calling the neural 

network, Deep Plan is slightly slower than DQL for small join queries. The exponential search 

cost outweighs the neural network overhead as more relatives join, resulting in a relatively 

faster DQL optimization latency. This occurs when 11 or more links are connected. 

 

Figure 4: Optimization Latency 

Average Query Execution Cost: Given the index configuration selected, the cost is calculated 

by adding the execution times of each individual query. In this instance, we employ the 

previously described execution time, which corresponds to the engine's cost. We will be 

allowed to use correct action for our training and evaluations in this work, as well as the impact 

of the recommended indexes on actual running time. With minor differences in execution time, 

the suggested  92% of the benchmark queries, the model found execution plans that 

outperformed QOPSO, and they failed in 8% of them. In any case, both provide the same 

implementation methods. As shown in Figure 6, the mean processing time of the QOPSO 

model (represented by the X mark in graphs) is greater than that of the DQL model. The 

average execution time of queries in the benchmark using the suggested DQL model is 79.11 

ms, while the average implementation time for QOPSO is 89.14 ms. Furthermore, in a subset 

of searches, the DQL model outperforms QOPSO.  
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Figure 4: Average Query Execution Cost 

Running Time and Convergence Speed:The difference between QOPSO and DQL is whether 

curriculum learning methods are employed. In comparison to QOPSO and DQL, it reduces 

training time and gets to the optimal value quicker. Undoubtedly, searches with fewer tables 

are trained first because they require fewer iterations to obtain representations and, as a result, 

take less time to train. The overall training time of QOPSO is 478.32 ms, which represents a 

95% relative improvement over DQL. This demonstrates that QOPSO can provide the mode 

with quicker and more stable training. 

 

6. Conclusion  

The learning model underpins query optimization, and evolutionary algorithms produce better 

results. Despite the fact that the best way of learning data is available, a methodical technique 

that can yield much better results is required.. For Join Query optimization, we proposed a 

novel model structure combination of Query Optimization using Particle Swarm Optimization 

(QOPSO) and Deep Q Learning (DQL) in this paper. The criteria for determining top query 

plans are running time and convergence speed, average query execution cost, optimization 

latency, and query latency.It can be challenging to determine the best join sequence because 

As there are more tables, there are increasingly more join pairs that the optimizer must take 

into account. This means the optimizer can't calculate costs for any of the tables. every 

combination that might be used. As a To achieve a balance between optimization time and 

plan quality, the majority of optimizers use heuristic rules to prune the search area. 

Furthermore, the optimizer estimates the cost of a plan using pre-calculated statistics, which 

may cause the optimizer to choose an inefficient plan. Traditional models require more 

planning time as the number of join conditions grows.The performance evaluation results 

indicate that DQL outperforms QOPSO in selecting show how learning-based models can 

speed up query planning by identifying the optimal join orders for numerous queries. The deep 

reinforcement learning model has an advantage over the PSO model in that it is better suited 
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to scenarios with a large number of states and actions because it employs a neural network to 

approximate the query execution time. The experiments also show that the QOPSO model can 

generalise to previously unseen training-phase query conditions, which is another significant 

advantage of deep reinforcement learning models. 
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