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It is essential to identify illnesses in corn and maize plants early on in order to preserve crop health 

and guarantee agricultural output. This work investigates the detection of plant diseases in leaves 

using advanced deep learning techniques in conjunction with Specim IQ hyperspectral imaging. 

We compare the performance of a newly constructed classifier, DeepIncepNet, with other state-of-

the-art models, such as InceptionV3, ResNet-50, and ResNet-101. We also present a novel Deep 

Neural Network (DNN) classifier based on the AlexNet architecture. Preprocessing was done on 

hyperspectral imaging data to improve image quality and retrieve pertinent characteristics. A large 

dataset was used to train and verify the classifiers, and the results showed excellent disease 

detection accuracy. The comparative analysis illustrates the benefits and drawbacks of each model, 

highlighting the possibility for accurate and effective plant disease diagnosis through the 

combination of deep learning and hyperspectral imaging—a major improvement over conventional 

techniques.  

Keywords: Corn Disease Detection, Maize Plant Leaves, Specim IQ Hyperspectral Imaging, 

Deep Neural Networks (DNN), AlexNet, InceptionV3, ResNet-50, ResNet-101, Image 

Classification, Precision Agriculture. 

 

 

1. Introduction 

In order to maintain food security and the global economy, agriculture is essential. Among the 

most extensively grown crops are corn and maize, which are used as essential ingredients in 

many industrial goods and as staple foods. Nevertheless, a number of illnesses can seriously 

affect the quality and output of these crops. For plant diseases to be effectively managed and 

controlled, to minimize financial losses, and to ensure sustainable agricultural practices, early 

detection and diagnosis are crucial. Conventional illness detection techniques, which mostly 

http://www.nano-ntp.com/
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rely on visual inspection and laboratory testing, are frequently labor-intensive, time-

consuming, and prone to human error. New paths for the development of automated, effective, 

and precise plant disease detection systems have been made possible by recent developments 

in machine learning and image technology [1] [2]. Particularly, hyperspectral imaging has 

shown to be an effective method for gathering comprehensive spectral data over a broad range 

of wavelengths, allowing for the detection of minute alterations in plant physiology that may 

be signs of illness. 

Cutting-edge technology is included in the Specim IQ hyperspectral imaging device, which 

can produce high-resolution images with rich spectral data. In order to identify diseases in the 

leaves of corn and maize plants, this study makes use of the capabilities of Specim IQ 

hyperspectral imaging in conjunction with cutting edge deep learning techniques [3]. Deep 

Neural Networks (DNNs) have shown impressive results in picture classification tasks, and 

there is a lot of potential for using DNNs to identify plant diseases [4]. We present a new deep 

neural network (DNN) classifier built on the AlexNet architecture and compare it to several 

well-known models such as InceptionV3, ResNet-50, ResNet-101, and a recently created 

classifier called DeepIncepNet. Our goal is to determine the best method for precise and 

effective disease diagnosis in corn and maize plants by assessing how well these models 

perform on hyperspectral imaging data. 

We present a new deep neural network (DNN) classifier built on top of the DeepAlexNet 

architecture and compare it to several well-known models such as InceptionV3, ResNet-50, 

ResNet-101, and a recently created classifier called DeepIncepNet. Our goal is to determine 

the best method for precise and effective disease diagnosis in corn and maize plants by 

assessing how well these models perform on hyperspectral imaging data. By creating and 

assessing a unique DNN classifier for disease identification in corn and maize plants, this 

research uses the potential of hyperspectral imaging to advance the field of agricultural 

technology. The study enhances early disease detection, precision agriculture methods, and 

sustainable farming through thorough comparative analysis and empirical confirmation. We 

detail the materials and procedures utilized in this investigation, review relevant literature, 

present and analyze the experimental data, and end with important conclusions and directions 

for future research in the sections that follow. 

 

2. Related Works 

Because hyperspectral imaging (HSI) can collect fine-grained spectral information from 

plants, it has been extensively explored and used in agricultural sciences. With the aid of this 

technology, minute physiological alterations that are frequently undetectable to the unaided 

eye can be detected. Its efficacy in detecting plant diseases, evaluating crop health, and 

tracking environmental conditions has been demonstrated in a number of studies.Mahlein et 

al. (2012) [5], for example, showed how hyperspectral imaging may be used to identify and 

distinguish between a range of plant illnesses, including fungal infections in the leaves of sugar 

beet plants. The study highlighted how spectral signals unique to a given disease can be 

captured by HSI and utilized for monitoring and early identification. Analogously, Sankaran 

et al. (2010) [6] examined several optical sensing technologies, highlighting hyperspectral 

imaging's benefits over conventional techniques for plant disease diagnosis. 
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Convolutional Neural Networks (CNNs), a type of deep learning, have completely changed 

agricultural picture analysis. CNNs have shown useful in the identification, categorization, 

and phenotyping of plant diseases. Complex agricultural photos can be processed by CNNs 

due to their capacity to extract features hierarchically. Using a dataset of 54,306 photos, one 

of the groundbreaking research by Mohanty et al. (2016) [7] used deep learning techniques to 

identify 26 distinct illnesses in 14 crop species. The study's excellent accuracy rates show how 

reliable CNNs are for use in agricultural settings. Furthermore, Kamilaris and Prenafeta-Boldú 

(2018) [8] offered an extensive examination of deep learning applications in agriculture, 

emphasizing the technology's promise in a number of areas, such as soil analysis, yield 

prediction, and disease detection. 

The combination of deep learning algorithms with hyperspectral imaging has demonstrated 

considerable potential in improving illness detection. This combination makes use of deep 

learning algorithms' potent feature extraction capabilities as well as the rich spectrum data that 

HSI provides. The application of a CNN model for hyperspectral image classification of 

healthy and diseased tomato leaves was investigated by Zhang et al. (2019) [9]. Compared to 

typical RGB photos, the study found that using hyperspectral data in conjunction with CNNs 

enhanced the accuracy of disease identification. Additionally, Rumpf et al. (2010) [10] 

emphasized the benefits of this integrated approach by demonstrating the possibility of HSI in 

conjunction with machine learning approaches for the early diagnosis of fungal infections in 

wheat. 

To ascertain which deep learning architectures are best suited for agricultural applications, 

numerous studies have examined various models. Among the architectures that are frequently 

compared are ResNet-101, InceptionV3, AlexNet, and ResNet-50. AlexNet was first presented 

by Krizhevsky et al. (2012) [11], greatly enhancing picture classification benchmarks and 

opening the door to more intricate structures. Szegedy et al. (2016) [12] introduced 

InceptionV3, which used aggressive regularization approaches and factorized convolutions to 

obtain greater accuracy with fewer parameters. In order to address the vanishing gradient issue, 

He et al. (2016) [13] created ResNet, which added residual learning and made it possible to 

train extremely deep networks. The efficacy of ResNet-50 and ResNet-101 in a range of image 

classification tasks, including those related to agriculture, was proved by their advancements. 

Even with these developments, there are still a number of obstacles to overcome in the 

agricultural use of deep learning and hyperspectral imaging. These include the high expense 

of hyperspectral equipment, the complexity of data processing and analysis, and the 

requirement for huge labeled datasets for deep learning model training. Subsequent 

investigations ought to concentrate on constructing extensive datasets, lowering the cost of 

hyperspectral imaging devices, and improving the interpretability of deep learning models. 

These technologies' usability and influence on sustainable farming will be further enhanced 

by their integration with precision agriculture approaches. 

 

3. Materials and Methods 

3.1. Specim IQ Hyperspectral Imaging Device 

The cutting-edge, portable Specim IQ hyperspectral imaging gadget is made for collecting and 
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evaluating hyperspectral data for a variety of uses, such as industrial quality control, forensics, 

agricultural, and environmental monitoring. To make on-site data gathering and analysis 

easier, this gadget combines user-friendly features with hyperspectral imaging technology 

[14]. 

The 400 nm to 1000 nm spectral range is covered by the Specim IQ. A vast range of materials 

and circumstances can be detected within this range, which spans the visible spectrum and the 

near-infrared area. With the capacity to record precise spectral data throughout 204 bands, the 

gadget provides great spectral resolution. For applications like the detection of plant diseases, 

this fine resolution makes it possible to identify minute variations in spectral fingerprints. 

Specim IQ boasts a sensor that can capture images at 512 x 512 pixels, meaning it offers great 

spatial resolution. The complete spectrum is present in every pixel, enabling a thorough spatial 

study of the target region. With its quick data gathering design, the gadget can quickly capture 

hyperspectral images. When gathering data quickly is required in the field, this high-speed 

imaging capability is crucial. With a tiny form factor and a weight of about 1.3 kg, the Specim 

IQ is very portable and can be used in a variety of field settings. Its ergonomic design makes 

handling and using it simple. With the Specim IQ's touchscreen display and built-in computer, 

users can examine and analyze hyperspectral data right on the device. This feature streamlines 

the workflow by doing away with the requirement for external computers or intricate data 

transmission procedures. The gadget has an easy-to-use user interface with menus and settings 

that are intuitive to explore. Quick setup and execution of measurements, real-time data 

review, and parameter adjustment for imaging are all possible. Specim IQ has a rechargeable 

battery that lasts for several hours before needing to be charged again. This guarantees 

continuous use throughout extended periods of data collecting and field surveys. The gadget 

supports multiple data transfer mechanisms, including USB and Wi-Fi, and has plenty of 

onboard storage for hyperspectral data. This makes sharing and backing up gathered data 

simple [15]. 

Specim IQ uses the spectral signatures of several pathogens to detect and categorize plant 

illnesses. This feature makes it possible to monitor and detect illnesses in crops like corn and 

maize early on. By identifying stressors including nutrient shortages, water stress, and pest 

infestations, the device can evaluate the general health of crops.  

3.2. Data Collection Process 

Data collection was conducted under a variety of conditions to ensure the robustness and 

generalizability of the hyperspectral imaging and deep learning models: 

• Weather: High levels of sunlight and clear skies are perfect for taking sharp hyperspectral 

photos.  

• Crop Health Status: Data from healthy, well-maintained plants with ideal growing 

circumstances serve as baseline comparisons for Healthy Plants. Plants that display indications 

of diverse diseases (such as bacterial, viral, or fungal infections) at varying degrees of severity 

are referred to as diseased plants.  

• Soil and Irrigation Conditions: Information gathered from fields with different types of soil 

(clayey, sandy, and loamy) in order to determine how soil characteristics affect hyperspectral 

signals. Information from fields using drip, sprinkler, and rain-fed irrigation techniques to 
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evaluate how water availability affects plant health and disease detection.  

Data Collection Procedure 

• Initial Calibration: To guarantee correct spectrum data gathering, calibration panels were 

used at the agricultural research site to calibrate the Specim IQ hyperspectral imaging device. 

• Field Data Collection: In situ hyperspectral photos of corn and maize leaves were taken using 

the instrument. To standardize data collecting, images were captured at regular intervals and 

angles. Using portable sensors, environmental metadata (temperature, humidity, and soil 

moisture) was captured for correlation with hyperspectral data.  

• Data Labeling: Visual inspection and professional diagnosis were used to label the 

hyperspectral pictures that were collected. The kind, severity, and plant growth stage of any 

disease were noted next to each image. To produce an extensive dataset, labels for stressed 

and healthy plants were also added.  

• Data Management and Storage: Safe, large-capacity storage systems were used to store 

hyperspectral data. Data loss was avoided by performing regular backups. To enable effective 

data retrieval and analysis, the information, annotations, and hyperspectral pictures were 

managed and organized in a centralized database. 

The technique of gathering data was carefully designed and carried out to guarantee the 

acquisition of superior hyperspectral photographs in a variety of settings. The gathered 

information serves as the basis for the suggested deep neural network classifiers' training and 

validation, which will ultimately improve the precision and dependability of disease detection 

in corn and maize plants[16]. 

3.3. Preprocessing of Hyperspectral Images 

Before feeding hyperspectral pictures into deep neural network (DNN) classifiers, 

preprocessing is an essential step to guarantee data quality and consistency. Calibration, noise 

reduction, normalization, and feature extraction are common preprocessing procedures for 

hyperspectral pictures [17] [18]. The preparation workflow is described in full below: 

1. Radiometric Calibration 

Radiometric calibration is performed to convert raw digital numbers (DN) captured by the 

hyperspectral camera into reflectance values (R), which are independent of the sensor and 

environmental conditions. 

• Dark Current Correction: Subtract the dark current image (captured with the lens cap 

on) from the raw hyperspectral image to remove sensor noise. 

Icorrected = Iraw − Idark 

WhereIraw is the raw hyperspectral image, and Idark is the dark current image (captured with 

the lens cap on). 

• Flat Field Correction: Use a white reference panel with known reflectance properties 

to correct for variations in illumination and sensor sensitivity across the spectral range. 
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R =
Icorrected
Iwhite

 

Where, Iwhiteis the image of a white reference panel with known reflectance properties. 

2. Noise Reduction 

Environmental elements and electrical sensor noise are two common causes of noise in 

hyperspectral photographs. Techniques for reducing noise contribute to improving the signal-

to-noise ratio (SNR). 

• Spectral Smoothing:Utilize spectrum smoothing methods to minimize high-frequency 

noise in the spectral data, such as Savitzky-Golay filtering. Employing the Savitzky-Golay 

filter: 

ŷi = ∑ cj

m

j=−m

yi+j 

• Spatial Filtering: Use spatial filters like median or Gaussian filters to smooth the 

image while preserving edges and important features. Applying a Gaussian filter, 

G(x, y) =  
1

2πσ2
e
−
x2+y2

2σ2  

Where,σ is the standard deviation of the Gaussian distribution. 

3. Normalization 

Normalization ensures that the data from different images and sessions are comparable by 

scaling the spectral values to a consistent range. 

• Min-Max Normalization: Scale the reflectance values of each spectral band to a range 

of [0, 1] using min-max normalization. 

R′ =
R − Rmin

Rmax − Rmin
 

Where R is the reflectance value, Rmin andRmaxare the minimum and maximum reflectance 

values in the dataset. 

• Standardization: Standardize the spectral data by subtracting the mean and dividing 

by the standard deviation for each spectral band. 

R′′ =
R − μ

σ
 

Where,μ is the mean reflectance and σ is the standard deviation. 

4. Spectral and Spatial Feature Extraction 

Feature extraction reduces the dimensionality of hyperspectral data while retaining essential 

information for classification. 



973 Praba V et al. Disease Detection in Corn or Maize...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

• Principal Component Analysis (PCA): Apply PCA to reduce the number of spectral 

bands by transforming the original data into a set of orthogonal principal components that 

capture the most variance in the data. 

Z=X | W 

Where,X is the centered data matrix, W is the matrix of eigenvectors, and Z is the matrix of 

principal components. 

• Band Selection: Select specific spectral bands that are most informative for disease 

detection based on prior knowledge or feature selection algorithms. 

MI(X; Y) =H(X) −H (X∣Y) 

Where, MI is the mutual information, H(X) is the entropy of the spectral band X, and H(X∣Y) 

is the conditional entropy given the label Y. 

5. Image Segmentation 

Image segmentation isolates the regions of interest (e.g., plant leaves) from the background, 

facilitating focused analysis. 

• Thresholding: Use thresholding techniques to segment the plant leaves from the 

background based on reflectance values.Using Otsu's method, 

σB
2(t) = w1(t)w2(t)[μ1(t) − μ2(t)]

2 

Where, σB
2  is the between-class variance, wi are the class probabilities, and μi are the class 

means. 

• Morphological Operations: Apply morphological operations (e.g., erosion, dilation) 

to refine the segmented regions and remove small artifacts.Applying erosion and dilation: 

E(A)=A⊖ B 

D(A)=A⊕B 

Where, A is the segmented image and B is the structuring element 

6. Data Augmentation 

Data augmentation increases the diversity of the training dataset by applying transformations 

to the hyperspectral images. 

• Geometric Transformations: Apply geometric transformations such as rotations, 

translations, and scaling to create variations of the original images. 

Tθ = [
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

] 

Where, θ is the rotation angle. 

• Spectral Augmentation: Introduce variations in spectral data by adding synthetic noise 

or slightly shifting the spectral bands. 
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Raug=R+ϵ 

Where, ϵ is Gaussian noise with mean μ and standard deviation σ. 

7. Patch Extraction 

For efficient training of DNN classifiers, hyperspectral images are often divided into smaller 

patches. 

• Patch Size: Define an appropriate patch size (e.g., 32x32 or 64x64 pixels) that captures 

sufficient spatial and spectral information for disease detection. 

• Patch Extraction: Extract overlapping or non-overlapping patches from the 

hyperspectral images, ensuring that each patch contains meaningful data.Define patch size 

p×p, and extract patches with stride s: 

Patches = {I(i: i + p − 1, j: j + p − 1)|i, j = 1, s, 2s, … } 

8. Data Annotation 

Accurate labeling of the preprocessed data is essential for supervised learning. 

• Expert Annotations: Collaborate with agricultural experts to annotate the preprocessed 

hyperspectral images with disease labels, severity levels, and other relevant information. 

• Automated Labeling: Use automated techniques (e.g., clustering, unsupervised 

learning) to assist in labeling large datasets, followed by expert validation. 

9. Data Storage and Management 

Organize and store the preprocessed data in a structured format for efficient retrieval and 

analysis. 

• Database Management: Use a database management system to store the preprocessed 

images, metadata, and annotations. 

• Data Backup: Implement regular backup procedures to prevent data loss and ensure 

data integrity. 

Hyperspectral picture preprocessing entails a number of procedures to guarantee data quality, 

minimize noise, and extract pertinent features. In order to improve the effectiveness of DNN 

classifiers in identifying illnesses in the leaves of corn and maize plants, this procedure is 

essential [19]. Effective disease control in agriculture can be aided by meticulously calibrating, 

normalizing, and enhancing the hyperspectral data. This will produce more accurate and 

dependable results in the analysis that follows. 

3.4.DNN Classifiers 

Because Deep Neural Networks (DNNs) can learn hierarchical features from raw data, they 

are effective tools for picture classification tasks. In this study, we evaluate multiple deep 

neural network designs (DNN) for the job of disease identification in corn and maize plant 

leaves using hyperspectral images: InceptionV3, ResNet-50, ResNet-101, and a custom-

designed network called DeepIncepNet. 
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• InceptionV3 [20] [21]is a more developed variant of the Inception network that is 

intended to effectively expand the network's breadth and depth. Its architecture makes use of 

inception modules, which execute numerous convolutions in parallel with varying kernel sizes 

before concatenating the output. In order to speed up training and increase accuracy, it also 

incorporates batch normalization and adds additional classifiers to enhance convergence 

during training. The main characteristics of InceptionV3 are its memory and computational 

efficiency, as well as its parallel convolutional routes, which enable it to capture multi-scale 

information. Because it can capture a variety of spectral-spatial information, InceptionV3 is 

ideally suited for hyperspectral picture analysis. 

• ResNet-50[22] [23]is a well-known 50-layer deep residual network that can train 

extremely deep networks. Each residual block in the architecture consists of two or three 

convolutional layers, and each block has shortcut connections that bypass one or more layers. 

The vanishing gradient issue is addressed by ResNet-50's key characteristics, which enable the 

training of deeper networks. Gradient flow is enhanced by identity mappings made possible 

by the shortcut connections. This is why ResNet-50's depth and capacity to learn intricate 

characteristics make it useful for hyperspectral picture categorization. 

• ResNet-101 [24] [25]is a 101-layer, expanded version of ResNet-50 that offers more 

depth for intricate feature learning. The architecture retains batch normalization and shortcut 

connections, although it has more residual blocks than ResNet-50. Greater depth, which 

enables more thorough feature extraction, and a larger model capacity, which enables the 

model to capture more complex patterns in hyperspectral data, are two of ResNet-101's 

primary characteristics. ResNet-101 is therefore perfect for hyperspectral pictures, where 

precise illness diagnosis depends on fine-grained features. 

• DeepIncepNetis a specially created deep learning model that blends deeper 

architectures with features from Inception networks. Its architecture combines deeper layers 

akin to ResNet for collecting complex patterns and inception modules for multi-scale feature 

extraction. To improve training performance and stability, it also has auxiliary branches. 

Combining the advantages of residual connections and inception modules, as well as balancing 

computational efficiency and feature learning power, are some of DeepIncepNet's key 

features. Because of this, DeepIncepNet is especially designed for hyperspectral image 

analysis, offering reliable results for the identification of diseases in maize and corn leaves. 

For hyperspectral image classification, the DNN classifiers—InceptionV3, ResNet-50, 

ResNet-101, and DeepIncepNet—offer a variety of topologies and functionalities. This study 

compares different models in an effort to determine which method best utilizes deep learning 

and hyperspectral imaging technologies to detect diseases in corn and maize plants early on. 

 

4. Proposed Methodology 

4.1. DeepAlexNet: Proposed DNN Classifiers with AlexNet 

Using hyperspectral imaging data, the suggested deep neural network (DNN) classifiers, called 

DeepAlexNet, offer a novel method for disease identification in the leaves of maize or corn 

plants. By improving AlexNet's basic architecture, DeepAlexNet makes it more capable of 
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handling the intricacies of hyperspectral pictures. DeepAlexNet seeks to improve crop 

management and yield optimization by recognizing plant diseases with high accuracy and 

robustness through the use of sophisticated deep learning algorithms and architectural 

improvements. Figure 1 shown, Key Enhancements of DeepAlexNet are. 

✓ Multi-Channel Input Adaptation: The first convolutional layer is adapted to accept 

hyperspectral images with multiple spectral bands, ensuring effective spectral information 

capture. 

✓ Spectral-Spatial Feature Extraction: Convolutional filters are designed to operate 

across spectral bands for spectral feature extraction and within individual spectral bands for 

spatial feature extraction. 

✓ Batch Normalization: Integrated batch normalization layers stabilize and accelerate 

training, improving convergence and generalization by normalizing activations in each layer. 

✓ Data Augmentation: Techniques such as geometric transformations (rotations, 

translations, flips) and spectral augmentation (adding synthetic noise) are used to increase 

training dataset size and diversity. 

✓ Regularization: L2 regularization and dropout techniques are employed to prevent 

overfitting, ensuring the model generalizes well to unseen data. 

✓ Transfer Learning: Pre-training on a large dataset of natural images followed by fine-

tuning on the hyperspectral dataset leverages pre-learned features, reducing the amount of 

labeled data required. 

These improvements are combined with DeepAlexNet to produce a DNN classifier for 

hyperspectral image analysis that is reliable and effective, especially for early and precise 

disease identification in the leaves of corn and maize plants. This innovative method expands 

and modifies AlexNet's demonstrated capabilities to address the particular difficulties 

presented by hyperspectral photography in agriculture. 
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Figure 1 : Key Enhancements of DeepAlexNet 

4.2. DeepAlexNet Architecture 

A proposed deep neural network (DNN) classifier called DeepAlexNet is intended to use 

hyperspectral imaging data to identify diseases in the leaves of maize and corn plants. To 

handle the high dimensionality and complexity of hyperspectral pictures, DeepAlexNet builds 

upon the underlying architecture of AlexNet [26] [27] by incorporating many additions. In the 

end, this innovative method seeks to enhance crop management and yield optimization by 

increasing the precision and resilience of disease detection. The DeepAlexNet architecture is 

explained in full here: 

Step 1: Data Preparation 

Multi-Channel Input Adaptation 

Three-channel RGB images are the target application for the original AlexNet. In order to 

Data Preparation 

Multi-Channel Input Adaptation 

Data augmentation 

Model Initialization 

Convolutional Layers(1-2) 

Spectral-Spatial Feature Extraction 

 

Convolutional Filter(3) 

Batch Normalization(4) 

Pooling Layer(5) 

Activation Function (ReLU) 

Fully Connected Layer 

Regulation (Loss Function) 

 

Transfer Learning  

(Pre and fine Training) 

 

Softmax /Output Layer 
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accommodate the many spectral bands of hyperspectral pictures, DeepAlexNet modifies the 

first convolutional layer to take multi-channel inputs. This adaptation makes sure that the input 

data's spectral information is effectively captured. 

• Original AlexNet Input:XRGB  ∈  R
H∗ W∗ 3 

• DeepAlexNet Input: XHSI  ∈  R
H∗ W∗ C 

Where, Cis the number of spectral channels. 

• First Convolutional Layer:Conv1 = ReLU(Conv(XHSI,WConv1) + bConv1) 

Here, WConv1 is the weight matrix with dimensions adapted to handle C channels. 

Data Augmentation 

Data augmentation techniques are employed to artificially increase the size and diversity of 

the training dataset. These techniques include: 

• Geometric Transformations:X′=GeometricTransform(X,θ)  

Where,θ includes random rotations, translations, and flips. 

• Spectral Augmentation:X′=X+N(0,σ2) 

Where, N(0,σ2) represents synthetic noise added to the spectral bands. 

Step 2: Model Initialization  

Initialize the layers of DeepAlexNet, including convolutional layers, batch normalization, 

pooling layers, and fully connected layers. 

Convolutional Layers 

• Layer 1: The first convolutional layer applies multiple filters to the input data, each 

designed to capture different spectral features. This layer uses a large kernel size to cover a 

broader range of spectral bands. 

Conv1=ReLU (Conv(X,W1)+b1) 

• Layer 2-5: Subsequent convolutional layers apply smaller filters to extract more 

refined spectral-spatial features. These layers are interspersed with max-pooling layers to 

reduce dimensionality and computational complexity. 

Convl=ReLU(Conv(Pooll−1,Wl)+bl) 

Pooll=MaxPool(Convl) 

Step 3: Spectral-Spatial Feature Extraction 

Convolutional Filters 

To leverage both spectral and spatial information, DeepAlexNet enhances convolutional filters 

to operate across spectral bands for spectral feature extraction and inside particular spectral 

bands for spatial feature extraction. This dual technique captures the spectral fingerprints and 

textural properties required for accurate disease identification. 
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• Spectral Feature Extraction:Convspectral=ReLU(Conv(XHSI,Wspectral)+bspectral) 

Where.Wspectral operates across spectral bands. 

• Spatial Feature Extraction:Convspatial=ReLU(Conv(XHSI,Wspatial)+bspatial) 

Where.Wspatial operates within individual spectral bands. 

Batch Normalization 

Batch normalization layers are integrated into the network to stabilize and accelerate training. 

By normalizing the activations in each layer, batch normalization mitigates issues related to 

internal covariate shift, leading to improved convergence and generalization. 

BN(x) = γ

(

 
x − μB

√σB
2 + ϵ

)

 + β 

Where,μB and σβ
2  are the mean and variance of the batch, and γ and β are learnable parameters. 

Pooling Layers 

• Max-Pooling: Applied after some convolutional layers to reduce spatial dimensions 

and retain important features. 

MaxPool(x) =max (xi,j) over the pooling window 

Step 4: Activation Functions 

• ReLU (Rectified Linear Unit): Applied after each convolutional and fully connected 

layer to introduce non-linearity. 

ReLU(x)=max(0,x) 

Step 5: Fully Connected Layers 

• Layer 6-8: These layers aggregate the extracted features and perform the final 

classification. Dropout is applied to these layers to prevent overfitting. 

FCl=ReLU(Wl⋅Flatten(Pooll−1)+bl) 

Dropout: Drop(x)=x⋅Bernoulli(p) 

Where, p is the dropout rate. 

Step 6: Regularization 

Define Loss Function.Use categorical cross-entropy loss: 

Loss =  − ∑yi
i

log (yî) 

Regularization techniques, such as L2 regularization and dropout, are employed to prevent 

overfitting. 
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L2 Regularization:Loss =  Lossoriginal + λ∑ Wi
2

i  

Where, λ is the regularization parameter and WIare the weights of the network. 

Optimize the Model, Use backpropagation and an optimizer (e.g., Adam) to update weights: 

θ=θ−η∇θLosstotal 

Where, θ are the model parameters, η is the learning rate, and ∇θ is the gradient with respect 

to θ. 

Step 7: Transfer Learning 

By pre-training the network on a sizable dataset of natural photos and then refining it on the 

hyperspectral dataset, transfer learning is employed. By utilizing previously acquired features 

from the original dataset, this method minimizes the quantity of labeled data needed for 

efficient training on the hyperspectral pictures. 

• Pre-Training:DeepAlexNetpre-trained=Train(DeepAlexNet,Xnatural,Ynatural) 

Where. XnaturalYnatural are the inputs and labels of the natural image dataset. 

• Fine-Tuning:DeepAlexNetfine-tuned=Train(DeepAlexNetpre-trained,XHSI,YHSI) 

Where.XHSIYHSI are the inputs and labels of the hyperspectral image dataset. 

These enhancements collectively improve the capability of DeepAlexNet to accurately and 

efficiently detect diseases in corn and maize plant leaves using hyperspectral imaging data. 

Step 8: Output Layer 

The final layer uses a softmax activation function to output the probabilities of the different 

disease classes. 

Softmax(Zi) =  
ei
2

∑ ei
2

j

 

Utilizing cutting-edge methods to process hyperspectral imaging data, the DeepAlexNet 

algorithm guarantees reliable disease diagnosis in maize and corn leaves as well as efficient 

spectral-spatial feature extraction. DeepAlexNet is an important tool for precision agriculture 

because of its excellent accuracy and generalization, which it achieves by architectural 

modifications, batch normalization, data augmentation, regularization, and transfer learning. 
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Figure 2 : DeepAlexNet architecture for corn disease detection 

Figure 2 shown the DeepAlexNet architecture for corn disease detection begins with an input 

layer that accepts hyperspectral images of shape (H, W, C), where H is height, W is width, and 

C is the number of spectral channels. The first convolutional layer (Conv1) uses 96 filters with 

an 11x11 kernel size, a stride of 4, and ReLU activation, producing an output of (H/4, W/4, 

96). This is followed by a max-pooling layer with a 3x3 pool size and a stride of 2, reducing 

the output to (H/8, W/8, 96). The second convolutional layer (Conv2) employs 256 filters with 

a 5x5 kernel size, a stride of 1, and ReLU activation, resulting in (H/8, W/8, 256). Another 

max-pooling layer with the same parameters further reduces the output to (H/16, W/16, 256). 

Conv3 has 384 filters, a 3x3 kernel size, a stride of 1, and ReLU activation, maintaining the 

output at (H/16, W/16, 384). Conv4 and Conv5 follow with the same configuration as Conv3, 

except Conv5 outputs (H/16, W/16, 256). The final max-pooling layer, with a 3x3 pool size 

Input Layer 

Input (H, W, C) 

Conv1 

Filters: 96 Kernel 

Size: 11x11 Stride: 4 

Activation: ReLU 

Output: (H/4, W/4, 96) 

Max-Pooling 1 

Conv2 

Filters: 256 

Kernel Size: 5x5 

Stride: 1 

Activation: ReLU 

Output: (H/8, W/8, 256) 

Max-Pooling 2 

Pool Size: 3x3 

Stride: 2 

Output: (H/8, W/8, 96) 

Conv3 
Pool Size: 3x3 

Stride: 2 

Output: (H/16, W/16, 256) 
Filters: 384 

Kernel Size: 3x3 

Stride: 1 

Activation: ReLU 

Output: (H/8, W/16, 384) 

Conv4 

Filters: 384 

Kernel Size: 3x3 

Stride: 1 

Activation: ReLU 

Output: (H/8, W/16, 384) 

Conv5 

Max-Pooling 3 

Pool Size: 3x3 

Stride: 2 

Output: (H/32, W/32, 256) 

Flattening 

FC6 

Units: 4096 

Activation: ReLU 

Dropout: 50% 

FC7 

Units: 4096 

Activation: ReLU 

Dropout: 50% 

FC8 
Units: Number of Classes 

Activation: Softmax 

Output Layer 

Filters: 256 

Kernel Size: 3x3 

Stride: 1 

Activation: ReLU 

Output: (H/8, W/16, 256) 
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and a stride of 2, reduces this to (H/32, W/32, 256). The network then flattens the 3D output 

to 1D before passing it through three fully connected layers: FC6 and FC7, both with 4096 

units, ReLU activation, and 50% dropout; and FC8, which has units equal to the number of 

disease classes and uses softmax activation for classification. This architecture is designed to 

detect diseases such as Puccinia sorghi (common rust) and Cochliobolus heterostrophus 

(southern corn leaf blight) by effectively learning and identifying complex patterns in 

hyperspectral images of corn leaves. 

 

5. Experimental Results 

Dataset: The TNCornNet dataset includes 4565 image patches obtained using the Specim IQ 

Sensor from a cornfield in Pollachi (243°95" E, 43°95'18" N). Each patch, measuring 512 × 

512 pixels, contains 31 spectral bands in the visible range (400 nm to 700 nm) with a 10 nm 

spectral resolution. After geometric, atmospheric, and radiometric corrections, the dataset was 

divided into non-overlapping patches, resulting in 23 patches. These patches were split into 

training (70%), validation (20%), and test (10%) sets using two methods: easy split (patches 

from the same tile in different sets) and hard split (all patches from a tile in the same set). Four 

types of infected leaves were included: 

• Common Rust (Puccinia sorghi): Small, orange to reddish-brown pustules on the 

upper leaf surface, which can coalesce, reducing photosynthetic capacity and plant vigor.  

• Corn Leaf Blight (Cochliobolus heterostrophus): Large lesions with tan centers and 

dark borders, which can coalesce, leading to foliage blighting, reduced photosynthetic area, 

and yield losses. Favored by warm, humid conditions. ![Figure 6(b)](insert figure link) 

• Northern Corn Leaf Blight (Exserohilum turcicum): Large, elliptical lesions with tan 

centers and dark borders, sometimes with a yellow halo. Can significantly reduce 

photosynthetic area and plant strength.  

•  Gray Leaf Spot (Cercospora zeae-maydis): Small, rectangular lesions with yellow 

halos, initially grayish-green, turning grayish-brown, reducing photosynthetic activity and 

plant vigor.) 

 

Figure 6 : a) Infected Image leaf 1(Common rust (Puccinia sorghi) b) Infected Image leaf 2 - 

Corn Leaf Blight (Cochliobolus heterostrophus) c) Infected Image 3- Northern Corn Leaf 

Blight (Exserohilum turcicum) d) Infected Image 4-Gray Leaf Spot (Cercospora zeae-

maydis) 

Performance Evaluation: 
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All experiments were conducted using TNCornNet on a system equipped with an Intel Core-

i7 processor, 8 GB of RAM, a 64-bit Windows 10 operating system, and a 512 GB SSD. The 

training environments included CUDA10.2, Python 3.8.5, and TensorFlow-gpu 2.2.0. A 70:30 

training-to-testing ratio was used for each experiment. 

This section provides a comprehensive analysis of the results and the evaluation metrics used. 

The primary metric for assessing classification performance is classification accuracy, defined 

as the ratio of correctly classified instances to the total number of instances in the dataset: 

Accuracy = (tp + tn) / (tp + tn + fp + fn) ---(1) 

Where tp denotes true positives, tn denotes true negatives, fp denotes false positives, and fn 

denotes false negatives. 

Precision (P) and Recall (R) are also commonly used metrics in image classification 

evaluation. Precision represents the proportion of accurately classified instances to all 

instances classified as positive: 

Precision(P) = tp/( tp + fp )   --- (2) 

Recall measures the proportion of accurately classified instances to all instances that should 

have been classified as positive: 

Recall (R) = tp/( tp + fn)  ---- (3) 

The F-score, a metric that combines precision and recall into a single value, is used to evaluate 

the overall performance of the system. It is computed as the harmonic mean of precision and 

recall: 

F- Score = 2 × (P.R)/ (P + R)   ----  (4) 

A higher F-score indicates better predictive capability of the system, and it is particularly 

useful when comparing performance across different strategies. 

In this study, we examined how well different deep learning models identified two different 

plant diseases in the leaves of corn plants: Cochliobolus heterostrophus (southern corn leaf 

blight) and Puccinia sorghi (common rust). InceptionV3, ResNet-50, ResNet-101, 

DeepIncepNet, and the suggested DeepAlexNet were the models that were assessed. A 70:30 

ratio was used to split the TNCornNet dataset into training and testing sets. To make sure each 

model could successfully learn the distinctive qualities of diseased corn plant leaves, they were 

pre-trained on a sizable dataset of natural photos and then refined using the TNCornNet 

dataset. 

InceptionV3 makes use of inception modules, which carry out parallel convolutions with 

various kernel sizes before concatenation. It incorporates batch normalization and adds 

auxiliary classifiers. Although InceptionV3 captures multi-scale information and has an 

economical computational cost and memory utilization, its performance is limited by its 

relatively shallow depth. The vanishing gradient issue is successfully resolved by ResNet-50, 

which is made up of residual blocks with shortcut connections that omit one or more layers 

and enable the training of deeper networks. This model's depth and capacity to pick up on 

intricate details make it useful for classifying hyperspectral images. ResNet-101 has additional 

depth, enabling more thorough feature extraction and higher model capacity. It is comparable 
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to ResNet-50 but has more residual blocks. It is more costly computationally, though. 

Inception modules for multi-scale feature extraction are combined with deeper layers in 

DeepIncepNet, akin to ResNet. This model offers strong performance for disease identification 

in corn and maize leaves by striking a compromise between computational economy and 

feature learning capabilities. Nevertheless, out of all the evaluated models, the suggested 

DeepAlexNet had the best classification accuracy. 

DeepAlexNet performs better than other networks for a number of important reasons. The first 

convolutional layer is modified to take multi-channel inputs, allowing hyperspectral images' 

many spectral bands to be accommodated and spectral information to be captured efficiently. 

Utilizing both spectral and spatial information critical to precise disease identification, the 

improved convolutional filters function across spectral bands for spectral feature extraction 

and inside particular spectral bands for spatial feature extraction. Layers of batch 

normalization stabilize and speed up training, reducing problems caused by internal covariate 

shift.Techniques for augmenting data, such as spectral augmentation and geometric 

alterations, increase the quantity and diversity of the training dataset, which improves the 

model's resilience and lowers the chance of overfitting. Regularization methods like as dropout 

and L2 regularization guarantee that the model generalizes effectively to new data. 

Furthermore, transfer learning lowers the quantity of labeled data needed and improves the 

model's capacity to adjust to the unique properties of diseased corn plant leaves. This process 

entails pre-training on a sizable dataset of natural photos and fine-tuning on the TNCornNet 

dataset. Table 1 and Figure 3 demonstrate how the suggested DeepAlexNet, a robust and 

accurate classifier for hyperspectral image analysis of corn plant diseases, outperformed other 

models thanks to its extensive architectural improvements and training methodologies. 

Model 

 

Classification Accuracy (%) 

Infected Image1 

(Puccinia sorghi) 

Infected Image2 

(Cochliobolus 
heterostrophus) 

Infected Image 

3(Exserohilum 
turcicum) 

Infected Image 

4(Cercospora zeae-
maydis) 

 

InceptionV3 91.25 92.23 90.58 91.77 

ResNet50 92.88 93.54 91.73 93.64 

ResNet101 93.44 94.89 92.89 93.98 

DeepIncepNet 95.96 96.65 95.77 96.73 

DeepAlexNet 96.47 97.86 96.78 97.23 

Table 1: Accuracy of TNCornNet (Sample 4) image benchmark. 
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Figure 3:  Accuracy of TNCornNet (Sample 4) image benchmark. 

The F-score, Recall (R), and Precision (P) analysis in the TNCornNet Image Benchmark, 

InceptionV3 makes use of inception modules that execute concatenation after parallel 

convolutions with various kernel sizes. Because of its relatively shallow depth, this structure 

limits precision while boosting recall by capturing multi-scale information. ResNet-50 solves 

the vanishing gradient issue and makes training deeper networks easier with its 50-layer 

architecture made of residual blocks. ResNet-50's shortcut connections improve gradient flow, 

which raises recall and precision. An expanded version of ResNet-50, ResNet-101 adds more 

residual blocks, increasing the depth and capability of feature extraction. But occasionally, the 

added complexity might result in overfitting, which can have an impact on measures like recall 

and precision.DeepIncepNet strikes a compromise between computational economy and 

feature learning capabilities by combining deeper layers akin to ResNet with inception 

modules for multi-scale feature extraction. This combination captures a variety of spectral-

spatial information and improves recall and precision. DeepIncepNet performs well, but not 

as well as the suggested DeepAlexNet. 

Table 2: Precision, recall, and F-Score of TNCronNet images (4 Infected) 
Model Precision (%) Recall (%) F-Score (%) 

Infected Image 1(Puccinia sorghi) 

ResNet50 87.56 88.14 88.59 

ResNet101 88.45 89.12 89.66 

InceptionV3 90.24 91.25 90.89 

DeepIncepNet 92.45 92.88 91.47 

DeepAlexNet 93.47 95.87 94.58 

Infected Image 2(Cochliobolus heterostrophus) 

ResNet50 85.47 86.57 85.78 

ResNet101 87.85 90.27 90.24 

InceptionV3 89.57 91.47 91.47 

DeepIncepNet 90.74 92.87 92.58 

DeepAlexNet 92.59 93.74 94.52 

Infected Image 3 (Exserohilum turcicum) 

ResNet50 86.74 88.85 81.25 

ResNet101 87.41 89.57 83.57 

InceptionV3 90.58 91.24 87.59 

DeepIncepNet 93.57 92.58 91.24 

DeepAlexNet 95.69 94.78 96.58 

Infected Image 4 (Cercospora zeae-maydis) 
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ResNet50 85.47 82.24 80.24 

ResNet101 86.17 83.24 83.25 

InceptionV3 87.24 86.59 85.24 

DeepIncepNet 90.24 92.14 89.27 

DeepAlexNet 93.68 94.25 92.25 

 

 

Figure 4: Precision, Recall, and F-Score of 4 Type of Infected Images 

Table 2 and Figure 4 shown. the DeepAlexNet achieved the highest F-score, recall, and 

precision among all the models tested. This superior performance is attributed to several 

technical enhancements: 

• Multi-Channel Input Adaptation:DeepAlexNet modifies the first convolutional layer 

to support various spectral bands from hyperspectral pictures by adapting it to accept multi-

channel inputs. This modification guarantees the efficient acquisition of both spectral and 

spatial information, which is essential for precise illness diagnosis. 

• Spectral-Spatial Feature Extraction:For spectral feature extraction, the convolutional 

filters in DeepAlexNet function both within and across spectral bands, and for spatial feature 

extraction, they function within a single spectral band. The spectral fingerprints and textural 

characteristics required for excellent recall and precision are captured by this dual method. 
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• Batch Normalization:Through the normalization of activations in each layer, 

integrated batch normalization layers stabilize and speed up training. By reducing internal 

covariate shift problems, this improves generalization and convergence, which raises recall 

and precision. 

• Data Augmentation:The size and diversity of the training dataset are artificially 

increased by using spectral augmentation (adding synthetic noise) and geometric changes 

(random rotations, translations, and flips). This increases the robustness of the model, 

decreasing overfitting and raising recall and precision. 

• Regularization Techniques:While dropout randomly sets a portion of input units to 

zero during training, L2 regularization adds a penalty for excessive weights. By avoiding 

overfitting, these methods guarantee that the model performs well when applied to new data, 

improving recall and precision. 

• Transfer Learning:Utilizing pre-learned features, the network is fine-tuned on the 

TNCornNet dataset after being pre-trained on a sizable dataset of natural photos. This lowers 

the amount of labeled data needed for efficient training, enabling the model to adjust to the 

unique properties of diseased corn plant leaves and enhancing recall and accuracy even further. 

The F-score, which is a harmonic mean of recall and precision, is especially helpful for 

evaluating performance between various tactics. For hyperspectral image analysis of corn 

plant diseases, DeepAlexNet is a reliable and accurate classifier because of its high F-score, 

which demonstrates its strong predictive potential. DeepAlexNet outperforms other models 

due to the combination of sophisticated architectural features and training methodologies, 

which produces high F-score, recall, and precision performance. 

 

6. Conclusion  

In this research, we have used hyperspectral imaging data from the TNCornNet dataset to 

investigate the effectiveness of different deep learning models, including InceptionV3, 

ResNet-50, ResNet-101, DeepIncepNet, and the proposed DeepAlexNet, in detecting illnesses 

in corn plant leaves. Our thorough performance evaluation, which focuses on recall (R), 

precision (P), accuracy, and F-score, shows that the suggested DeepAlexNet performs 

noticeably better than the other models in the classification of illnesses like Cochliobolus 

heterostrophus and Puccinia sorghi. DeepAlexNet performs better than other neural networks 

because of its multi-channel input adaption, spectral-spatial feature extraction, batch 

normalization integration, data augmentation approaches, regularization methods, and transfer 

learning implementation. DeepAlexNet can now gather and process spectral and spatial 

information more efficiently because to these improvements, which improves classification 

accuracy, precision, recall, and F-score. 

Even though DeepAlexNet has shown encouraging results, there are a number of directions 

future research might go in order to improve disease detection in maize and other crops. These 

include using hyperspectral imaging and deep learning. The robustness and generalizability of 

the model can be enhanced by expanding the size and variety of the dataset by adding more 

examples from various locations and circumstances. integrating soil sensors, meteorological 
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information, and thermal imaging with hyperspectral imaging to produce a more thorough and 

precise disease detection system. 
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