
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 20 No. S14 (2024) 1379-1409

A Novel Algorithm For Generating Hard-

To-Kill Higher Order Mutants Using

Chemical Reaction Optimization

Subhasish Mohanty1, Jyotirmaya Mishra2, Sudhir Kumar

Mohapatra3,*, Melashu Amare4

1,2 Computer Science and Engineering, GIET University, Gunupur, Odisha.

3Faculty of Engineering & Technology, Sri Sri University, Bhubaneswar ,Odisha.
4 Departments of Software Engineering, Woldia University, Woldia, Ethiopia.

In the field of software engineering, ensuring the reliability and robustness of software is

paramount, and software testing plays a critical role in this process. Mutation testing, a fault-based

technique, evaluates the effectiveness of test suites by introducing artificial defects, known as

mutants, into programs. This research presents a novel method for generating higher-order mutants

(HOMs) using the Chemical Reaction Optimization (CRO) algorithm, which enhances the rigor of

mutation testing by creating harder-to-detect mutants. The CRO algorithm employs four types of

collision operators: on-wall ineffective, synthesis, decomposition, and inter-molecular ineffective,

to modify mutants and simulate complex faults. Through experimentation with iterations set at 10,

30, and 50, it was found that increasing the number of iterations significantly reduces the number

of mutants and increases their detection difficulty. Notably, with 50 iterations, the approach

achieved a 93% reduction in mutants and lowered the mutation score to 27.77%, demonstrating the

robustness of the generated mutants. The research further introduces the HOMUsingCRO tool,

which automates the mutant generation and testing process, generating XML-based reports for

effective mutant analysis. The proposed approach outperforms existing techniques in both mutant

reduction and mutation score, offering a more comprehensive solution for improving software test

suite effectiveness.

Keywords : Real fault, hard to detect mutant, chemical reaction optimization algorithm, mutation

testing, higher-order mutant generation, unit testing.

1. Introduction

Software engineering is a discipline dedicated to the systematic design, development, and

maintenance of software systems. As these systems grow in complexity, ensuring their

reliability becomes a crucial challenge. Software testing is an integral part of this process,

serving as a key method for validating the functionality and robustness of software

applications. Mutation testing, one of the more advanced techniques, evaluates the quality of

a test suite by introducing artificial faults, or mutants, into the program. These mutants, which

are slight modifications to the original code, simulate real-world defects that could arise during

software development. The effectiveness of the test suite is measured by its ability to "kill"

http://www.nano-ntp.com/

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1380

Nanotechnology Perceptions 20 No. S14 (2024)

these mutants—i.e., detect and eliminate them—thereby assessing the robustness of the

software in detecting and handling potential faults. [1].

There are two primary types of mutants used in mutation testing: First-Order Mutants (FOMs)

and Higher-Order Mutants (HOMs). FOMs involve single, localized changes to the program,

while HOMs are the result of combining multiple FOMs [2]. Although FOMs are easier for a

test suite to detect, HOMs are more resistant to detection, simulating more complex and subtle

faults [3]. This makes HOMs a more rigorous test of a suite’s fault-detection capability.

However, generating and managing HOMs is more challenging due to the exponential increase

in possible combinations and the complexity of the mutants produced [4].

Metaheuristic algorithms, particularly those inspired by natural processes, have shown great

promise in optimization problems across various fields, including software testing [5].

Chemical Reaction Optimization (CRO) is a relatively new metaheuristic algorithm that

mimics chemical reactions in nature, where molecules interact and change states to reach

stable conditions [6]. In the context of mutation testing, the CRO algorithm transforms

software mutants through a series of reactions, aiming to generate harder-to-kill HOMs. By

randomly applying four different collision types—synthesis, decomposition, on-wall

ineffective, and inter-molecular ineffective—the CRO algorithm can either increase or reduce

the number of mutants, while also enhancing their resilience to detection by the test suite

[7][8].

This study introduces a novel approach for generating higher-order mutants using the CRO

algorithm. The proposed method improves the complexity and difficulty of detecting these

mutants, which in turn enhances the robustness of the software’s test suite. The authors applied

the CRO algorithm at different iteration levels 10, 30, and 50 observing the impact on the

number of mutants generated and their detection rates. The results indicate that increasing the

number of iterations significantly reduces the number of mutants and increases their difficulty

of detection, making the test process more rigorous and reliable.

The contributions of this research are threefold:

1. Introduced a new methodology for generating higher-order mutants using CRO.

2. Evaluated the impact of different iteration counts on mutant generation and detection

difficulty, and

3. Developed a tool, HOMUsingCRO, which automates the process of generating,

executing, and analyzing mutants using CRO. This tool generates XML-based reports,

making the mutant analysis process more efficient. The findings show that the

proposed approach outperforms existing techniques in both mutant reduction and

mutation score, demonstrating the practical applicability of our methodology for

improving software testing processes.

The organization of this article is as follows: the next section discusses the related work.

1381 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

In section 3, a detailed discussion on the proposed methodology is presented. Section 4

contains the implementation of the proposed methodology. The results and discussion are

presented in section 5. The article is concluded in section 6.

2. Related Work

The generation of higher-order mutants (HOMs) has been extensively studied as a means to

improve the effectiveness of mutation testing. Various techniques have been proposed to

generate HOMs that are harder to detect and more representative of real-world faults.

Anas Abuljadyel et al. [9] introduced an agent-based algorithm combined with a genetic

algorithm (GA) to create subtle higher-order mutants. Their method initially achieved a 50%

mutation score, but after incorporating the GA, the score was reduced to 0.2% among 2000

mutants and 800 test cases. Despite the reduction in mutation scores, the study did not achieve

significant reduction in the number of generated HOMs, indicating that their approach, while

effective in generating challenging mutants, lacked efficiency in mutant reduction. Elmahdi

Omar et al. [4] proposed three novel metaheuristic search strategies—guided local search,

restricted enumeration, and restricted local search—to generate higher-order mutants. These

strategies outperformed traditional methods like genetic algorithms, local search, and random

search in terms of producing more difficult-to-detect HOMs. However, their approach did not

focus on reducing the overall number of mutants, limiting its practical applicability in large-

scale mutation testing scenarios.

Mike Papadakis et al. [10] conducted a large-scale empirical study exploring the correlation

between mutation scores and real fault detection. Their findings revealed that mutation scores

strongly correlate with a test suite’s ability to detect real faults, underscoring the importance

of mutation testing for evaluating test suite quality. However, their study primarily

concentrated on first-order mutants, leaving higher-order mutants underexplored in terms of

their potential to simulate more complex faults. Nguyen et al. [1] evaluated multi-objective

optimization algorithms aimed at generating HOMs. Their approach successfully balanced the

trade-off between mutant generation and test case effectiveness. However, the scope of their

study was constrained by relatively small subject programs, limiting its ability to assess the

scalability of their optimization techniques for larger software systems.

Nishtha Jatana et al. [12] developed an improved Crow Search Algorithm (ICSA) to enhance

the automation of test case generation for mutation testing. While this approach demonstrated

strong performance in generating optimized test suites, it primarily addressed test data

generation rather than focusing on generating challenging HOMs. As a result, it fell short in

tackling the complexity of HOM creation. An SSHOM tool was proposed in [13] to perform

first-order mutation (FOM) testing on selected pairs of mutants and then combine the resulting

FOMs to generate higher-order mutants (HOMs). This tool provided an efficient approach to

systematically combining mutations, contributing to the generation of complex HOMs. In [14],

the author introduced a scheme for identifying subsuming higher-order mutants (SOMs),

which are mutants that subsume others, to help reduce the total number of required mutations

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1382

Nanotechnology Perceptions 20 No. S14 (2024)

while maintaining the testing effectiveness. This scheme helped streamline the mutation

process by focusing on key mutants that cover more fault scenarios.

A comprehensive literature review in [15] enhanced the understanding of HOMs by examining

various approaches and challenges associated with generating and killing HOMs. This review

provided valuable insights into current methodologies and identified future research

directions. In [16], the author explored the application of multi-objective optimization

algorithms for solving real-time problems related to HOM testing. This study demonstrated

the practical utility of HOMs in complex, real-world scenarios and highlighted the advantages

of using optimization algorithms to improve testing efficiency.

The author in [17] addressed two critical challenges: identifying the most suitable SOMs for

testing and developing methods to generate hard-to-kill mutants. These hard-to-kill mutants

offer greater insight into the effectiveness of test suites, making them highly valuable for

rigorous testing. Further studies [18, 19, 20] investigated the use of soft computing techniques,

such as genetic algorithms, to effectively kill HOMs. These approaches demonstrated the

potential of leveraging advanced algorithms to improve the overall effectiveness of mutation

testing. In [21], the author evaluated mutation testing based on FOMs and identified high-

quality mutation operators that could be used to generate more effective HOMs. This approach

contributed to the refinement of mutation strategies for improved efficiency and accuracy.

Other studies have explored the use of mutation testing for various purposes, including

software testing [22,23,24,25,26], test case prioritization [27,28,29], and test case reduction

[30]. These contributions have expanded the scope of mutation testing, demonstrating its

versatility and effectiveness in different software testing contexts.

Table 1: Summary of LR

Author(s) Yea

r

Methodology/Techniqu

e

Problem

Addressed

Key

Findings

Limitation

s

Anas

Abuljadye

l et al.

2018 Agent-based algorithm

with genetic algorithm

(GA) integration

Creation of

subtle

higher-

order

mutants

resistant to

tests

Mutation

score

reduced to

0.2% with

2000

mutants, 800

test cases

No

significant

reduction

in

generated

HOMs

Elmahdi

Omar et

al.

2014 Guided local search,

restricted enumeration,

restricted local search

Generating

higher-

order

mutants

with

minimal

cost

These

approaches

outperforme

d GA, local,

and random

search

Did not

address

reducing

mutant

population

size

significantl

1383 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

y

Mike

Papadakis

et al.

2018 Mutation testing

correlated with real

faults

Evaluating

if mutation

scores

correlate

with real

fault

detection

Showed

strong

correlation

between

mutation

scores and

fault

detection

Limited

exploration

of HOMs

Nguyen et

al.

2016 Multi-objective

optimization algorithm

for HOM testing

Searching

for higher-

order

mutants

through

optimizatio

n

Successfully

generated

and reduced

HOMs with

improved

test case

effectiveness

Large-scale

subject

programs

were not

fully tested

Nishtha

Jatana et

al

2020 Improved Crow Search

Algorithm (ICSA)

Test data

generation

using

mutation

testing

Efficient in

generating

optimized

test suites

automaticall

y

Lacks

focus on

the

generation

of complex

HOMs

Shin Yoo

et al

2021 SSHOM tool for

performing FOM and

generating HOMs

Combining

FOMs to

generate

higher-

order

mutants

Systematic

approach to

generating

HOMs from

FOMs

Limited to

tool-based

application

Eduardo

Figueired

o et al

2021 Scheme for identifying

subsuming higher-order

mutants (SOMs)

Reduction

of

mutations

by

identifying

key

mutants

Reduced

mutations by

identifying

key SOMs

Focused

primarily

on

subsuming

mutants

While prior studies have made significant advancements in generating and optimizing higher-

order mutants, they have generally focused on either increasing mutant complexity or reducing

mutant numbers, but rarely on addressing both aspects simultaneously. Techniques like

genetic algorithms and multi-objective optimization have been effective in creating hard-to-

detect mutants but often fall short in reducing the number of mutants. Conversely, methods

aimed at mutant reduction frequently do not produce complex or challenging mutants. Existing

research has tended to prioritize either detection difficulty or mutant reduction, often

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1384

Nanotechnology Perceptions 20 No. S14 (2024)

overlooking the need for a balance between the two. Additionally, many studies have been

evaluated on small-scale subject programs, limiting their applicability to larger, more complex

software environments. This study addresses these gaps by introducing a Chemical Reaction

Optimization (CRO) algorithm that simultaneously reduces the number of higher-order

mutants and increases their detection difficulty, offering a more comprehensive and rigorous

approach to mutation testing.

3. Methodology

Chemical Reaction Optimization (CRO) is a versatile metaheuristic algorithm designed to

solve a variety of optimization problems. Unlike algorithms tailored to specific domains, CRO

operates independently of problem specifics, allowing for customization based on research

requirements [7]. The methodology consists of three main phases: Initialization, Iteration, and

Finalization.

3.1 Initialization Phase

During the initialization phase, each mutant, whether first-order or higher-order, is represented

as a molecule. This phase involves setting up the algorithm's parameters, which include

genSize, buffer (b), alpha, and beta. The parameter genSize specifies the stopping condition

for the algorithm, with the user determining the number of iterations the algorithm will

execute. The buffer is a random value between [0, 1] used to distinguish between uni-

molecular and inter-molecular collisions. The alpha value, also a random number between [0,

1], is used to decide if an inter-molecular collision results in synthesis or an ineffective

collision. Similarly, the beta value determines whether a uni-molecular collision leads to

decomposition or an on-wall ineffective collision.

3.2 Iteration Phase

In the iteration phase, the algorithm executes based on the stopping condition specified by

genSize. During this phase, collisions can be classified as either uni-molecular or inter-

molecular. The type of collision is determined by generating a random buffer value. If this

value exceeds 0.5, an inter-molecular collision occurs; otherwise, a uni-molecular collision is

performed.

For inter-molecular collisions, the process involves generating a random alpha value to decide

between an ineffective collision and synthesis. In synthesis, two mutants with average fitness

values are selected from each module and merged to reduce their number. The ineffective

collision utilizes crossover operations, similar to those in genetic algorithms, to enhance the

search space.

For uni-molecular collisions, a random beta value determines whether the collision results in

an on-wall ineffective collision or decomposition. In the decomposition process, a mutant with

the highest number of hits is divided into two mutants, increasing the search space. The on-

wall ineffective collision involves selecting a mutant with lower fitness and applying

1385 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

traditional and class-level operators to alter its structure, analogous to mutation in genetic

algorithms.

 3.3 Finalization Phase

Once the stopping condition is met, the algorithm moves to the finalization phase. Here, the

solution is saved in an XML file on the disk. The stopping criterion is defined by the user and

can be specified through a Java input dialog. The final phase concludes with the output of the

solution, encapsulated in XML format, representing the result of the optimization process.

In summary, the CRO algorithm operates through the initialization of parameters, iterative

collision processing, and finalization of the solution [7].

Fig. 1. Proposed CRO algorithm flowchart

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1386

Nanotechnology Perceptions 20 No. S14 (2024)

The flow of the Chemical Reaction Optimization (CRO) algorithm is outlined as follows:

1. Initialization:

▪ The algorithm begins by initializing basic variables including b, beta, and

alpha, with values ranging between 0 and 1. In the proposed algorithm, these

variables are initially set to 0.5. During each collision event, beta and alpha

are updated with random values within this range, while b changes in each

generation.

▪ Additionally, the algorithm accepts an input mutant file from the file system,

which contains the initial mutants to be processed.

2. Handling Single Mutants:

▪ In cases where a module contains only one mutant, inter-molecular collisions

(synthesis and ineffective collisions) cannot be applied. Therefore, the

algorithm checks the number of mutants within each module using a

mutant_length variable.

▪ When mutant_length equals 1, indicating a single mutant, the algorithm

resorts to uni-molecular collision methods. Specifically, it first applies the

onWallineffective() collision to enhance the mutant's performance, followed

by decomposition to create additional mutants.

3. Collision Selection:

▪ For modules with more than one mutant, the algorithm determines the type of

collision to apply based on the value of b. If an inter-molecular collision is

selected, the alpha value is used to decide between synthesis or an inter-

molecular ineffective collision.

▪ Conversely, if a uni-molecular collision is chosen, the beta value determines

whether to apply decomposition or an on-wall ineffective collision.

4. Iteration and Termination:

▪ The algorithm repeats the above processes iteratively until the stopping

condition, defined by the user, is met. Each iteration updates the state of the

mutants according to the collision types and parameters specified.

▪ Upon reaching the stopping condition, the algorithm terminates and outputs

the final solution.

The proposed algorithm is presented below

Proposed Algorithm

Input:

• Initial mutants file

• Parameters: genSize (maximum iterations), b (collision type selector), alpha (inter-

molecular collision selector), beta (uni-molecular collision selector)

1387 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

Output:

• Optimized set of Higher Order Mutants (HOMs) in XML format

Initialization Phase

• Set initial values for parameters:

o b = 0.5, alpha = 0.5, beta = 0.5

• Load initial mutants from the file system.

• Set stopping condition genSize.

Iteration Phase

• While stopping condition (genSize) is not met:

o For each module, determine mutant_length.

▪ If mutant_length == 1:

▪ Apply onWallineffective() collision to the single mutant.

▪ Apply Decomposition to generate additional mutants.

▪ Else (mutant_length > 1):

▪ Generate a random value for b.

▪ If b > 0.5:

▪ Generate a random value for alpha.

▪ If alpha > 0.5, perform Synthesis to merge two

mutants.

▪ Else, perform Inter-Molecular Ineffective Collision

using crossover operations.

▪ If b ≤ 0.5:

▪ Generate a random value for beta.

▪ If beta > 0.5, perform Decomposition on the mutant

with the highest hit count.

▪ Else, perform On-Wall Ineffective Collision on a

low-fitness mutant.

o Update mutants' states based on collision outcomes.

o Increment iteration count.

Finalization Phase

• If stopping condition is met:

o Save final set of mutants in XML format.

o Terminate the algorithm.

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1388

Nanotechnology Perceptions 20 No. S14 (2024)

End Algorithm

4. Implementation of the Proposed Algorithm

The proposed algorithm, named HOMUsingCRO (Higher-Order Mutant Using Chemical

Reaction Optimization), is implemented using Java. This model is designed for higher-order

mutant generation by applying the CRO algorithm. The implementation is intended to

facilitate Java program testing. The main features of the HOMUsingCRO interface are

described below:

Figure 2 illustrates the layout of the HOMUsingCRO application, which is divided into three

primary sections:

1. Directory Selection for Mutants:

o Upper Section: This section contains the first text field and a “Browse”

button. The “Browse” button allows users to select a directory containing the

first-order mutant files. Upon clicking this button, a file dialog opens,

restricting the user to choosing directories only. The selected directory path is

then displayed in the adjacent text field.

2. Directory Selection for Test Cases:

o Middle Section: This section features a second “Browse” button and a

corresponding text field. The second “Browse” button is used to select the

directory containing the test case files. Similar to the previous dialog, this

button opens an open dialog box that only allows directory selection. The path

to the selected test case directory is displayed in the adjacent text field.

3. Execution Status and Control:

o Last Section: This section includes a text area that provides feedback on the

algorithm’s execution status. A success message is displayed in the text area

once the algorithm has completed its execution.

o Run CRO Button: This button initiates the execution of the CRO algorithm.

When clicked, it starts the process of mutant generation and optimization as

per the CRO methodology.

The user interface of HOMUsingCRO is designed to be intuitive, allowing users to easily

select directories for mutants and test cases, and to monitor the status of the algorithm. The

system ensures smooth execution and clear communication of the results.

1389 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

Fig. 2. HOMUsingCRO graphical user interface

4.1 Subject Program

For the experimental evaluation of the proposed algorithm, a Java project named Store

Management System was utilized. This project serves as a student graduation project and

encompasses a range of functionalities relevant to basic store operations. The key features of

the Store Management System include item registration, post-sale item reduction, daily profit

calculation, inventory counting, and other essential store activities.

The Store Management System comprises two Java class files:

1. Abstract Class: The first file is an abstract Java class that contains a total of 38

methods. This class defines the foundational methods and structure necessary for the

system’s operations.

2. Concrete Implementation Class: The second file extends the abstract class and

provides concrete implementations for all 38 methods. This class is composed of 607

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1390

Nanotechnology Perceptions 20 No. S14 (2024)

lines of code, integrating the abstract methods with functional code to perform the

system’s operations.

Table 2 : Subject Programs

Project Name Number of Class Line of code Number of methods

Store management system 2 754 56

This subject program was chosen to evaluate the effectiveness of the HOMUsingCRO

algorithm in generating higher-order mutants and optimizing the software testing process.

4.2 Tools to generate initial Mutant MuJava

MuJava is an open-source tool designed for mutant generation in Java programs. It is available

online and provides a comprehensive suite of resources, including installation guides and

references to other tools necessary for its operation. MuJava facilitates the automatic creation

of first-order mutants, enabling researchers and testers to execute test suites, analyze the

results, and improve software testing processes. The tool supports both traditional and object-

oriented programming paradigms. The tool is divided into three main components:

4.3 Mutant Generator

The Mutant Generator is a core component of MuJava, designed to produce mutants for both

traditional and object-oriented programming. It achieves this by applying operators at both the

traditional level and the class level. You can see the user interface of the mutant generator in

Figure 3.

Fig. 3. Mutant generator user interface

1391 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

4.4 Mutant viewer

The Mutant Viewer is a component of MuJava that provides users with a detailed view of the

generated mutants and the modifications they introduce to the source code. It plays a crucial

role in helping users understand the impact of each mutant on the original codebases. The

following figure shows the mutant viewer user interface (Fig.4).

Fig. 4.Generated Mutant

4.5 Test case generation process

For the test case generation, this research utilized JUnit 5, a widely recognized framework for

writing and executing tests in Java. JUnit 5 enables the creation of test cases to evaluate Java

programs effectively. In the context of this study, the Store Management System, which

consists of 14 main modules, required a comprehensive set of test cases. Accordingly, 14

distinct test suites were developed, each corresponding to one of the modules. Each test suite

includes 10 test cases, resulting in a total of 140 test cases across all suites.

Each test class within JUnit 5 is equipped with two critical methods to manage the testing

lifecycle. The setUpBeforeClass() method, annotated with @BeforeClass, is executed once

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1392

Nanotechnology Perceptions 20 No. S14 (2024)

before any of the test methods are called. This method is used to initialize the objects of the

mutant class, ensuring they are prepared for testing. Conversely, the tearDownAfterClass()

method, annotated with @AfterClass, is invoked after all test methods have completed. It is

responsible for cleaning up by setting the class object under test to an empty or null state.

Additionally, each test method is marked with the @Test annotation to indicate that it is a test

case.

The HOMUsingCRO tool, which is used in conjunction with JUnit 5, provides an interface for

selecting directories that contain mutant files and source code. Users can browse and select

these directories using JFileChooser, with the selected file being assigned to a variable. The

listFiles() method is then employed to retrieve subdirectories from the chosen directory. Each

file is read line by line to identify the method affected by the mutant.

MuJava, the tool used for generating mutants, organizes mutant files in directories named by

combining the return type and method name. For instance, if the original method is int sum(int

a, int b), MuJava generates a directory named int_sum(int, int) to store mutants related to

that method, as illustrated in Figure 5. This structured approach ensures that the generated test

cases are comprehensive and capable of effectively detecting faults introduced by the mutants.

Fig. 5. muJavacreates a mutant directory by method name and return type

To identify the method associated with a mutant from the mutant source code, the process

involves using a substring to match key elements such as int and sum, which correspond to

the method's signature. The proposed method stores each file in a LinkedList variable, a

dynamic array that accommodates variable sizes. Once the method where the mutant is located

is identified, the system determines the line number where the method's ending brace is

positioned by employing a stack data structure. This technique allows the program to ascertain

the start and end lines of the method in the source code.

The proposed model employs a while loop to read both the original and mutant source codes

line by line. As the loop progresses, it checks whether the current line pertains to the method

containing the mutant. Upon reaching the method, an inner while loop is initiated, which

continues to iterate until the end of the method is reached. During this iteration, the inner loop

compares each line of the mutant code with the corresponding line of the original code in a

1393 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

parallel fashion. Any discrepancies between the lines are recorded as differences, which

represent the mutant code.

For accurate comparison, both the mutant and original source codes must be properly

formatted, as shown in Figure 6. This structured approach ensures that the mutant code is

effectively identified and differentiated from the original code, facilitating a thorough analysis

of the mutants within the source code.

Fig. 6.Mutant and original code comparison

The program performs a line-by-line comparison of the code from both the original and mutant

source files. During this comparison, the program checks each line to identify discrepancies

between the two versions. For instance, as illustrated by the provided code snippet, lines 21,

25, and 27 in both files are identical. However, a difference is observed in line 23, where the

statement in the mutant code diverges from the statement in the original code. This discrepancy

is crucial as it highlights the mutant statement.

The mutant statement found in line 23 is recorded as a mutant and subsequently stored in the

LinkedList variable. This collection of mutants is then subjected to further processing to

analyze the impact and effectiveness of the introduced changes. By systematically identifying

and cataloging these differences, the program ensures that each mutant is properly documented

and can be used for subsequent testing and evaluation.

4.6 How to Remove Irrelevant Mutants

As detailed in the previous section, the program identifies mutant code by traversing

directories within the same module. When a mutant statement is discovered, the line number

where this mutant occurs is recorded in the LinkedList variable. During subsequent iterations,

the program performs a check to determine if the line number of the newly found mutant is

already present in the LinkedList.

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1394

Nanotechnology Perceptions 20 No. S14 (2024)

If the line number is found in the LinkedList, the program recognizes this as a repeated mutant

and omits it from further processing. This step ensures that only unique mutants are retained,

avoiding redundancy. Conversely, if the line number does not exist in the LinkedList, the

program adds the mutant file to the LinkedList for further operations. This approach

effectively filters out irrelevant or duplicate mutants, streamlining the process of mutant

analysis and maintaining the focus on novel mutants that contribute to meaningful testing and

evaluation.

Algorithm to identify and remove repeated mutant

Step 1: Read an array of mutant files and original files as input.

Step 2: Read each muted source code and source code line by line and move to step 3 until

the line number checker reaches null.

Step 3: Identify the method name where the mutant is located and also identify the method

ending and starting brace of the method where the mutant is located and then move to step 4.

Step 4: Identify the line number where the muted statement is located and store the line

number and mutant file in the linked list variable.

Step 5: If the current muted statement line number is not equal to the method ending brace

line number, then go to step 6, else move to step 2.

Step 6: If the statement read from the muted file and the statement read from the original file

are different, pass the line number to step 7 else move to step 2.

Step 7: Read the mutant line number from step 6 and check if the line number exists in the

mutant list, then consider the mutant as a repeated mutant, skip storing the mutant-to-mutant

list, and go to step 2, else consider the mutant as a relevant mutant and store the mutant in

mutant linked list variable for farther operation.

Step 8: Repeat step 3 till the line number checker returns null.

4.7 Process of Running Test Cases Over Mutants

The execution of test cases is a critical component of the HOMUsingCRO architecture and is

invoked during each generation execution. This process comprises three main sequential

components: mutant selection and object creation, test runner, and XML report generation.

Each of these components plays a vital role in executing a mutant against the test cases and

generating the corresponding reports.

4.7.1 Mutant Selection and Object Creation

The process begins with the runTestOverHOM() method, which is defined in the test

execution class. This method initiates the test execution by first browsing the file system to

access the mutant files. Each mutant class file, along with its module name, is read using a

1395 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

for-each loop. During each iteration of the loop, the selected mutant and its module name are

passed to the setClassObject() method, which is responsible for creating a mutant object.

Since the mutant class file is initially outside the Java classpath, it is relocated to the

appropriate classpath to facilitate execution. After moving the file, the tool compiles the

mutant class located in the classpath. Using the Class.forName() method, the tool creates an

instance of the mutant class with newInstance(), assigning it to a variable of the same type as

the new class instance. Finally, the testRunner() method is invoked with the module name

and mutant file as parameters to commence the test execution.

4.7.2 Test Runner

The testRunner() method is designed to handle the execution of mutants within a module.

Each test suite is saved under the respective module's name, aiding in the selection of the

appropriate test suite for each mutant. The method iterates over all test suite files from the file

system using a foreach loop and selects the correct test suite by comparing the test suite file

name with the mutant module name. If the names match, the corresponding test suite is chosen

for execution. The tool then creates a test suite object using Class.forName() and passes this

object to JUnitCore.runClasses(), which executes the selected test suite class. The method

returns a Result object, which is used to gather information on failed tests and the total number

of tests run for the mutant. Subsequently, the HOMXMLReport() method is called with

parameters including the number of killed tests, total tests, module name, and fitness value to

generate a detailed XML report.

4.7.3 XML Report Generator

The HOMXMLReport() method is responsible for creating an XML-based report for each

mutant class file. Initially, an XML file named HOMUsingCRO.xml is created to store data

for all mutants. Using a Java XML parser, the method constructs XML elements to record

details such as killed mutants, fitness value (or kinetic energy), and the total number of

mutants. The XML report encompasses information on total killed mutants, total generated

mutants, mutation scores, number of hits, and kinetic energy for each mutant. An example of

the XML report format is illustrated in Figure 7.

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1396

Nanotechnology Perceptions 20 No. S14 (2024)

Fig. 7. Sample XML Report

4.8 The architecture of the proposed tool HOMUsingCRO

The tool developed using the proposed algorithm is named HOMUsingCRO. Its architecture

is structured into three main layers: the Upper Layer, the Middle Layer, and the Lower Layer.

Each layer has distinct components that contribute to the overall functionality of the tool.

4.8.1 Upper Layer

The Upper Layer represents the graphical user interface (GUI) of HOMUsingCRO. It includes

the following elements:

• Buttons: There are three buttons:

o Two buttons are used for browsing directories: one for the mutant directory

and one for the test suite directory.

o The third button initiates the execution process of the algorithm.

• Text Fields: Two text fields display the paths of the selected directories for mutants

and test suites.

• Text Area: This area provides feedback by displaying a message indicating the

completion of the algorithm's execution.

4.8.2 Middle Layer

The Middle Layer encompasses the core functionalities of the tool, which include:

• Test Runner: This component executes JUnit test cases on the selected mutants and

records the number of failed tests and the total number of tests executed.

• Relevant Mutant Selector: This component filters out redundant mutants by

removing those deemed irrelevant.

• XML Report Generator: After test execution, this component stores the results in an

XML format on the file system.

• File Management: This component handles reading mutant and test files from the file

system and writing higher-order mutants back to the file system.

• Mutant Selector for CRO Operator: This component selects mutants for processing

by the proposed Chemical Reaction Optimization (CRO) operator based on predefined

conditions.

• CRO Algorithm: This component implements the four operators defined in the CRO

algorithm.

• Test Case Selection: This component facilitates the selection of appropriate test cases

for each mutant and passes them to the Test Runner.

• Source Code Compiler: This component compiles the mutant and test case source

codes after moving them to the correct Java classpath.

1397 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

Fig. 8. The architecture of the proposed approach

4.8.3 Lower Layer

The Lower Layer contains external Java libraries essential for the tool’s operation:

• JUnit: A Java-based testing framework used for writing and running JUnit test

programs.

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1398

Nanotechnology Perceptions 20 No. S14 (2024)

• Java Compiler: Part of the common Java libraries, this tool helps compile Java source

code programmatically.

• Java 1.8 Libraries: Includes common I/O libraries, Swing libraries for GUI

development, and other standard Java libraries.

4.9 Execution Process of HOMUsingCRO

The execution process of HOMUsingCRO involves several key steps to ensure that the tool

efficiently processes mutants and generates results. Here’s a detailed outline of the process:

1. Input Preparation: The tool requires two inputs: a mutant directory and a test suite

directory. The mutant directory contains subdirectories, with the final subdirectory

holding the mutant source code and byte code files (.java and .class). The test suite

directory provides the test cases. The tool reads the mutant directory and filters out

relevant mutants.

2. Classpath Adjustment: Since the mutants and test suite files are initially not in the

correct Java classpath, the tool moves these files to the appropriate classpath.

3. Compilation: The tool compiles both the mutant files and the test suite files that have

been moved to the correct Java classpath.

4. Test Execution: The test suite is run against the selected mutant. During this phase,

the fitness value and mutation score for each mutant are calculated based on the test

results.

5. CRO Operator Selection: Based on the calculated fitness values and other

parameters, the appropriate Chemical Reaction Optimization (CRO) operator is

selected. The tool then selects a mutant for the chosen CRO operator and applies the

CRO algorithm.

6. Mutant Generation: The application of the CRO algorithm results in the generation

of new mutants. These newly generated mutants are then compiled.

7. Re-Execution and Recalculation: The test suite is run again against the newly

generated mutants. The fitness values and mutation scores for these new mutants are

recalculated.

8. Iteration and Termination: If the stopping condition is not met, the process loops

back to the CRO operator selection step. If the stopping condition is met, the execution

terminates, and the final output is generated.

This process ensures a systematic approach to mutant processing, including compilation,

testing, optimization, and re-testing, culminating in the generation of comprehensive results.

5. Results and Discussion

5.1 CRO Algorithm Setup

Before initiating the execution of the Chemical Reaction Optimization (CRO) algorithm, the

user specifies the number of iterations for the algorithm. This flexibility allows the algorithm

1399 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

to be adjusted according to the specific requirements of the experiment, thereby providing

insights into how iteration counts affect mutant generation and mutation scores.

For this study, the CRO algorithm was configured to run with varying numbers of generations:

10, 30, and 50. In each generation, the entire set of mutant modules was executed, and one

CRO elementary reaction was applied to each mutant module. The experiment involved

processing 1,170 first-order mutants (FOM) and 140 test suite files generated by JUnit. After

applying the CRO mutant filtering technique, 420 mutants were identified as relevant. To

ensure proper execution, the test suite files and mutant files were relocated to the correct Java

classpath. This step was crucial, as files need to be in the correct classpath to be active for

execution. The experiments were conducted on an HP laptop equipped with an Intel Core i5

processor and 4GB of RAM. This setup was used to evaluate the performance and

effectiveness of the CRO algorithm in generating and filtering mutants.

Fig. 9.Execution process of HOMUsingCRO

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1400

Nanotechnology Perceptions 20 No. S14 (2024)

5.2 Test case execution result before applying CRO

Once the tool accepted the mutant files from the file system, it proceeded with filtering out the

relevant mutants. These mutants were then relocated to the project directory to streamline the

processing. To facilitate organization and clarity, the mutants were renamed with a directory

prefix "CRO_XXX," where "XXX" represents the specific module name or method name from

the program. This renaming process is illustrated in Figure 10. The directory naming

convention helps in managing and tracking the mutants more effectively during the subsequent

stages of testing and analysis.

Fig. 10. Generated Mutant File Structure

HOMUsingCRO accepts test suite files from the file system and transfers them to the project's

src directory inside the test package. Subsequently, the test suite is executed against the mutant

files. The tool processes each mutant module individually, selecting the appropriate test suite

file based on a match between the mutant module name and the test suite name.

Each test suite consists of 10 test cases, with a default distribution of 50% failed tests and 50%

passed tests. After executing the test suites, it was observed that all mutants were killed by at

least one test case, resulting in a mutation score of 100%. This outcome indicates that all

mutants were effectively identified by the test suite, suggesting that the test suite has a high

capability to detect errors introduced by the mutations. Figure 11 provides a visual

representation of the test case execution results before the application of the CRO algorithm.

1401 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

Fig. 11. Mutant Execution Result before CRO

5.3 Execution process and its outcome

The number of iterations executed by the algorithm is user-defined. To assess the impact of

the number of generations on the mutant creation process, the experiment specifically

evaluates three different generation counts: 10, 30, and 50. For each generation count, the

algorithm compares the mutation score value, the number of generated mutants, and the

number of killed mutants with the initial values.

Initially, all 420 mutants were effectively killed by the given test cases, resulting in a mutation

score of 100%. When the number of generations was set to 10, the algorithm performed four

elementary reactions of CRO, selected randomly. After 10 iterations, the results showed a total

of 416 mutants generated, a 1% decrease from the initial count. Out of these, 408 mutants were

killed, which is a 3% decrease from the initial number of killed mutants. Consequently, the

mutation score dropped to 98%, a 2% reduction from the initial score. The execution of the

algorithm with 10 generations took approximately 45 minutes.

Given that these results were not satisfactory, an additional iteration with a higher number of

generations was conducted. Figure 12 illustrates the execution results for 10 generations.

Fig. 12.Execution result when generation equal to 10

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1402

Nanotechnology Perceptions 20 No. S14 (2024)

When the number of generations was set to 30, the experiment yielded 320 mutants,

representing a 23% reduction from the initial 420 mutants. Among these, 209 mutants were

killed by the test cases, which is a 50% decrease compared to the initial number of killed

mutants. This result indicates that the mutants generated with 30 iterations were more

challenging to detect than both the initial mutants and those generated with 10 iterations. The

mutation score dropped to 65%, reflecting a 35% decrease from the initial score. The algorithm

required 110 minutes to complete the execution for 30 generations. Overall, this iteration

provided a more effective mutation score, a lower number of generated mutants, and a higher

proportion of killed mutants compared to the initial results and the results from 10 generations.

Figure 13 illustrates the execution outcome when the generation count was 30.

Fig. 13.Execution result when generation equal to 30

When the number of generations was set to 50, the experiment produced a total of 108 mutants,

a 75% reduction from the initial 420 mutants. Of these, only 30 mutants were killed by the test

suite, which represents a 93% decrease from the initial number of killed mutants. Despite the

significant drop in the number of killed mutants, the mutation score improved to 22.77%,

which is a 72% increase compared to the original mutation score. The execution process took

216 minutes to complete for 50 generations. These results suggest that increasing the number

of iterations can lead to more refined mutant generation and improved mutation score

outcomes. Figure 14 illustrates the execution results for 50 generations.

1403 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

Fig. 14. Execution result when generation equal to 50

5.4 Mutants before and after proposed algorithm

This research utilized MuJava to generate initial mutants for the algorithm by applying it to

the Store Management System project. Initially, a total of 1170 first-order mutants were

generated, comprising 896 mutants created using 19 traditional-level operators and 274

mutants created using 28 class-level operators.

Upon applying the proposed algorithm filtering technique, the number of relevant mutants was

reduced to 420. Each of these mutants was accompanied by an XML file detailing the method

name, the line number where the mutated statement exists, the method's opening and ending

braces, and the minimum hit number. This filtering process also involved removing all .class

files to reduce execution time and creating new mutants based on the properties of the old

ones. The application of CRO elementary reactions resulted in changes to the mutation score

and other properties of the mutants.

The following table summarizes the mutant properties before and after applying the CRO

technique:

Table 3: Mutant result before and after Proposed algorithm HOMUsingCRO

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1404

Nanotechnology Perceptions 20 No. S14 (2024)

Propert

ies

Before

Applying

the

HOMUsing

CRO

Filtering

Technique

After

Filtering the

HOMUsing

CRO

Filtering

Technique

After

Applying

HOMUsing

CRO

Gen=10

After

Applying

HOMUsing

CRO

Gen=30

After

Applying

HOMUsing

CRO

Gen=50

No. of

input

mutants

1170 420 420 420 420

Generat

ed

Mutants

- - 416 320 108

No. of

killed

mutants

1170 420 408 209 30

No. of

test

cases

140 140 140 140 140

Mutatio

n score
100% 100% 98.07% 65.31% 27.77%

Executi

on time
5 minutes 1 minute 46 minutes 110 minutes 216 minutes

5.5 The proposed algorithm Vs another algorithm on the process of higher-order mutant

generation

In this section, we compare our study with three previous studies, focusing on subject

programs, problems addressed, techniques employed, and the strengths and limitations relative

to our proposed method.

When compared to Anas et al. [2], our study utilizes the Store Management project, which

comprises 607 lines of code, 38 methods, and two classes. In contrast, Anas et al. used a

smaller project with just one class, 23 methods, and 315 lines of code. This indicates that our

subject program is larger and more complex, providing a more challenging environment for

mutant generation and testing. In terms of mutant and test case ratios, our study involved 420

mutants and 140 test cases, resulting in a ratio of 3:1. Anas et al., on the other hand, worked

with 2000 mutants and 800 test cases, yielding a ratio of 5:2. This comparison highlights a

more balanced ratio in our approach. While Anas et al. applied a genetic algorithm and

achieved a mutation score of 99%, their method did not reduce the number of higher-order

mutants (HOMs), maintaining the initial count of 2000 mutants. Conversely, our CRO-based

method improved the mutation score by 73% and reduced the number of mutants by 73%. This

demonstrates that our approach not only effectively reduces mutants but also maintains high

1405 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

mutation scores. The potential exists for our method to achieve similar high mutation scores

as Anas et al. with increased iterations.

In comparison with Nguyen et al. [1], our study initially generated 1170 first-order mutants

(FOMs), which were reduced to 420 FOMs using CRO filtering. After 50 iterations, we

produced 108 higher-order mutants (HOMs), marking a 25% reduction from the filtered

FOMs. Nguyen et al., on the other hand, employed a large subject program consisting of five

Java projects, each with 51 to 144 class files. This broader testing context might influence the

effectiveness of their algorithm. Our approach achieved a 91% reduction in the total number

of mutants and a mutation score of 27% with the generated HOMs, demonstrating strong

performance in realistic fault generation. While Nguyen et al.’s approach was tested on a larger

scale, it did not match the reduction effectiveness observed with our method(Table 4).

Table 4: Comparison of Proposed algorithm HOMUsingCRO with other existing algorithm

Criteria Proposed Algorithm Anas et al. [2] Nguyen et al. [1]

Subject

Program

Store Management Project

(607 LOC, 38 methods, 2

classes)

Smaller project

(315 LOC, 23

methods, 1 class)

Large-scale

program (5 Java

projects, 51-144

class files per

project)

Mutants

Generated

1170 FOMs (reduced to 420

FOMs using CRO filtering,

108 HOMs after 50 iterations)

2000 mutants (no

reduction of

HOMs)

Not specified,

focus on large-

scale testing

context

Test Cases 140 test cases 800 test cases Not specified

Mutant/Test

Case Ratio

420 mutants : 140 test cases

(3:1)

2000 mutants :

800 test cases

(5:2)

Not specified

Mutation

Score

27% after 50 iterations

(indicating hard-to-kill HOMs,

aligned with the objective of

generating complex mutants)

99% Not specified

Mutant

Reduction

91% reduction in total mutants

(73% improvement in

mutation score)

No reduction in

HOMs (2000

mutants retained)

Less effective in

mutant reduction

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1406

Nanotechnology Perceptions 20 No. S14 (2024)

Strengths

Generates hard-to-kill HOMs,

effectively reduces mutants,

and encourages more robust

test suite creation

High mutation

score (99%), but

no focus on HOM

complexity

Broader context

due to large

subject programs

Limitations

Lower mutation score (27%)

as HOMs are harder to kill, but

this is a positive outcome in

terms of the objective of

generating complex mutants

Did not address

mutant reduction,

no HOM

reduction

Did not achieve

the same level of

mutant reduction

as our method

HOMUsingCRO effectively balances mutant reduction and mutation score improvement,

outperforming previous methods in both areas. Anas et al.’s approach achieved high mutation

scores but did not address mutant reduction, while Nguyen et al.’s larger subject programs

provided a broader context but did not achieve the same level of mutant reduction. Overall,

our proposed algorithm offers a more effective solution for managing and evaluating mutants.

6. Conclusion

This study presented an innovative approach to generating higher-order mutants (HOMs)

using the Chemical Reaction Optimization (CRO) algorithm. The method effectively balances

the reduction in the number of mutants while increasing their complexity, making them more

challenging to detect. By applying the CRO algorithm’s four operators on-wall ineffective,

synthesis, decomposition, and inter-molecular ineffective this approach improves the rigor of

mutation testing, helping to address the limitations in existing techniques that often prioritize

either mutant reduction or complexity but not both.

The experimental results demonstrated that with increased iterations (up to 50), there was a

significant reduction (93%) in the total number of mutants while increasing their resistance to

detection, as evidenced by a lowered mutation score (27.77%). This study’s findings

underscore the CRO algorithm’s capability to improve mutation testing in more complex and

realistic scenarios. When compared to previous approaches, this method showed better

performance in reducing the number of mutants and maintaining a high mutation score,

making it a valuable tool for enhancing software test suite evaluation.

Future research should explore the application of the CRO algorithm across larger and more

diverse subject programs, including languages like C++ and C#, to validate its effectiveness

in different domains. Additionally, optimizing the algorithm to handle even larger scales of

mutation testing will further contribute to improving fault detection in software systems.

1407 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

References

[1] Nguyen, Quang Vu, and Lech Madeyski. "Empirical evaluation of multiobjective optimization

algorithms searching for higher order mutants." Cybernetics and Systems 47, no. 1-2 (2016): 48-

68.

[2] Papadakis, Mike, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. "Are mutation scores correlated

with real fault detection? a large scale empirical study on the relationship between mutants and real

faults." In Proceedings of the 40th International Conference on Software Engineering, pp. 537-548.

2018.

[3] Papadakis, Mike, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. "Mutation

testing advances: an analysis and survey." In Advances in Computers, vol. 112, pp. 275-378.

Elsevier, 2019.

[4] Omar, Elmahdi, Sudipto Ghosh, and Darrell Whitley. "Comparing search techniques for finding

subtle higher order mutants." In Proceedings of the 2014 Annual Conference on Genetic and

Evolutionary Computation, pp. 1271-1278. 2014.

[5] Nayak, Janmenjoy, Bighnaraj Naik, and H. S. Behera. "A novel chemical reaction optimization

based higher order neural network (CRO-HONN) for nonlinear classification." Ain Shams

Engineering Journal 6, no. 3 (2015): 1069-1091.

[6] Lam, Albert YS, and Victor OK Li. "Chemical reaction optimization: a tutorial." Memetic

Computing 4 (2012): 3-17.

[7] Lam, Albert YS, Jialing Xu, and Victor OK Li. "Chemical reaction optimization for population

transition in peer-to-peer live streaming." In IEEE Congress on Evolutionary Computation, pp. 1-

8. IEEE, 2010.

[8] James, J. Q., Albert YS Lam, and Victor OK Li. "Real-coded chemical reaction optimization with

different perturbation functions." In 2012 IEEE Congress on Evolutionary Computation, pp. 1-8.

IEEE, 2012.

[9] Abuljadayel, Anas, and Fadi Wedyan. "An approach for the generation of higher order mutants

using genetic algorithms." Int. J. Intell. Syst. Appl.(IJISA) 10, no. 1 (2018): 34-35.

[10] Papadakis, Mike, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. "Mutation

testing advances: an analysis and survey." In Advances in Computers, vol. 112, pp. 275-378.

Elsevier, 2019.

[11] Dang, Xiangying, Dunwei Gong, Xiangjuan Yao, Tian Tian, and Huai Liu. "Enhancement of

mutation testing via fuzzy clustering and multi-population genetic algorithm." IEEE Transactions

on Software Engineering 48, no. 6 (2021): 2141-2156.

[12] Jatana, Nishtha, and Bharti Suri. "An improved crow search algorithm for test data generation using

search-based mutation testing." Neural Processing Letters 52 (2020): 767-784.

[13] Oh, Saeyoon, Seongmin Lee, and Shin Yoo. "Effectively sampling higher order mutants using

causal effect." In 2021 IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), pp. 19-24. IEEE, 2021.

[14] Diniz, João P., Chu-Pan Wong, Christian Kästner, and Eduardo Figueiredo. "Dissecting Strongly

Subsuming Second-Order Mutants." In 2021 14th IEEE Conference on Software Testing,

Verification and Validation (ICST), pp. 171-181. IEEE, 2021.

[15] Amare, Melashu, Sudhir Kumar Mohapatra, and Tarini Prasad Panigrahy. "A Systematic Literature

Review on Generating Higher-Order Mutant." In 2021 8th International Conference on Computing

for Sustainable Global Development (INDIACom), pp. 131-136. IEEE, 2021.

[16] Nguyen, Quang-Vu, and Hai-Bang Truong. "An improvement of applying multi-objective

optimization algorithm into higher order mutation testing." In Advanced Computational Methods

for Knowledge Engineering: Proceedings of the 6th International Conference on Computer Science,

 A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1408

Nanotechnology Perceptions 20 No. S14 (2024)

Applied Mathematics and Applications, ICCSAMA 2019 6, pp. 361-369. Springer International

Publishing, 2020.

[17] Nguyen, Quang-Vu, and Hai-Bang Truong. "An improvement of applying multi-objective

optimization algorithm into higher order mutation testing." In Advanced Computational Methods

for Knowledge Engineering: Proceedings of the 6th International Conference on Computer Science,

Applied Mathematics and Applications, ICCSAMA 2019 6, pp. 361-369. Springer International

Publishing, 2020.

[18] Ghiduk, Ahmed S., and M. Rokaya. "An empirical evaluation of the subtlety of the data-flow based

higher-order mutants." J. Theor. Appl. Inf. Technol. 97, no. 15 (2019): 4061-4074.

[19] do Prado Lima, Jackson Antonio, and Silvia Regina Vergilio. "A systematic mapping study on

higher order mutation testing." Journal of Systems and Software 154 (2019): 92-109.

[20] Ghiduk, Ahmed S., and S. F. El-Zoghdy. "CHOMK: Concurrent higher-order mutants killing using

genetic algorithm." Arabian Journal for Science and Engineering 43 (2018): 7907-7922.

[21] Ghiduk, Ahmed S., Moheb R. Girgis, and Marwa H. Shehata. "Reducing the cost of higher-order

mutation testing." Arabian Journal for Science and Engineering 43 (2018): 7473-7486.

[22] Do, Van-Nho, Quang-Vu Nguyen, and Thanh-Binh Nguyen. "Evaluating mutation operator and

test case effectiveness by means of mutation testing." In Intelligent Information and Database

Systems: 13th Asian Conference, ACIIDS 2021, Phuket, Thailand, April 7–10, 2021, Proceedings

13, pp. 837-850. Springer International Publishing, 2021.

[23] Rahman, Mizanur, Kamal Z. Zamli, Md. Abdul Kader, Roslina Mohd Sidek, and Fakhrud Din.

2023. “Comprehensive Review on the State-of- the-Arts and Solutions to the Test Redundancy

Reduction Problem With Taxonomy”. Journal of Advanced Research in Applied Sciences and

Engineering Technology 35 (1):62-87. https://doi.org/10.37934/araset.34.3.6287.

[24] Tengku Sulaiman, Tengku Mohd Sharir, Mohamad Minhat, Saiful Bahri Mohamed, Ahmad Syafiq

Mohamed, Ahmad Ridhuan Mohamed, and Siti Nurul Akmal Yusof. 2020. “File and PC-Based

CNC Controller Using Integrated Interface System (I2S)”. Journal of Advanced Research in

Applied Mechanics 70 (1):1-8. https://doi.org/10.37934/aram.70.1.18.

[25] Atamamen, Fidelis Osagie, Abdul Hakim Mohammed, and Temitope Folasade Atamamen. 2018.

“Testing Measurement Invariance for Green Cleaning Services Implementation across Malaysian

Cleaning Industry Stakeholders’ Group”. Progress in Energy and Environment 5 (May):50-61.

https://www.akademiabaru.com/submit/index.php/progee/article/view/1045.

[26] Iman Fitri Ismail, Akmal Nizam Mohammed, Bambang Basuno, Siti Aisyah Alimuddin, and

Mustafa Alas. 2022. “Evaluation of CFD Computing Performance on Multi-Core Processors for

Flow Simulations”. Journal of Advanced Research in Applied Sciences and Engineering

Technology 28 (1):67-80.https://doi.org/10.37934/araset.28.1.6780.

[27] Habtemariam, Getachew Mekuria, and Sudhir Kumar Mohapatra. "A genetic algorithm-based

approach for test case prioritization." In Information and Communication Technology for

Development for Africa: Second International Conference, ICT4DA 2019, Bahir Dar, Ethiopia,

May 28-30, 2019, Revised Selected Papers 2, pp. 24-37. Springer International Publishing, 2019.

[28] Getachew, Daniel, Sudhir Kumar Mohapatra, and Subhasish Mohanty. "A Heuristic-Based Test

Case Prioritization Algorithm Using Static Metrics." In Optimization of Automated Software

Testing Using Meta-Heuristic Techniques, pp. 45-58. Cham: Springer International Publishing,

2022.

[29] Mohapatra, Sudhir Kumar, and Srinivas Prasad. "A Chemical Reaction Optimization Approach to

Prioritize the Regression Test Cases of Object-Oriented Programs." Journal of ICT Research &

Applications 11, no. 2 (2017).

[30] Mohapatra, Sudhir Kumar, Arnab Kumar Mishra, and Srinivas Prasad. "Intelligent Local Search

for Test Case Minimization." Journal of The Institution of Engineers (India): Series B 101, no. 5

https://doi.org/10.37934/araset.34.3.6287
https://doi.org/10.37934/aram.70.1.18
https://www.akademiabaru.com/submit/index.php/progee/article/view/1045
https://doi.org/10.37934/araset.28.1.6780

1409 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....

Nanotechnology Perceptions 20 No. S14 (2024)

(2020): 585-595.

