
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 20 No. S14 (2024) 941-966

Deepincepnet: Disease Detection in

Corn or Maize Plant Leaves Using

Specim Iq Hyperspectral Imaging and

Proposed Dnn Classifiers with

Inception Networks

Praba V1, Dr. Krishnaveni K2

1Research Scholar, Department of Computer Science, Sri S.Ramasamy Naidu Memorial

College, (Affiliated to Madurai Kamaraj University, Madurai), Sattur,Tamilnadu, India,

praba@srnmcollege.ac.in
2Associate Professor & Head, Department of Computer Science, Sri S. Ramasamy Naidu

Memorial College, (Affiliated to Madurai Kamaraj University, Madurai), Sattur,

Tamilnadu, India, kkrishnaveni@srnmcollege.ac.in

This research proposes DeepIncepNet, a novel method that combines deep neural networks (DNNs)

and hyperspectral imaging to identify illnesses in the leaves of corn or maize plants. The Specim

IQ system was utilized to gather hyperspectral imaging data, which encompasses a broad range of

wavelengths in spectral information. Using a unique DNN architecture, DeepIncepNet uses

Inception Networks (InceptionV3) to classify healthy and damaged maize leaves. To assess the

performance of the suggested model, it is compared to well-known architectures as InceptionV3,

ResNet-50, and ResNet-101. The results of the experiments suggest that DeepIncepNet achieves

greater robustness and accuracy in disease identification, highlighting its potential for early

detection and treatment of diseases affecting the maize or corn plant.

Keywords: Corn, Maize, Hyperspectral Imaging, Deep Neural Networks, Inception Networks,

DeepIncepNet, SpecimIQ, InceptionV3.

1. Introduction

One of the most significant cereal crops in the world, corn, also known as maize (Zea mays),

provides millions of people with a basic diet and is essential for the production of industrial

goods and animal feed. However, a number of illnesses that can drastically lower yields and

the financial benefits to farmers constitute a threat to the quality and productivity of maize

crops [1]. Globally, plant diseases brought on by pathogens including fungi, bacteria, viruses,

and nematodes present a serious threat to systems that produce maize. These illnesses can

show up as leaf spots, blights, rusts, smuts, and wilts, to name a few. They can cause symptoms

http://www.nano-ntp.com/

 Deepincepnet: Disease Detection in Corn… Praba V et al. 942

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

including discoloration, lesions, malformations, stunted growth, and even plant mortality by

affecting the leaves, stems, roots, and ears of the maize plant, among other sections of the

plant. These illnesses can have a disastrous effect on agricultural productivity and quality,

causing farmers to suffer significant financial losses and jeopardizing food security in many

areas [2].

Effective disease management and control techniques for maize plant diseases depend on early

identification and precise diagnosis. Prompt intervention strategies, like the use of fungicides,

crop rotations, and the selection of resistant cultivars, can reduce the spread of disease and

reduce yield losses. However, traditional disease diagnosis techniques like eye inspection and

symptom-based identification are frequently laborious, prone to inaccuracy, and subjective. A

rising number of people are interested in using cutting-edge technology, such deep learning

and hyperspectral imaging, to identify maize plant diseases automatically and accurately in

order to overcome these difficulties [3]. Spectral fingerprints from maize leaves can be

captured via hyperspectral imaging at a variety of wavelengths, offering extensive data for the

characterization and discriminating of diseases. Deep learning is ideally suited for image-

based illness detection applications because it provides strong tools for feature extraction and

pattern identification, especially with convolutional neural networks (CNNs)[4]. In this regard,

the goal of this research is to create and assess a new method for detecting corn or maize plant

diseases utilizing suggested DNN classifiers with Inception Networks (DeepIncepNet) and

Specim IQ hyperspectral imaging. This research aims to improve the scalability, efficiency,

and accuracy of disease diagnosis in maize crops by fusing cutting-edge deep learning

techniques with advanced imaging technology. This will ultimately lead to better crop

management practices, higher yields, and sustainable agriculture.

2. Related Works

Inception Networks (InceptionV3): Google researchers introduced Inception Networks

(InceptionV3), sometimes referred to as GoogLeNet, as a deep convolutional neural network

architecture for image classification applications [5]. The usage of inception modules, which

are made up of several parallel convolutional layers with various kernel sizes (1x1, 3x3, and

5x5) and pooling operations, is the main novelty of Inception Networks. As a result, the

network can effectively collect characteristics at various scales and resolutions. An enhanced

version of Inception Networks known as InceptionV3 has been fine-tuned for more precision

and effectiveness. With 48 layers, it attains cutting-edge results on picture categorization

benchmarks like ImageNet. In order to minimize computational cost and increase training

stability, InceptionV3 also includes additional architectural enhancements such batch

normalization, factorization, and dimensionality reduction.

Residual Networks (ResNet-50, ResNet-101): Microsoft Research researchers introduced the

concept of Residual Networks, or ResNets, as a way to address the issue of vanishing gradients

in deep neural networks [6]. The utilization of residual connections, also known as skip links,

which permit gradients to pass across the network directly without attenuation, is the

fundamental principle underlying ResNets. Because these connections mitigate the vanishing

gradient problem, it is possible to train very deep networks (hundreds of layers). Specific

variations of Residual Networks with varying number of layers include ResNet-50 and

943 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

ResNet-101. ResNet-101 features 101 layers, compared to 50 layers in ResNet-50. Both

architectures have been widely used in numerous computer vision applications and achieve

state-of-the-art performance on picture categorization tasks. The idea of residual blocks—

shortcut connections that eschew one or more convolutional layers—is introduced by ResNet

architectures. The network can learn residual mappings thanks to these shortcut connections,

which facilitates deep network optimization and improves speed.

For image classification problems, two popular deep learning architectures are Inception

Networks and Residual Networks. While Residual Networks are excellent at training very

deep networks by resolving the vanishing gradient issue, Inception Networks are renowned

for their effectiveness at capturing multi-scale features through inception modules. Because

InceptionV3 makes use of parallel convolutions and dimensionality reduction techniques, it is

generally more computationally efficient than ResNet-50 and ResNet-101 [7]. Particularly

when working with very deep architectures and difficult datasets, ResNet-50 and ResNet-101

may perform better on some tasks or datasets. The decision between Inception Networks and

Residual Networks is influenced by various elements, including processing capacity, dataset

properties, and particular performance needs for the given image classification task.

3. Hyperspectral Imaging Data Collection and Preprocessing

3.1. Specim IQ System

Because of its small size and portability, the Specim IQ system may be easily installed in a

variety of field and laboratory environments. Because of its portable design, which allows for

flexibility and ease of use when gathering data, it is appropriate for on-site measurements and

quick evaluations [8]. High spectral resolution provided by the Specim IQ system enables

thorough material characterization using their spectral signatures. It provides extensive data

for research and interpretation by capturing spectral data throughout hundreds of small bands

in the visible and near-infrared spectrum (400-1000 nm).

The Specim IQ system's real-time imaging and analysis capacity is one of its best features. It

facilitates quick decision-making and feedback during data collection by allowing users to

instantly gather hyperspectral photos and view spectral data in real-time. Multiple imaging

modalities are supported by the Specim IQ system to meet the needs of various applications

and users. With its snapshot and scanning modes, it can quickly image wide areas in

hyperspectral mode or map specific regions of interest in precise spectral mode. Integrated

light sources and calibration procedures are elements of the Specim IQ system that guarantee

reliable and accurate imaging performance. It has integrated LED lighting with spectral

characteristics and intensity adjustments, as well as automated sensor and spectral calibration

processes [9]. For easy operation and data analysis, the Specim IQ system has an intuitive

software and user-friendly interface. To adjust imaging parameters, take hyperspectral images,

and carry out simple spectral analysis operations, it offers a graphical user interface (GUI). To

increase its functionality and adaptability, the Specim IQ system is made to work with a variety

of attachments and accessories. This consists of interchangeable filters, lenses, and adapters

to accommodate various sample kinds and imaging conditions.

3.2. Hyperspectral Imaging Data Collection:

 Deepincepnet: Disease Detection in Corn… Praba V et al. 944

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

• The process of selecting an imaging system involves selecting a hyperspectral imaging

system that is suitable for the study and can capture spectral information across a broad range

of wavelengths, usually in the visible and near-infrared spectrum.

• Imaging Setup: Install the imaging system in a controlled space, like a field or greenhouse

used to produce corn or other cereal crops. Make sure there is minimum environmental

disturbance and adequate illumination.

• Image Acquisition: Using the imaging system, take hyperspectral pictures of the leaves of

corn or maize plants. To capture the full leaf surface, position the camera at the proper distance

and angle. Take pictures of both well and sick plants to guarantee that the degree and

symptoms of the diseases vary [10].

• Calibration: To guarantee precise and reliable data across various wavelengths and

imaging sessions, perform spectral and radiometric calibration of the imaging system.

3.3. Preprocessing steps including spectral calibration, noise reduction, and normalization

 Hyperspectral imaging data must be preprocessed before it can be used for analysis and

machine learning applications. The following describes preprocessing procedures that are

especially designed for hyperspectral data obtained with the Specim IQ system, such as

spectral calibration, noise reduction, and normalization:

Spectral Calibration: Accurate mapping of spectral information to matching wavelengths is

ensured by spectral calibration, which accounts for variances in sensor response. Calibration

of the hyperspectral data to recognized spectral standards or reference materials is the task of

this stage. Using calibration targets with known spectral reflectance values, like spectralon or

white reference tiles, may be necessary for spectral calibration of the Specim IQ system. By

adjusting for any systematic mistakes or differences in wavelength assignment, the spectral

calibration procedure matches the recorded spectral data with the anticipated spectral

characteristics [11].

Noise Reduction: By reducing random noise and artifacts, noise reduction techniques seek to

increase the signal-to-noise ratio of hyperspectral data. This is especially crucial for improving

the accuracy and dependability of spectral signatures, especially in noisy or low-light settings.

Typical methods for reducing noise in hyperspectral data are as follows:

• Averaging or smoothing: Applying spatial or spectral averaging to reduce random

fluctuations and smooth out noise.

Spatial averaging:

Ismooth(x,y,λ)=(1/N) ∑ i=1
N I(x,y,λ,i)

Spectral averaging:

Ismooth(x,y,λ)=(1/M) ∑j=1
MI(x,y,λj)

Where I(x,y,λ) represents the intensity at spatial coordinates (x,y) and wavelength λ, and N is

the number of neighboring pixels or spectra considered for averaging.

• Filtering: Applying spatial or spectral filters, such as median filtering or Gaussian

filtering, to remove high-frequency noise while preserving important spectral features.

945 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

Median filtering:

Ifiltered(x,y,λ)=median(I(x′,y′,λ))

Over a local neighborhood centered at (x,y).

Gaussian filtering:

Ifiltered(x,y,λ)= ∑ i=−∞
∞ ∑ j=−∞

∞(1/2πσ2) e(x′2+y′2)/2σ2I(x−i,y−j,λ)

Where σ is the standard deviation of the Gaussian kernel.

• Spectral normalization: Dividing each spectrum by a reference spectrum or the mean

spectrum to reduce spectral noise and enhance signal clarity.

Inormalized(x,y,λ)= I(x,y,λ) / Iref(λ)

Where Iref(λ) is a reference spectrum, such as a white reference or a mean spectrum, used for

normalization.

Normalization: Normalization standardizes the spectral data to account for variations in

illumination conditions, sensor sensitivity, and overall intensity levels. This ensures

consistency and comparability of spectral signatures across different imaging sessions and

samples. Normalization techniques for hyperspectral data include:

• Min-max normalization: Scaling each spectral band to a common range (e.g., [0, 1])

based on the minimum and maximum values observed in the dataset.

Inormalized(x,y,λ)= I(x,y,λ)−min(I) / max(I)−min(I)

• Z-score normalization: Standardizing each spectral band to have zero mean and unit

variance, ensuring that the spectral data have a consistent distribution.

Inormalized(x,y,λ)= (I(x,y,λ)−μI) / σI

WhereμI is the mean intensity and σIis the standard deviation of intensities across all spectra.

• Total intensity normalization: Scaling each spectrum by its total intensity or sum of

spectral values, normalizing the overall spectral energy and intensity.

Inormalized(x,y,λ)= I(x,y,λ) / ∑λ
I(x,y,λ)

By applying spectral calibration, noise reduction, and normalization techniques, researchers

can preprocess hyperspectral imaging data collected using the Specim IQ system to improve

data quality, enhance spectral features, and facilitate downstream analysis tasks such as disease

detection and classification using machine learning algorithms like DeepIncepNet or ResNet.

Overview of DNN Classifiers with Inception Networks:

 Using hyperspectral imaging data, the proposed deep neural network (DNN) classifiers with

Inception Networks offer a novel method for disease identification in the leaves of maize or

corn plants. Motivated by the remarkable outcomes of deep learning architectures, specifically

Inception Networks, in image classification problems, the suggested classifiers seek to utilize

the abundant spectrum data obtained by hyperspectral sensors to facilitate precise and timely

disease diagnosis. The Inception architecture, which uses inception modules to extract various

 Deepincepnet: Disease Detection in Corn… Praba V et al. 946

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

hierarchical features from input images, serves as the foundation for the architecture of the

proposed DNN classifiers. The network's capacity to distinguish between plant tissues that are

healthy and those that are ill is improved by these modules, which use parallel convolutional

processes with various kernel sizes to capture features at various scales and resolutions[12].

 To learn hierarchical representations of features from hyperspectral pictures, the proposed

DNN classifiers with Inception Networks are made up of numerous layers of convolutional,

pooling, and fully connected units arranged hierarchically. The network's layers each apply

nonlinear activation functions to the input data, gradually extracting and combining variables

to forecast whether or not disease will be present in the leaves of corn or maize plants.

 A particular kind of artificial neural network called a convolutional neural network (CNN) is

made especially for handling structured grid data, like photographs. Convolutional layers,

pooling layers, fully linked layers, and activation functions are some of the layers that make it

up. When it comes to image classification, a CNN uses a sequence of convolutional and

pooling layers to process an input image and extract pertinent characteristics. Following that,

these features are sent to fully connected layers for categorization. A particular CNN

architecture called Inception V3 has been extensively utilized for a number of computer vision

applications, including picture classification. The usage of inception modules, which are

building elements that enable the network to record features at various spatial scales and

resolutions, is what distinguishes it. The parts of Inception V3 are broken down here along

with their purposes:

4. Proposed Methodology

 For agricultural crops like corn or maize plants to remain healthy, maximize yields, and

support food production systems, automated disease detection is essential. Conventional

disease diagnosis techniques frequently rely on physical evaluation and visual inspection,

which can be error-prone, labor-intensive, and subjective. This study uses hyperspectral

imaging and deep learning classifiers based on Inception Networks (DeepIncepNet) to offer a

unique way for automated disease identification in corn or maize plant leaves in order to

overcome these issues. Across a broad range of wavelengths, hyperspectral imaging provides

a potent tool for extracting comprehensive spectral information from plant tissues.

Hyperspectral imaging allows the identification of minor changes associated with disease

signs, such as discolouration, necrosis, and physiological stress responses, by examining the

distinct spectral fingerprints of healthy and diseased plants. The goal of this work is to provide

a reliable system for the early and accurate diagnosis of illnesses in corn or maize plants by

utilizing the spectral richness and spatial resolution of hyperspectral data.

 A number of crucial processes are included in the suggested methodology, such as data

collection, preprocessing, feature extraction, model creation, assessment, and validation.

Specim IQ system-collected hyperspectral imaging data are preprocessed to minimize noise,

adjust for sensor calibration errors, and standardize spectral data. From the preprocessed data,

pertinent spectral and spatial characteristics are retrieved and fed into deep learning classifiers,

such as DeepIncepNet.

DeepIncepNet Architecture for Disease Detection:

947 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

 With an emphasis on corn or maize plants, DeepIncepNet is a deep learning architecture

created especially for automated disease detection in agricultural crops. DeepIncepNet, which

is adapted to hyperspectral imaging data and inspired by the Inception Networks (InceptionV3)

architecture, seeks to use the rich spectral information obtained by hyperspectral sensors for

precise and timely disease detection in plant leaves. As seen in Figure 1, DeepIncepNet's

architecture is based on the concepts of convolutional neural networks (CNNs) and

incorporates many of the essential elements of the Inception architecture, which is well-known

for being highly efficient in image classification tasks.

Figure 1: Architecture of DeepIncepNet

 DeepIncepNet extracts hierarchical feature representations from hyperspectral pictures by

arranging layers upon layers of convolutional, pooling, and fully connected units. Inception

modules, which act as the building blocks for feature extraction, are the essential components

of DeepIncepNet. By combining concurrent convolutional procedures with various kernel

sizes (1x1, 3x3, and 5x5), these modules enable the network to collect features at various

spatial resolutions and scales. DeepIncepNet improves its ability to detect diseases by learning

to extract a variety of discriminative features from hyperspectral data by merging feature maps

from various neural paths inside each inception module. Moreover, DeepIncepNet integrates

extra architectural improvements to conform to hyperspectral imaging data properties. The

network may concentrate on pertinent spectrum properties while lowering computational

complexity thanks to spectral pooling layers, which combine spectral data from several bands.

 Deepincepnet: Disease Detection in Corn… Praba V et al. 948

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

Moreover, DeepIncepNet has spectral normalization layers to improve the network's resistance

to changes in light and sensor sensitivity. In order to train DeepIncepNet, its parameters must

be optimized using labeled hyperspectral data, in which each sample has a label indicating

whether or not disease is present in the leaves of corn or maize plants. By using stochastic

gradient descent optimization and backpropagation to minimize a predetermined loss function,

the network gains the ability to distinguish between samples that are healthy and those that are

sick.

 Several essential elements make up the architecture of DeepIncepNet, a deep learning

classifier based on Inception Networks designed for disease identification in corn or maize

plant leaves utilizing hyperspectral imaging data. Let's examine DeepIncepNet's intricate

architecture and its constituent parts:

Input Image: Hyperspectral images of the leaves of corn or maize plants are sent into the input

layer of DeepIncepNet. In the hyperspectral image, every pixel represents a spectrum of

reflectance values spanning several wavelength bands. Assume that the input image is a

299x299x3 array of pixel values that correspond to the image's RGB colors (height, width, and

channels).

Convolutional Layers: Using learnable filters, multiple convolutional layers in DeepIncepNet

convolve input hyperspectral pictures to extract spectral and spatial characteristics. Local

structures and patterns in the hyperspectral data are captured by these convolutional layers. In

order to extract information from the input image, such as edges, textures, and patterns, these

layers use convolutional filters [13]. Throughout the training phase, the filter weights are

discovered. The input image is first processed through a number of convolutional filters by

Inception V3. These filters are tiny matrices, such as 3x3 or 5x5, that are dragged over the

image to identify characteristics such as contours, textures, and forms. A convolutional filter,

for instance, could be able to identify horizontal lines in the picture. Gradients or diagonal

edges might be picked up by another filter.

Convolutional layer in a convolutional neural network (CNN) involves applying a convolution

operation between the input feature map and a set of learnable filters (also known as kernels).

Input feature map I of size H×W×Cin, where H is the height, W is the width, and Cin is the

number of input channels.

Learnable filters F of size Fh×Fw×Cin×Cout, where Fh is the filter height, Fw is the filter width,

Cout is the number of output channels.

The formula for computing the output feature map O of the convolutional layer is:

Oi,j,k=∑l=1
Cin∑m=1

Fh∑n=1
FwIi+m−1,j+n−1,l×Fm,n,l,k

Where, Oi,j,k is the value at position (i,j) of the output feature map in the kth channel. Ii+m−1,j+n−1,l

is the value at position (i+m−1,j+n−1) of the input feature map in the lth channel. Fm,n,l,k is the

value of the filter at position (m,n) in the lth input channel and kth output channel.Additionally,

a bias term may be added to each output channel, resulting in the following modified formula:

Oi,j,k=∑l=1
Cin∑m=1

Fh∑n=1
FwIi+m−1,j+n−1,l×Fm,n,l,k+Bk

Where, Bk is the bias term for the kth output channel.This bias term allows the network to learn

949 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

an offset for each filter, providing additional flexibility in modeling complex relationships in

the data.

Pooling Layers: The feature maps that are acquired from the convolutional layers are

downsampled using pooling layers, which lowers their spatial dimensions without losing any

significant information. Two popular pooling operations are max pooling and average pooling.

The feature maps are downsampled using max pooling or average pooling after each

convolutional layer. Pooling preserves crucial information while assisting in reducing the

feature maps' spatial dimensions. By taking the maximum value inside each pooling zone, for

instance, max pooling may efficiently reduce the size of the feature maps.Max pooling and

average pooling are the two most popular pooling techniques. The following are the two

formulas:

Max Pooling:Max pooling takes the maximum value within each pooling region. Given an

input feature map I of size H×W×C and a pooling window size of P×P, the output feature map

O is computed as follows:

Oi,j,k=maxm=1
Pmaxn=1

PI(i−1)P+m,(j−1)P+n,k

Where,Oi,j,k is the value at position (i,j) of the output feature map in the kth

channel.I(i−1)P+m,(j−1)P+n,k is the value at position (i−1)P+m,(j−1)P+n of the input feature map

in the kth channel.

Average Pooling:Average pooling computes the average value within each pooling region.

Given an input feature map I of size H×W×C and a pooling window size of P×P, the output

feature map O is computed as follows:

Oi,j,k=(1/ P2)∑m=1
P∑n=1

PI(i−1)P+m,(j−1)P+n,k

Where, Oi,j,k is the value at position (i,j) of the output feature map in the kth

channel.I(i−1)P+m,(j−1)P+n,k is the value at position (i−1)P+m,(j−1)P+n of the input feature map in

the kth channel.These pooling operations help reduce the spatial dimensions of the feature

maps, making them more computationally efficient to process while preserving important

spatial information. Additionally, pooling helps in achieving translational invariance, making

the network more robust to small variations in the input data.

Spectral pooling layers: Spectral pooling layers in DeepIncepNet are designed to aggregate

spectral information across multiple bands while reducing the dimensionality of the spectral

data. The goal is to preserve relevant spectral features, enhance computational efficiency, and

reduce overfitting. Here's the conceptual formula for spectral pooling layers:

• Input hyperspectral data X of size H×W×B, where H is the height, W is the width, and

B is the number of spectral bands.

• Spectral pooling window size P (typically along the spectral dimension).

The spectral pooling operation aggregates spectral information within each pooling window

along the spectral dimension. Here's how the spectral pooling layer operates:

Yi,j,k=Pooling(Xi,j,k−P/2,Xi,j,k−P/2+1,…,Xi,j,k+P/2)

Where, Yi,j,k is the output value at position (i,j) in the pooled feature map along the kth spectral

 Deepincepnet: Disease Detection in Corn… Praba V et al. 950

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

band.Pooling is the pooling operation applied along the spectral dimension within the pooling

window. This operation could be average pooling, max pooling, or other aggregation

techniques.Xi,j,k−P/2,Xi,j,k−P/2+1,…,Xi,j,k+P/2 represent the spectral values within the pooling

window centered at position (i,j,k) in the input hyperspectral data X.

Figure 2: Approximations for different pooling schemes, for different factors of

dimensionality reduction

 Spectral pooling saves far more information and structures for the same number of

parameters, as shown in the third row of Figure 2. This is due to the fact that the spectral

transform provides a sparse basis in the frequency domain frameworks for the inputs including

spatial components. The spectrum power of an input is usually concentrated in the lower

frequencies, with the higher frequencies acting mainly as noise encoders. This non-uniformity

in spectrum intensity allows for the removal of high frequencies with minimal damage to the

input data. By combining spectrum data from each pooling window, the spectral pooling layer

efficiently reduces the number of spectral bands from B to a manageable number while

maintaining pertinent spectral properties. This dimensionality reduction improves computing

performance and lowers the possibility of overfitting, particularly when noisy or redundant

bands are included in the original spectrum data.

 The unique needs of the application and the properties of the hyperspectral data will determine

which pooling operation (such as average or maximum pooling) and pooling window size P

are used.

Spectral normalization layers: Spectral normalization layers in DeepIncepNet are intended to

enhance the network's robustness to variations in illumination conditions and sensor sensitivity

by normalizing spectral data. The normalization process ensures consistent performance

across different imaging conditions. Here's the conceptual formula for spectral normalization

layers:

951 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

• Input hyperspectral data X of size H×W×B, where H is the height, W is the width, and

B is the number of spectral bands.

The spectral normalization operation normalizes the spectral values within each band to

account for variations in intensity and spectral response. Here's how the spectral normalization

layer operates:

Yi,j,k=(Xi,j,k−μk) / σk

 Whereas Yi,j,k represents the normalized value at location (i,j) in the output hyperspectral

data's spectral band k. The spectral value at point (i,j) in spectral band k of the input

hyperspectral data X is denoted by the notation Xi,j,k.The average spectral value for every

pixel in band k is denoted by μk. The standard deviation of spectral values for every pixel in

band k is denoted by σk. Each spectral value is normalized by deducting the mean (muk) from

it and dividing the result by the standard deviation (sigmak). This process effectively

normalizes the spectral data by guaranteeing that the spectral values have zero mean and unit

variance within each band. By ensuring that the network receives consistent input data

regardless of the imaging settings, spectral normalization layers help reduce the effects of

differences in illumination conditions and sensor sensitivity. This normalization improves the

network's generalization performance across various contexts and imaging situations and

increases its capacity to extract relevant features from the spectral data.

Inception Modules: Inspired by the Inception design, the fundamental building pieces of

DeepIncepNet are called inception modules. Parallel convolutional operations with various

kernel sizes (1x1, 3x3, and 5x5) and pooling operations make up each inception module. The

network is able to extract a variety of distinct and discriminative properties from hyperspectral

data because to these parallel paths that capture features at various spatial scales and

resolutions. The main new feature of Inception V3 is Inception modules. They enable the

network to capture features at various scales and resolutions. They are composed of numerous

parallel convolutional processes with varied kernel sizes. This aids in reducing computing

complexity and enhancing the network's representational power. Inception V3 captures

features at various resolutions and scales by using inception modules. Different kernel sizes

are used in parallel convolutional procedures to create each inception module. An inception

module, for instance, may include parallel routes with convolutions of 1x1, 3x3, and 5x5.

These paths record characteristics at various abstraction levels, ranging from minute details to

more extensive patterns.

Input feature map I of size H×W×Cin, where H is the height, W is the width, and Cin is the

number of input channels.

Learnable filters for each pathway: F1, F3, F5, and optionally Freduce for dimensionality

reduction.

The output of the Inception module O is computed as follows:

O=Concat(O1,O3,O5,Oreduce)

Where, O1 is the output of the 1x1 convolution pathway.O3 is the output of the 3x3 convolution

pathway.O5 is the output of the 5x5 convolution pathway.Oreduce is the output of the

dimensionality reduction pathway (if present).Concat denotes the concatenation operation

 Deepincepnet: Disease Detection in Corn… Praba V et al. 952

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

along the channel dimension.

The individual outputs O1, O3, O5, and Oreduce are computed as follows:

• 1x1 Convolution Pathway (Optional): This pathway applies 1x1 convolutional filters

to the input feature maps. These filters capture local correlations and interactions within the

feature maps.

O1=ReLU(I∗F1)

• 3x3 Convolution Pathway: This pathway applies 3x3 convolutional filters to capture

features at a slightly larger spatial scale compared to the 1x1 pathway Figure 3. The larger

receptive field of these filters allows them to capture more complex patterns and structures.

O3=ReLU(I∗F3)

Figure 3: 3x 3 Convolution Pathways

• 5x5 Convolution Pathway: This pathway applies 5x5 convolutional filters to capture

features at an even larger spatial scale Figure 4. These filters are capable of capturing global

patterns and structures within the input feature maps.

O5=ReLU(I∗F5)

Figure 4: 5 x 5 Convolution Pathways

953 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

• Dimensionality Reduction Pathway (Optional):

To reduce the computational cost and prevent the explosion of the number of parameters,

Inception modules often include 1x1 convolutional layers before the larger convolutional

operations. These 1x1 convolutions act as dimensionality reduction steps by reducing the

number of input channels before applying the larger convolutions.

Oreduce=ReLU(I∗Freduce)

* denotes the convolution operation.ReLU denotes the Rectified Linear Unit activation

function applied element-wise.The output size of each pathway depends on the size of the

input feature map and the dimensions of the learnable filters.

Concatenation Layer: The feature maps acquired from several parallel convolutional pathways

are concatenated by inception modules. The network may include many features that were

retrieved at various scales and resolutions thanks to this concatenation. Along the channel

dimension, the output feature maps from the various paths in the inception module are

concatenated.For example, the concatenated feature map would be

100x100x(64+64+64)=100x100x192 if the 1x1, 3x3, and 5x5 paths each yield feature maps

of size 100x100x64.

Figure 5: Convolutional pathways

The concatenation layer in a neural network combines the outputs of multiple pathways or

branches into a single output tensor by stacking them along a specified axis, typically the

channel dimension Figure 5. The concatenation operation is given:

• Output tensors O1,O2,…,ON from ON different pathways.

• Each output tensor Oi has the same spatial dimensions H×W but possibly different

numbers of channels Ci.

The concatenated output tensor Oconcat is computed as follows:

Oconcat=Concat(O1,O2,…,ON)

 Deepincepnet: Disease Detection in Corn… Praba V et al. 954

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

Where ,Oconcat is the concatenated output tensor.Concat denotes the concatenation operation.

The concatenation operation stacks the output tensors along the channel dimension. If Oi has

shape H×W×Ci, then the concatenated output tensor Oconcat will have shape H×W×(C1+C2

+…+CN).

In mathematical terms, the concatenation operation can be represented as follows:

Oconcat[i,j,:]= O1[i,j,:], if 0≤i<H,0≤j<W,

O2[i,j,:], if H≤i<2H,0≤j<W,

ON[i,j,:],if (N−1)H≤i<NH,0≤j<W

In this expression:

• Oconcat[i,j,:] denotes the (i,j)th row and all channels of the concatenated output tensor.

• The rows of the concatenated tensor are filled with the corresponding rows from the

output tensors of each pathway.

The concatenation layer is commonly used in neural network architectures, including multi-

branch architectures such as the Inception modules in InceptionNet, to combine features

extracted from different pathways before passing them to subsequent layers for further

processing.

Fully Connected Layers: At the end of the network, DeepIncepNet has completely connected

layers that enable categorization using the features that have been extracted. The high-

dimensional feature representations are converted into probability distributions over various

disease or health condition classes by these layers.One or more fully connected layers pass

across the flattened feature maps that the convolutional layers produced. By developing

intricate mappings between the retrieved features and the output classes, these layers carry out

classification. After being combined into a vector, the concatenated feature maps are run

through one or more completely connected layers. Dense layers, or fully linked layers, are

frequently found in neural network topologies. Every neuron in a completely connected layer

is connected to every other neuron in the layer before it, creating a fully connected graph

structure [14]. The flattened vector, for instance, might be linked to two completely connected

layers: one with 1,024 neurons and the other with 512 neurons. The following formula can be

used to determine a completely connected layer's output:

Given:

• Input vector X of size M x 1,where M is the number of neurons in the preceding layer.

• Weight matrix W of size N xM,where N is the number of neurons in the current layer.

• Bias vector b ofsize Nx 1,where N is the number of neurons in the current layer.

The output vector Y of the fully connected layer is computed as follows:

Y=W.X+b

 where (.) indicates the matrix multiplication operation and Y is the output vector of size

N×1.The matrix multiplication of the input vector X and the weight matrix W is denoted by

955 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

W.X. The weighted total of the inputs for every neuron in the current layer is calculated by

this process. A bias term is added element-wise for each neuron by adding b to the matrix

multiplication result. The network is able to determine an offset for every neuron, regardless

of the input, thanks to this bias term. The fully linked layer adds bias terms element-by-element

after completing a linear transformation. The Rectified Linear Unit (ReLU) or the softmax

function are two examples of activation functions that are used to pass the output of the fully

connected layer through in order to introduce non-linearity and allow the network to learn

complex relationships in the data.In neural network architectures, fully connected layers are

frequently employed for tasks like classification and regression, where the objective is to learn

mappings between input features and output labels or predictions.

Dropout: In order to avoid overfitting, dropout is a regularization technique that CNNs

frequently employ. During training, a predetermined percentage of neurons are randomly

removed, pushing the network to acquire more resilient and universal properties. In order to

avoid overfitting, dropout is applied to the output of fully linked layers during training. A

predetermined percentage of neurons are dropped at random.In dropout, a random subset of

neurons in the layer is "dropped out" for a brief period of time during training, which results

in zero contributions from those neurons to the subsequent layer. During training, dropout

may, for instance, arbitrarily set 20% of the neurons in the fully connected layer to zero.Here's

the formula for dropout:

• Input vector X of size M×1, where M is the number of neurons in the layer.

• Dropout probability p, which represents the probability of dropping out a neuron

during training.

During training:

• Each neuron's output is multiplied by a dropout mask D of the same size as X. The

dropout mask is a binary mask where each entry is set to 0 with probability p and 1 with

probability 1 - p. The dropout mask D is randomly generated for each mini-batch.

• The output vector Y of the dropout layer is computed as follows:

Y=D⊙X

Where, Y is the output vector of size M x 1. ⊙ denotes element-wise multiplication

(Hadamard product).

During inference (testing):

• No dropout is applied during inference. Instead, the output Y is scaled by 1 - p to

compensate for the dropout applied during training:

Y=(1−p). X

• The scaling factor 1 - p ensures that the expected value of Y remains the same during

training and inference, helping to maintain consistency in the model's behavior.

 In order to allow the activations to be regularized instead of the raw inputs, dropout is usually

performed after the activation function in each layer. Dropout helps prevent the network from

relying too much on any one neuron by randomly removing neurons during training, which

 Deepincepnet: Disease Detection in Corn… Praba V et al. 956

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

forces the network to learn more resilient and universal properties. As a result, overfitting is

decreased and the model's capacity to generalize to new data is enhanced.

Activation Functions: After each convolutional and fully connected layer, nonlinear

activation functions, such as sigmoid or ReLU (Rectified Linear Unit), are added to induce

nonlinearity and allow the network to learn intricate mappings between input and output.

Neural networks rely heavily on activation functions to introduce nonlinearity, which helps

the network recognize intricate patterns and relationships in the input. Let's examine two

popular activation functions, sigmoid and ReLU (Rectified Linear Unit), and some instances

of how they are used.

ReLU (Rectified Linear Unit): ReLU is one of the most widely used activation functions due

to its simplicity and effectiveness. It outputs the input value if it is positive, and zero otherwise.

Mathematically, the ReLU function can be defined as: f(x)=max(0,x)

Example: Let's consider an input value x=2.

The output of the ReLU function would be:

f(2)=max(0,2)=2

Similarly, for an input value x=−1, the output of the ReLU function would be:

f(−1)=max(0,−1)=0

ReLU effectively introduces sparsity in the network, as it turns off neurons that receive

negative inputs, which helps in preventing the vanishing gradient problem during training.

Sigmoid: The sigmoid function is commonly used in binary classification problems where the

goal is to predict probabilities. It squashes the input values to the range between 0 and 1,

allowing them to be interpreted as probabilities. Mathematically, the sigmoid function is

defined as:

f(x)= 1 / (1+e−x1)

Example: Let's consider an input value x=1. The output of the sigmoid function would be:

f(1)= 1 /(1+e−1)≈0.731

Similarly, for an input value x=−2, the output of the sigmoid function would be:

f(−2)= 1 / (1+e2) ≈0.119

 Any real-valued input can be mapped to the interval (0, 1) by the sigmoid function, which

makes it appropriate for tasks like binary classification where the output must be read as a

probability. ReLU and sigmoid activation functions give the neural network nonlinearity,

which enables it to recognize intricate links in the data and produce predictions that are more

accurate. Usually, they are applied to the output of each neuron in the network, element by

element.

Softmax Function: The output of the last fully connected layer is subjected to the softmax

function in order to transform the raw scores into class probabilities. The probability of an

input image falling into a specific class is represented by each value. A vector of raw scores is

produced by the last fully connected layer, and they are then run through the softmax function

957 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

to determine the class probabilities. The softmax function, for instance, would transform the

raw scores into probabilities showing the chance that the input image belongs to each of the

ten classes (dog, cat, bird, etc.). at neural networks, the softmax function is frequently used to

transform raw scores or logits into probabilities, especially at the output layer for multi-class

classification problems. The softmax function takes a vector of real-valued numbers as input

and outputs a probability distribution over multiple classes. Here's the formula for the softmax

function:

• Input vector Z of size K×1, where K is the number of classes.

• Element zi in Z represents the raw score or logit for class i.

The softmax function computes the probability y^Iof class i as follows:

y^
i= (ez

i) / ∑j=1
Kez

j

Where,e denotes the base of the natural logarithm (Euler's number). ∑j=1
Kez

jrepresents the sum

of the exponentiated raw scores over all classes, ensuring that the resulting probabilities sum

to 1.

• ez
icomputes the exponential of the raw score zi for class i , transforming it into a

positive value.

• The exponential function emphasizes larger raw scores, amplifying the differences

between scores and making them more distinguishable.

• Dividing each exponentiated raw score by the sum of all exponentiated scores

normalizes the values, ensuring that the resulting probabilities are between 0 and 1 and sum to

1.

Higher raw scores are correlated with higher probabilities in a probability distribution, which

is effectively created by the softmax function. It makes it possible for the model to produce

probabilities that show how likely it is for each class given the input.The softmax function is

commonly used in conjunction with a loss function, such as cross-entropy loss, during training

in order to calculate the loss and backpropagately update the model parameters. The class with

the highest probability output by the softmax function is typically predicted as the final class

label during inference (testing).

Loss Function: Using a suitable loss function, like cross-entropy loss, DeepIncepNet is

optimized during training to minimize the difference between predicted and ground-truth

labels in the training dataset. Gradient descent and backpropagation are used to iteratively

update the network's parameters. A loss function is necessary to measure the difference

between the model's predicted outputs and the ground-truth labels in the training dataset during

the DeepIncepNet training process. The particular job being solved—such as regression,

classification, or other tasks—determines the loss function to be used. This section will

concentrate on the popular cross-entropy loss function for classification applications.

Cross-Entropy Loss Function: Cross-entropy loss is commonly used in classification

problems, where the goal is to predict the probability distribution of class labels. It measures

the dissimilarity between the predicted probability distribution and the actual distribution of

class labels. For a multi-class classification problem with N classes, the cross-entropy loss

 Deepincepnet: Disease Detection in Corn… Praba V et al. 958

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

between the predicted probabilities y^and the ground-truth labels y can be defined as:

CE(y^,y)=−N1∑i=1Nyilog(y^i)

Where, y^ is the predicted probability distribution over the N classes. y is the ground-truth

label distribution (one-hot encoded). yi and y^i are the ith elements of the ground-truth and

predicted distributions, respectively.

The cross-entropy loss penalizes the model more severely when it makes confident incorrect

predictions, leading to more effective learning.

Training Process: The objective of the training procedure is to minimize the cross-entropy

loss by utilizing optimization methods like stochastic gradient descent (SGD), Adam, or

RMSprop to modify the network's parameters (weights and biases). The model parameters are

iteratively updated to minimize the loss by using backpropagation to determine the gradients

of the loss function with respect to them. The model learns to generate better predictions and

to generalize well to new data by reducing the loss function. The DeepIncepNet training

process is guided by the loss function, which measures the difference between the predicted

and ground-truth labels. The optimization algorithms then modify the network's parameters to

reduce this difference. This iterative process continues until the model converges to a state

where the loss is minimized and the model makes accurate predictions.

DeepIncepNet Algorithms

DeepIncepNet involves detailing the steps of forward propagation (inference) and

backpropagation (training).

Forward Propagation (Inference):

Input: Hyperspectral image X of size H×W×C, where H is height, W is width, and C is the

number of spectral bands.

Initialization:

Initialize input as A[0]=X.

Convolutional Layers:

For each convolutional layer l with parameters W[l] (weights) and b[l] (biases):

Z[l]=A[l−1] * W[l]+b[l]

A[l]=ReLU(Z[l])

Where* denotes the convolution operation and ReLU is the rectified linear activation function.

Inception Modules:

For each inception module:Concatenate feature maps from parallel convolutional pathways.

Spectral Pooling Layers:Apply spectral pooling to aggregate spectral information across

bands.

Fully Connected Layers:Flatten the feature maps A[l] into a vector Aflat[l].or each fully

connected layer l with parameters W[l] and b[l]:

959 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

Z[l]=W[l].Aflat
[l]+b[l]

A[l]=ReLU(Z[l])

Output Layer:Compute the raw scores Z[L] using the last fully connected layer.Apply softmax

activation to obtain class probabilities:

Y^=softmax(Z[L])

Output: Predicted class probabilities Y^.

Backpropagation (Training):

Compute Loss: Using cross-entropy loss between predicted probabilities Y^ and ground truth

labels Y:

L=−(m/1) ∑i=1
m∑c=1

CYiclog(Y^
ic)

Where m is the number of samples, C is the number of classes, Yic is the indicator function for

the true class of sample i, and Y^
ic is the predicted probability for class c of sample i.

Backpropagate Gradients:Compute the gradient of the loss with respect to the parameters of

the network using backpropagation.

Update Parameters:Update the parameters W[l] and b[l] using gradient descent:

W[l]=W[l]−α. (∂L / ∂W[l])

b[l]=b[l]−α. (∂L / ∂b[l])

Where α is the learning rate.These algorithms detail the steps involved in both forward

propagation (inference) and backpropagation (training) of DeepIncepNet, enabling the

network to make predictions and update its parameters iteratively during training.

5. Experimental Results

Dataset: The objective of the training procedure is to minimize the cross-entropy loss by

utilizing optimization methods like stochastic gradient descent (SGD), Adam, or RMSprop to

modify the network's parameters (weights and biases). The model parameters are iteratively

updated to minimize the loss by using backpropagation to determine the gradients of the loss

function with respect to them. The model learns to generate better predictions and to generalize

well to new data by reducing the loss function. The DeepIncepNet training process is guided

by the loss function, which measures the difference between the predicted and ground-truth

labels. The network's parameters are subsequently adjusted by the optimization algorithms to

lessen this discrepancy. Three sets of the dataset were randomly selected: seventy percent of

the patches were included in the training set, twenty percent were included in the validation

set, and ten percent were included in the test set. There were two types of splitting methods

defined: patchwise splitting, which is straightforward, and tilewise splitting, which is hard.

While all of the patches from a tile must be a part of the same set in the hard split, the easy

split allows patches from the same tile to appear in separate sets. Here, four type of infected

leaf was considered for this experiment as sample.

 Deepincepnet: Disease Detection in Corn… Praba V et al. 960

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

1) Common rust(Pucciniasorghi) appears as small, circular to oval-shaped pustules on

the upper surface of corn leaves. Figure 6 (a), these pustules are typically orange to reddish-

brown in color and may occur singly or in clusters. As the infection progresses, the pustules

may coalesce, leading to larger areas of discoloration on the leaves. Severe infections of

common rust can reduce the photosynthetic capacity of the affected leaves, leading to reduced

plant vigor and yield loss [15].

2) Corn Leaf Blight (Cochliobolusheterostrophus) manifests as large, elongated lesions

with tan centers and dark-brown to reddish-brown borders on corn leaves. These lesions may

coalesce, leading to extensive blighting of the foliage. Figure 6 (b), the disease is favored by

warm, humid conditions. Severe infections of southern corn leaf blight can cause significant

yield losses by reducing the photosynthetic area of the leaves and weakening the plants,

making them more susceptible to lodging.

3) Northern Corn Leaf Blight (Exserohilumturcicum) Large, elliptical lesions with tan

centers and dark-brown to reddish-brown borders develop on corn leaves. Lesions may have

a water-soaked appearance and may be surrounded by a yellow halo.Figure 6 (c),Northern

corn leaf blight can cause significant yield losses by reducing the photosynthetic area of leaves

and weakening plants, making them more susceptible to lodging.

4) Gray Leaf Spot (Cercosporazeae-maydis) Small, rectangular lesions with yellow halos

develop on corn leaves, initially appearing grayish-green and later turning grayish-brown.

Lesions may have a "frogeye" appearance. Figure 6 (d), Gray leaf spot can lead to decreased

photosynthetic activity in infected leaves, reducing plant vigor and potentially causing yield

losses if not controlled [16].

Figure 6 : a) Infected Image leaf 1(Common rust (Pucciniasorghi) b) Infected Image leaf 2 -

Corn Leaf Blight (Cochliobolusheterostrophus) c) Infected Image 3- Northern Corn Leaf

Blight (Exserohilumturcicum) d) Infected Image 4-Gray Leaf Spot (Cercosporazeae-maydis)

Performance Evaluation: All experiments were conducted using TNCornNet on a system

equipped with an Intel Core-i7 processor, 8 GB of RAM, a 64-bit Windows 10 operating

system, and a 512 GB SSD. Network training environments: CUDA10.2, Python 3.8.5,

Tensorflow-gpu2.2.0. A training-to-testing ratio of 70:30 was employed for each experiment.

This section provides a comprehensive analysis of the results, along with details on the

evaluation metrics utilized. The primary metric for assessing classification performance is the

classification accuracy, which is defined as the ratio of correctly classified instances to the

total number of instances in the dataset. Mathematically, it is expressed as:

Accuracy = (tp + tn) / (tp + tn + fp + fn) ---(1)

961 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

Where tp denotes true positives, tn denotes true negatives, fp denotes false positives, and fn

denotes false negatives.

Recall (R) and precision (P) are also commonly used metrics in image classification

evaluation. Precision represents the proportion of accurately classified instances to all

instances classified as positive:

Precision(P) = tp/(tp + fp) --- (2)

Recall, on the other hand, measures the proportion of accurately classified instances to all

instances that should have been classified as positive:

Recall (R) = tp/(tp + fn) ----(3)

The F-score, a metric that combines precision and recall into a single value, is used to evaluate

the overall performance of the system. It is computed as the harmonic mean of precision and

recall:

F- Score = 2 × (P.R)/ (P + R) ---- (4)

A higher F-score indicates better predictive capability of the system. The F-score is

particularly useful when comparing performance across different strategies, especially in cases

where one strategy outperforms another but has a lower recall rate.

 We assess the performance of many deep learning models, such as InceptionV3, ResNet-50,

ResNet-101, and the suggested DeepIncepNet, in this experiment when it comes to

categorizing photos of diseased corn plant leaves. Images of two common infections—

Pucciniasorghi, or common rust, and Cochliobolusheterostrophus, or southern corn leaf

blight—make up the benchmark dataset. In order to evaluate each model's ability to correctly

identify the type of infection present in the leaves of maize plants, it is trained and tested on

this dataset. The models are initialized with pre-trained weights and then refined with the use

of the TNCornNet dataset to conform to the unique features of photos of infected corn plant

leaves. InceptionV3's classification accuracy for photos of diseased corn plant leaves is

evaluated, offering information about how useful this model architecture is for the given task.

In a similar manner, InceptionV3's performance and ResNet-50's classification accuracy for

photos of diseased corn plant leaves are assessed and contrasted. In comparison to InceptionV3

and ResNet-50, the accuracy of ResNet-101 is evaluated in order to determine how a deeper

architecture affects classification performance. The suggested DeepIncepNet model, which

incorporates inception modules into a unique architecture, is assessed for accuracy. As a result,

DeepIncepNet and the baseline models (InceptionV3, ResNet-50, and ResNet-101) may be

directly compared.

The proposed DeepIncepNet architecture achieves superior accuracy in classifying images of

infected corn plant leaves compared to other models like InceptionV3, ResNet-50, and

ResNet-101 for several technical reasons. Firstly, DeepIncepNet incorporates inception

modules, which efficiently capture multi-scale features within the network. This allows the

model to extract intricate patterns and details present in the images, enhancing its ability to

discriminate between different types of infections. Secondly, DeepIncepNet's custom

architecture optimization tailors the model specifically for the task at hand, as it is trained from

scratch on the TNCornNet dataset. This customization enables DeepIncepNet to learn features

 Deepincepnet: Disease Detection in Corn… Praba V et al. 962

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

optimized for the dataset's characteristics, contributing to improved classification accuracy.

Additionally, DeepIncepNet benefits from adaptive learning during training, adjusting its

parameters based on the dataset's gradients. This adaptability allows the model to better

capture subtle variations in the images, leading to more discriminative features and higher

accuracy in classification.

Furthermore, DeepIncepNet's use of dropout layers promotes the learning of more resilient

and broadly applicable features and helps avoid overfitting. Dropout enhances DeepIncepNet's

capacity to generalize to new data and perform better in disease classification tasks by

efficiently regularizing the learning process. Finally, DeepIncepNet leverages the benefits of

both conventional convolutional layers and inception modules to capture a wider variety of

features and arrive at a more thorough comprehension of the intricate visual patterns found in

the images. Figure 7 and Table 1 Shown, these technical design choices and optimizations

collectively contribute to DeepIncepNet's superior accuracy in classifying images of infected

corn plant leaves compared to other models.

Table 1: Classification accuracy for TNCornNet (Sample 4) image benchmark.

Model

Classification Accuracy (%)

Infected

Image1

(Pucciniasorghi)

Infected Image2

(Cochliobolusheterostrophus)

Infected Image

3(Exserohilumturcicum)

Infected Image

4(Cercosporazeae-

maydis)

ResNet50 91.25 92.54 90.72 91.44

ResNet101 92.41 92.89 91.99 92.19

InceptionV3 95.41 96.47 95.88 96.77

DeepIncepNet 97.78 98.65 97.35 98.73

Figure 7: Classification Accuracy for TNCornNet (Sample 4) image benchmark.

The F-score, which represents the harmonic mean of precision and recall, is calculated for each

model. It provides a comprehensive measure of the models' overall performance in disease

963 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

classification, taking into account both true positive and false positive rates. DeepIncepNet

may achieve the best F-score due to its ability to effectively balance precision and recall,

capturing a high proportion of true positives while minimizing false positives and false

negatives. Recall measures the proportion of correctly identified instances of a class to all

instances belonging to that class. DeepIncepNet may achieve higher recall compared to other

models by effectively capturing a greater proportion of true positive instances of infected corn

plant leaves, leading to fewer false negatives.

Table 2: Precision, recall, and F-Score of TNCronNet images (4 Infected)

Precision represents the proportion of correctly identified instances of a class to all instances

classified as that class. Figure 8 and Table 2 Shown, DeepIncepNet may achieve higher

precision by minimizing false positive classifications of infected corn plant leaves, leading to

a higher proportion of true positive instances among all positive classifications.

DeepIncepNet's custom architecture, incorporating inception modules, may lead to more

discriminative feature representations, enabling better differentiation between different types

of infections in corn plant leaves. DeepIncepNet is trained from scratch on the TNCornNet

dataset, allowing it to learn features optimized for the dataset's specific characteristics, leading

to improved performance in disease classification. DeepIncepNet incorporates dropout layers,

which prevent overfitting and encourage the learning of more robust and generalizable

features, contributing to better performance in disease classification tasks.

 Deepincepnet: Disease Detection in Corn… Praba V et al. 964

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

Figure 8: Precision, recall, and F-Score of 4 Type of Infected Images

6. Conclusion

 In conclusion, the suggested methodology that makes use of Inception Networks-based

DeepIncepNet, a deep learning architecture, offers a viable way for automated disease

identification in the leaves of corn or maize plants utilizing hyperspectral imaging data.

DeepIncepNet seeks to diagnose diseases accurately and early by fusing the rich spectral data

from hyperspectral sensors with the potent feature extraction powers of deep learning. This

will enable prompt interventions and enhance crop management techniques. We have

described the procedures for preparing hyperspectral data, training DeepIncepNet, and

generating predictions using the intricate architecture and algorithms. The network's capacity

to extract pertinent information from hyperspectral pictures is improved by the addition of

inception modules, spectral pooling layers, and spectral normalization layers, which also help

to reduce the impact of illumination and sensor sensitivity fluctuations. DeepIncepNet has

routinely surpassed well-known models like InceptionV3, ResNet-50, and ResNet-101 in

terms of F-score, recall, and precision after extensive testing and review. DeepIncepNet's

novel architecture, which combines inception modules, custom architectural optimization,

adaptive learning, and regularization algorithms, is responsible for its excellent performance.

In agricultural settings, DeepIncepNet has demonstrated considerable potential in improving

the accuracy and reliability of disease classification by efficiently capturing complex

965 Praba V et al. Deepincepnet: Disease Detection in Corn...

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

characteristics and patterns present in the photos.

 The suggested methodology also stresses the significance of conducting comparison

assessments with alternative deep learning architectures and rigorous evaluation and validation

using independent datasets. Such assessments are necessary to evaluate DeepIncepNet's

efficacy, capacity for generalization, and computing efficiency in disease detection tasks.All

in all, DeepIncepNet has enormous potential to transform disease management in agriculture

by giving agronomists and farmers a dependable and effective tool for tracking crop health

and making defensible judgments. DeepIncepNet has the potential to make a substantial

contribution to improving crop yields, lowering losses, and advancing sustainable agriculture

practices with additional development, validation, and practical implementation.

References
1. D. Zhang and S. Wang, "A survey on deep learning for plant disease recognition,"

Neurocomputing, vol. 440, pp. 130-148, Oct. 2021.

2. D. Wang, Y. Zhang, L. Jiang, and Y. Wu, "Leaf disease detection based on deep learning

algorithm," in Proceedings of the 2019 International Conference on Artificial Intelligence and

Advanced Manufacturing (AIAM 2019), Chengdu, China, 2019, pp. 154-158.

3. J. Ma, K. Du, Y. Xiang, F. Wang, and F. Xie, "Deep learning methods for plant disease

detection and diagnosis: A review," Expert Systems with Applications, vol. 184, p. 115540,

May 2021.

4. M. N. Sannakki, B. M. Patil, S. Shivapparad, P. Kulkarni, and S. Biradar, "A review on recent

advances in deep learning techniques for plant diseases detection and classification,"

International Journal of Advanced Science and Technology, vol. 29, no. 3, pp. 4583-4596,

Mar. 2020.

5. Wang, X.; Li, J.; Tao, J.; Wu, L.; Mou, C.; Bai,W.; Zheng, X.; Zhu, Z.; Deng, Z. A Recognition

Method of Ancient Architectures Based on the Improved Inception V3 Model. Symmetry

2022, 14, 2679.

6. K. He, X. Zhang, S. Ren and J. Sun. “Deep Residual Learning for Image Recognition”,

Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition,

pp. 770-778, 2016.

7. Hao Wang, Ke Li, and Chi Xu ,” A New Generation of ResNet Model Based on

ArtificialIntelligence and Few Data Driven and Its Construction in Image Recognition Model”,

Hindawi Computational Intelligence and Neuroscience, Volume 2022

8. Jan Behmann, Kelvin Acebron ,DzhanerEmin, Simon Bennertz,” Specim IQ: Evaluation of a

New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping

and Disease Detection”, Sensors 2018, 18, 441;

9. A. K. Mahlein and M. T. Kuska, "Hyperspectral imaging for small-scale analysis of symptoms

caused by different sugar beet diseases," Plant Methods, vol. 10, no. 1, p. 19, Feb. 2014.

10. W. Zhao, S. Li, A. Li, B. Zhang, Y. Li, Hyperspectral images classification with convolutional

neural network and textural feature using limited training samples, Remote Sensing Letters 10

(5) (2019) 449-458.

11. M. T. Kuska et al., "Hyperspectral phenotyping on the microscopic scale: Towards automated

characterization of plant-pathogen interactions," Plant Methods, vol. 15, no. 1, p. 130, Nov.

2019.

12. S. Sladojevic et al., "Deep neural networks based recognition of plant diseases by leaf image

classification," Computational Intelligence and Neuroscience, vol. 2016, p. 3289801, Mar.

 Deepincepnet: Disease Detection in Corn… Praba V et al. 966

Nanotechnology Perceptions Vol. 20 No. S14 (2024)

2016.

13. J. Lu, L. Tan, and H. Jiang, ‘‘Review on convolutional neural network (CNN) applied to plant

leaf disease classification,’’ Agriculture, vol. 11, no. 8, p. 707, Jul. 2021.

14. Scherer, D., M¨uller, A., Behnke, S.: Evaluation of pooling operations in convolutional

architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) Part III,

ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010).

15. Panigrahi, K.P.; Sahoo, A.K.; Das, H. A CNN Approach for Corn Leaves Disease Detection

to support Digital Agricultural System. In Proceedings of the 4th International Conference on

Trends in Electronics and Information, Tirunelveli, India, 15–17 June 2020; pp. 678–683.

16. J.-H. Xu, M.-Y. Shao, Y.-C. Wang, and W.-T. Han, ‘‘Recognition of corn leaf spot and rust

based on transfer learning with convolutional neural network,’’ Trans. Chin. Soc. Agricult.

Mach., vol. 51, no.2 pp. 230–236,Feb.2020

