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In the field of software engineering, ensuring the reliability and robustness of software is 

paramount, and software testing plays a critical role in this process. Mutation testing, a fault-based 

technique, evaluates the effectiveness of test suites by introducing artificial defects, known as 

mutants, into programs. This research presents a novel method for generating higher-order mutants 

(HOMs) using the Chemical Reaction Optimization (CRO) algorithm, which enhances the rigor of 

mutation testing by creating harder-to-detect mutants. The CRO algorithm employs four types of 

collision operators: on-wall ineffective, synthesis, decomposition, and inter-molecular ineffective, 

to modify mutants and simulate complex faults. Through experimentation with iterations set at 10, 

30, and 50, it was found that increasing the number of iterations significantly reduces the number 

of mutants and increases their detection difficulty. Notably, with 50 iterations, the approach 

achieved a 93% reduction in mutants and lowered the mutation score to 27.77%, demonstrating the 

robustness of the generated mutants. The research further introduces the HOMUsingCRO tool, 

which automates the mutant generation and testing process, generating XML-based reports for 

effective mutant analysis. The proposed approach outperforms existing techniques in both mutant 

reduction and mutation score, offering a more comprehensive solution for improving software test 

suite effectiveness. 

Keywords : Real fault, hard to detect mutant, chemical reaction optimization algorithm, mutation 

testing, higher-order mutant generation, unit testing. 

1. Introduction 

Software engineering is a discipline dedicated to the systematic design, development, and 

maintenance of software systems. As these systems grow in complexity, ensuring their 

reliability becomes a crucial challenge. Software testing is an integral part of this process, 

serving as a key method for validating the functionality and robustness of software 

applications. Mutation testing, one of the more advanced techniques, evaluates the quality of 

a test suite by introducing artificial faults, or mutants, into the program. These mutants, which 

are slight modifications to the original code, simulate real-world defects that could arise during 

software development. The effectiveness of the test suite is measured by its ability to "kill" 

http://www.nano-ntp.com/
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these mutants—i.e., detect and eliminate them—thereby assessing the robustness of the 

software in detecting and handling potential faults.  [1]. 

There are two primary types of mutants used in mutation testing: First-Order Mutants (FOMs) 

and Higher-Order Mutants (HOMs). FOMs involve single, localized changes to the program, 

while HOMs are the result of combining multiple FOMs [2]. Although FOMs are easier for a 

test suite to detect, HOMs are more resistant to detection, simulating more complex and subtle 

faults [3]. This makes HOMs a more rigorous test of a suite’s fault-detection capability. 

However, generating and managing HOMs is more challenging due to the exponential increase 

in possible combinations and the complexity of the mutants produced [4]. 

Metaheuristic algorithms, particularly those inspired by natural processes, have shown great 

promise in optimization problems across various fields, including software testing [5]. 

Chemical Reaction Optimization (CRO) is a relatively new metaheuristic algorithm that 

mimics chemical reactions in nature, where molecules interact and change states to reach 

stable conditions [6]. In the context of mutation testing, the CRO algorithm transforms 

software mutants through a series of reactions, aiming to generate harder-to-kill HOMs. By 

randomly applying four different collision types—synthesis, decomposition, on-wall 

ineffective, and inter-molecular ineffective—the CRO algorithm can either increase or reduce 

the number of mutants, while also enhancing their resilience to detection by the test suite 

[7][8]. 

This study introduces a novel approach for generating higher-order mutants using the CRO 

algorithm. The proposed method improves the complexity and difficulty of detecting these 

mutants, which in turn enhances the robustness of the software’s test suite. The authors applied 

the CRO algorithm at different iteration levels 10, 30, and 50 observing the impact on the 

number of mutants generated and their detection rates. The results indicate that increasing the 

number of iterations significantly reduces the number of mutants and increases their difficulty 

of detection, making the test process more rigorous and reliable. 

The contributions of this research are threefold:  

1. Introduced a new methodology for generating higher-order mutants using CRO.  

2. Evaluated the impact of different iteration counts on mutant generation and detection 

difficulty, and 

3. Developed a tool, HOMUsingCRO, which automates the process of generating, 

executing, and analyzing mutants using CRO. This tool generates XML-based reports, 

making the mutant analysis process more efficient. The findings show that the 

proposed approach outperforms existing techniques in both mutant reduction and 

mutation score, demonstrating the practical applicability of our methodology for 

improving software testing processes. 

 

The organization of this article is as follows: the next section discusses the related work. 
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In section 3, a detailed discussion on the proposed methodology is presented. Section 4 

contains the implementation of the proposed methodology. The results and discussion are 

presented in section 5. The article is concluded in section 6. 

 

2. Related Work  

The generation of higher-order mutants (HOMs) has been extensively studied as a means to 

improve the effectiveness of mutation testing. Various techniques have been proposed to 

generate HOMs that are harder to detect and more representative of real-world faults. 

Anas Abuljadyel et al. [9] introduced an agent-based algorithm combined with a genetic 

algorithm (GA) to create subtle higher-order mutants. Their method initially achieved a 50% 

mutation score, but after incorporating the GA, the score was reduced to 0.2% among 2000 

mutants and 800 test cases. Despite the reduction in mutation scores, the study did not achieve 

significant reduction in the number of generated HOMs, indicating that their approach, while 

effective in generating challenging mutants, lacked efficiency in mutant reduction. Elmahdi 

Omar et al. [4] proposed three novel metaheuristic search strategies—guided local search, 

restricted enumeration, and restricted local search—to generate higher-order mutants. These 

strategies outperformed traditional methods like genetic algorithms, local search, and random 

search in terms of producing more difficult-to-detect HOMs. However, their approach did not 

focus on reducing the overall number of mutants, limiting its practical applicability in large-

scale mutation testing scenarios. 

Mike Papadakis et al. [10] conducted a large-scale empirical study exploring the correlation 

between mutation scores and real fault detection. Their findings revealed that mutation scores 

strongly correlate with a test suite’s ability to detect real faults, underscoring the importance 

of mutation testing for evaluating test suite quality. However, their study primarily 

concentrated on first-order mutants, leaving higher-order mutants underexplored in terms of 

their potential to simulate more complex faults. Nguyen et al. [1] evaluated multi-objective 

optimization algorithms aimed at generating HOMs. Their approach successfully balanced the 

trade-off between mutant generation and test case effectiveness. However, the scope of their 

study was constrained by relatively small subject programs, limiting its ability to assess the 

scalability of their optimization techniques for larger software systems. 

Nishtha Jatana et al. [12] developed an improved Crow Search Algorithm (ICSA) to enhance 

the automation of test case generation for mutation testing. While this approach demonstrated 

strong performance in generating optimized test suites, it primarily addressed test data 

generation rather than focusing on generating challenging HOMs. As a result, it fell short in 

tackling the complexity of HOM creation. An SSHOM tool was proposed in [13] to perform 

first-order mutation (FOM) testing on selected pairs of mutants and then combine the resulting 

FOMs to generate higher-order mutants (HOMs). This tool provided an efficient approach to 

systematically combining mutations, contributing to the generation of complex HOMs. In [14], 

the author introduced a scheme for identifying subsuming higher-order mutants (SOMs), 

which are mutants that subsume others, to help reduce the total number of required mutations 
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while maintaining the testing effectiveness. This scheme helped streamline the mutation 

process by focusing on key mutants that cover more fault scenarios. 

A comprehensive literature review in [15] enhanced the understanding of HOMs by examining 

various approaches and challenges associated with generating and killing HOMs. This review 

provided valuable insights into current methodologies and identified future research 

directions. In [16], the author explored the application of multi-objective optimization 

algorithms for solving real-time problems related to HOM testing. This study demonstrated 

the practical utility of HOMs in complex, real-world scenarios and highlighted the advantages 

of using optimization algorithms to improve testing efficiency. 

The author in [17] addressed two critical challenges: identifying the most suitable SOMs for 

testing and developing methods to generate hard-to-kill mutants. These hard-to-kill mutants 

offer greater insight into the effectiveness of test suites, making them highly valuable for 

rigorous testing. Further studies [18, 19, 20] investigated the use of soft computing techniques, 

such as genetic algorithms, to effectively kill HOMs. These approaches demonstrated the 

potential of leveraging advanced algorithms to improve the overall effectiveness of mutation 

testing. In [21], the author evaluated mutation testing based on FOMs and identified high-

quality mutation operators that could be used to generate more effective HOMs. This approach 

contributed to the refinement of mutation strategies for improved efficiency and accuracy. 

Other studies have explored the use of mutation testing for various purposes, including 

software testing [22,23,24,25,26], test case prioritization [27,28,29], and test case reduction 

[30]. These contributions have expanded the scope of mutation testing, demonstrating its 

versatility and effectiveness in different software testing contexts. 

Table 1: Summary of LR 
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While prior studies have made significant advancements in generating and optimizing higher-

order mutants, they have generally focused on either increasing mutant complexity or reducing 

mutant numbers, but rarely on addressing both aspects simultaneously. Techniques like 

genetic algorithms and multi-objective optimization have been effective in creating hard-to-

detect mutants but often fall short in reducing the number of mutants. Conversely, methods 

aimed at mutant reduction frequently do not produce complex or challenging mutants. Existing 

research has tended to prioritize either detection difficulty or mutant reduction, often 
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overlooking the need for a balance between the two. Additionally, many studies have been 

evaluated on small-scale subject programs, limiting their applicability to larger, more complex 

software environments. This study addresses these gaps by introducing a Chemical Reaction 

Optimization (CRO) algorithm that simultaneously reduces the number of higher-order 

mutants and increases their detection difficulty, offering a more comprehensive and rigorous 

approach to mutation testing. 

 

3. Methodology 

Chemical Reaction Optimization (CRO) is a versatile metaheuristic algorithm designed to 

solve a variety of optimization problems. Unlike algorithms tailored to specific domains, CRO 

operates independently of problem specifics, allowing for customization based on research 

requirements [7]. The methodology consists of three main phases: Initialization, Iteration, and 

Finalization. 

3.1 Initialization Phase 

During the initialization phase, each mutant, whether first-order or higher-order, is represented 

as a molecule. This phase involves setting up the algorithm's parameters, which include 

genSize, buffer (b), alpha, and beta. The parameter genSize specifies the stopping condition 

for the algorithm, with the user determining the number of iterations the algorithm will 

execute. The buffer is a random value between [0, 1] used to distinguish between uni-

molecular and inter-molecular collisions. The alpha value, also a random number between [0, 

1], is used to decide if an inter-molecular collision results in synthesis or an ineffective 

collision. Similarly, the beta value determines whether a uni-molecular collision leads to 

decomposition or an on-wall ineffective collision. 

3.2 Iteration Phase 

In the iteration phase, the algorithm executes based on the stopping condition specified by 

genSize. During this phase, collisions can be classified as either uni-molecular or inter-

molecular. The type of collision is determined by generating a random buffer value. If this 

value exceeds 0.5, an inter-molecular collision occurs; otherwise, a uni-molecular collision is 

performed. 

For inter-molecular collisions, the process involves generating a random alpha value to decide 

between an ineffective collision and synthesis. In synthesis, two mutants with average fitness 

values are selected from each module and merged to reduce their number. The ineffective 

collision utilizes crossover operations, similar to those in genetic algorithms, to enhance the 

search space. 

For uni-molecular collisions, a random beta value determines whether the collision results in 

an on-wall ineffective collision or decomposition. In the decomposition process, a mutant with 

the highest number of hits is divided into two mutants, increasing the search space. The on-

wall ineffective collision involves selecting a mutant with lower fitness and applying 
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traditional and class-level operators to alter its structure, analogous to mutation in genetic 

algorithms. 

  3.3 Finalization Phase 

Once the stopping condition is met, the algorithm moves to the finalization phase. Here, the 

solution is saved in an XML file on the disk. The stopping criterion is defined by the user and 

can be specified through a Java input dialog. The final phase concludes with the output of the 

solution, encapsulated in XML format, representing the result of the optimization process. 

In summary, the CRO algorithm operates through the initialization of parameters, iterative 

collision processing, and finalization of the solution [7]. 

 

Fig. 1. Proposed CRO algorithm flowchart 
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The flow of the Chemical Reaction Optimization (CRO) algorithm is outlined as follows: 

1. Initialization: 

▪ The algorithm begins by initializing basic variables including b, beta, and 

alpha, with values ranging between 0 and 1. In the proposed algorithm, these 

variables are initially set to 0.5. During each collision event, beta and alpha 

are updated with random values within this range, while b changes in each 

generation. 

▪ Additionally, the algorithm accepts an input mutant file from the file system, 

which contains the initial mutants to be processed. 

2. Handling Single Mutants: 

▪ In cases where a module contains only one mutant, inter-molecular collisions 

(synthesis and ineffective collisions) cannot be applied. Therefore, the 

algorithm checks the number of mutants within each module using a 

mutant_length variable. 

▪ When mutant_length equals 1, indicating a single mutant, the algorithm 

resorts to uni-molecular collision methods. Specifically, it first applies the 

onWallineffective() collision to enhance the mutant's performance, followed 

by decomposition to create additional mutants. 

3. Collision Selection: 

▪ For modules with more than one mutant, the algorithm determines the type of 

collision to apply based on the value of b. If an inter-molecular collision is 

selected, the alpha value is used to decide between synthesis or an inter-

molecular ineffective collision. 

▪ Conversely, if a uni-molecular collision is chosen, the beta value determines 

whether to apply decomposition or an on-wall ineffective collision. 

4. Iteration and Termination: 

▪ The algorithm repeats the above processes iteratively until the stopping 

condition, defined by the user, is met. Each iteration updates the state of the 

mutants according to the collision types and parameters specified. 

▪ Upon reaching the stopping condition, the algorithm terminates and outputs 

the final solution. 

The proposed algorithm is presented below 

Proposed Algorithm 

Input: 

• Initial mutants file 

• Parameters: genSize (maximum iterations), b (collision type selector), alpha (inter-

molecular collision selector), beta (uni-molecular collision selector) 
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Output: 

• Optimized set of Higher Order Mutants (HOMs) in XML format 

 

Initialization Phase 

• Set initial values for parameters: 

o b = 0.5, alpha = 0.5, beta = 0.5 

• Load initial mutants from the file system. 

• Set stopping condition genSize. 

Iteration Phase 

• While stopping condition (genSize) is not met: 

o For each module, determine mutant_length. 

▪ If mutant_length == 1: 

▪ Apply onWallineffective() collision to the single mutant. 

▪ Apply Decomposition to generate additional mutants. 

▪ Else (mutant_length > 1): 

▪ Generate a random value for b. 

▪ If b > 0.5: 

▪ Generate a random value for alpha. 

▪ If alpha > 0.5, perform Synthesis to merge two 

mutants. 

▪ Else, perform Inter-Molecular Ineffective Collision 

using crossover operations. 

▪ If b ≤ 0.5: 

▪ Generate a random value for beta. 

▪ If beta > 0.5, perform Decomposition on the mutant 

with the highest hit count. 

▪ Else, perform On-Wall Ineffective Collision on a 

low-fitness mutant. 

o Update mutants' states based on collision outcomes. 

o Increment iteration count. 

Finalization Phase 

• If stopping condition is met: 

o Save final set of mutants in XML format. 

o Terminate the algorithm. 
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End Algorithm 

4. Implementation of the Proposed Algorithm 

The proposed algorithm, named HOMUsingCRO (Higher-Order Mutant Using Chemical 

Reaction Optimization), is implemented using Java. This model is designed for higher-order 

mutant generation by applying the CRO algorithm. The implementation is intended to 

facilitate Java program testing. The main features of the HOMUsingCRO interface are 

described below: 

Figure 2 illustrates the layout of the HOMUsingCRO application, which is divided into three 

primary sections: 

1. Directory Selection for Mutants: 

o Upper Section: This section contains the first text field and a “Browse” 

button. The “Browse” button allows users to select a directory containing the 

first-order mutant files. Upon clicking this button, a file dialog opens, 

restricting the user to choosing directories only. The selected directory path is 

then displayed in the adjacent text field. 

2. Directory Selection for Test Cases: 

o Middle Section: This section features a second “Browse” button and a 

corresponding text field. The second “Browse” button is used to select the 

directory containing the test case files. Similar to the previous dialog, this 

button opens an open dialog box that only allows directory selection. The path 

to the selected test case directory is displayed in the adjacent text field. 

3. Execution Status and Control: 

o Last Section: This section includes a text area that provides feedback on the 

algorithm’s execution status. A success message is displayed in the text area 

once the algorithm has completed its execution. 

o Run CRO Button: This button initiates the execution of the CRO algorithm. 

When clicked, it starts the process of mutant generation and optimization as 

per the CRO methodology. 

The user interface of HOMUsingCRO is designed to be intuitive, allowing users to easily 

select directories for mutants and test cases, and to monitor the status of the algorithm. The 

system ensures smooth execution and clear communication of the results. 
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Fig. 2. HOMUsingCRO graphical user interface 

 

4.1 Subject Program 

For the experimental evaluation of the proposed algorithm, a Java project named Store 

Management System was utilized. This project serves as a student graduation project and 

encompasses a range of functionalities relevant to basic store operations. The key features of 

the Store Management System include item registration, post-sale item reduction, daily profit 

calculation, inventory counting, and other essential store activities. 

The Store Management System comprises two Java class files: 

1. Abstract Class: The first file is an abstract Java class that contains a total of 38 

methods. This class defines the foundational methods and structure necessary for the 

system’s operations. 

2. Concrete Implementation Class: The second file extends the abstract class and 

provides concrete implementations for all 38 methods. This class is composed of 607 
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lines of code, integrating the abstract methods with functional code to perform the 

system’s operations. 

Table 2 : Subject Programs 

Project Name  Number of Class  Line of code  Number of methods 

Store management system  2  754 56 

 

This subject program was chosen to evaluate the effectiveness of the HOMUsingCRO 

algorithm in generating higher-order mutants and optimizing the software testing process. 

 

4.2 Tools to generate initial Mutant MuJava 

 

MuJava is an open-source tool designed for mutant generation in Java programs. It is available 

online and provides a comprehensive suite of resources, including installation guides and 

references to other tools necessary for its operation. MuJava facilitates the automatic creation 

of first-order mutants, enabling researchers and testers to execute test suites, analyze the 

results, and improve software testing processes. The tool supports both traditional and object-

oriented programming paradigms. The tool is divided into three main components: 

 

4.3 Mutant Generator 

 

The Mutant Generator is a core component of MuJava, designed to produce mutants for both 

traditional and object-oriented programming. It achieves this by applying operators at both the 

traditional level and the class level. You can see the user interface of the mutant generator in 

Figure 3.  

 
Fig. 3. Mutant generator user interface 
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4.4 Mutant viewer 

The Mutant Viewer is a component of MuJava that provides users with a detailed view of the 

generated mutants and the modifications they introduce to the source code. It plays a crucial 

role in helping users understand the impact of each mutant on the original codebases. The 

following figure shows the mutant viewer user interface (Fig.4). 

 

 
Fig. 4.Generated Mutant 

 

4.5 Test case generation process 

For the test case generation, this research utilized JUnit 5, a widely recognized framework for 

writing and executing tests in Java. JUnit 5 enables the creation of test cases to evaluate Java 

programs effectively. In the context of this study, the Store Management System, which 

consists of 14 main modules, required a comprehensive set of test cases. Accordingly, 14 

distinct test suites were developed, each corresponding to one of the modules. Each test suite 

includes 10 test cases, resulting in a total of 140 test cases across all suites. 

Each test class within JUnit 5 is equipped with two critical methods to manage the testing 

lifecycle. The setUpBeforeClass() method, annotated with @BeforeClass, is executed once 
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before any of the test methods are called. This method is used to initialize the objects of the 

mutant class, ensuring they are prepared for testing. Conversely, the tearDownAfterClass() 

method, annotated with @AfterClass, is invoked after all test methods have completed. It is 

responsible for cleaning up by setting the class object under test to an empty or null state. 

Additionally, each test method is marked with the @Test annotation to indicate that it is a test 

case. 

The HOMUsingCRO tool, which is used in conjunction with JUnit 5, provides an interface for 

selecting directories that contain mutant files and source code. Users can browse and select 

these directories using JFileChooser, with the selected file being assigned to a variable. The 

listFiles() method is then employed to retrieve subdirectories from the chosen directory. Each 

file is read line by line to identify the method affected by the mutant. 

MuJava, the tool used for generating mutants, organizes mutant files in directories named by 

combining the return type and method name. For instance, if the original method is int sum(int 

a, int b), MuJava generates a directory named int_sum(int, int) to store mutants related to 

that method, as illustrated in Figure 5. This structured approach ensures that the generated test 

cases are comprehensive and capable of effectively detecting faults introduced by the mutants. 

 

Fig. 5. muJavacreates a mutant directory by method name and return type 

To identify the method associated with a mutant from the mutant source code, the process 

involves using a substring to match key elements such as int and sum, which correspond to 

the method's signature. The proposed method stores each file in a LinkedList variable, a 

dynamic array that accommodates variable sizes. Once the method where the mutant is located 

is identified, the system determines the line number where the method's ending brace is 

positioned by employing a stack data structure. This technique allows the program to ascertain 

the start and end lines of the method in the source code. 

The proposed model employs a while loop to read both the original and mutant source codes 

line by line. As the loop progresses, it checks whether the current line pertains to the method 

containing the mutant. Upon reaching the method, an inner while loop is initiated, which 

continues to iterate until the end of the method is reached. During this iteration, the inner loop 

compares each line of the mutant code with the corresponding line of the original code in a 
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parallel fashion. Any discrepancies between the lines are recorded as differences, which 

represent the mutant code. 

For accurate comparison, both the mutant and original source codes must be properly 

formatted, as shown in Figure 6. This structured approach ensures that the mutant code is 

effectively identified and differentiated from the original code, facilitating a thorough analysis 

of the mutants within the source code. 

 

Fig. 6.Mutant and original code comparison 

The program performs a line-by-line comparison of the code from both the original and mutant 

source files. During this comparison, the program checks each line to identify discrepancies 

between the two versions. For instance, as illustrated by the provided code snippet, lines 21, 

25, and 27 in both files are identical. However, a difference is observed in line 23, where the 

statement in the mutant code diverges from the statement in the original code. This discrepancy 

is crucial as it highlights the mutant statement. 

The mutant statement found in line 23 is recorded as a mutant and subsequently stored in the 

LinkedList variable. This collection of mutants is then subjected to further processing to 

analyze the impact and effectiveness of the introduced changes. By systematically identifying 

and cataloging these differences, the program ensures that each mutant is properly documented 

and can be used for subsequent testing and evaluation. 

4.6  How to Remove Irrelevant Mutants 

As detailed in the previous section, the program identifies mutant code by traversing 

directories within the same module. When a mutant statement is discovered, the line number 

where this mutant occurs is recorded in the LinkedList variable. During subsequent iterations, 

the program performs a check to determine if the line number of the newly found mutant is 

already present in the LinkedList. 
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If the line number is found in the LinkedList, the program recognizes this as a repeated mutant 

and omits it from further processing. This step ensures that only unique mutants are retained, 

avoiding redundancy. Conversely, if the line number does not exist in the LinkedList, the 

program adds the mutant file to the LinkedList for further operations. This approach 

effectively filters out irrelevant or duplicate mutants, streamlining the process of mutant 

analysis and maintaining the focus on novel mutants that contribute to meaningful testing and 

evaluation. 

Algorithm to identify and remove repeated mutant 

Step 1: Read an array of mutant files and original files as input. 

Step 2: Read each muted source code and source code line by line and move to step 3 until 

the line number checker reaches null.  

Step 3: Identify the method name where the mutant is located and also identify the method 

ending and starting brace of the method where the mutant is located and then move to step 4. 

Step 4: Identify the line number where the muted statement is located and store the line 

number and mutant file in the linked list variable.  

Step 5: If the current muted statement line number is not equal to the method ending brace 

line number, then go to step 6, else move to step 2. 

Step 6: If the statement read from the muted file and the statement read from the original file 

are different, pass the line number to step 7 else move to step 2. 

Step 7: Read the mutant line number from step 6 and check if the line number exists in the 

mutant list, then consider the mutant as a repeated mutant, skip storing the mutant-to-mutant 

list, and go to step 2, else consider the mutant as a relevant mutant and store the mutant in 

mutant linked list variable for farther operation. 

Step 8: Repeat step 3 till the line number checker returns null. 

4.7   Process of Running Test Cases Over Mutants 

The execution of test cases is a critical component of the HOMUsingCRO architecture and is 

invoked during each generation execution. This process comprises three main sequential 

components: mutant selection and object creation, test runner, and XML report generation. 

Each of these components plays a vital role in executing a mutant against the test cases and 

generating the corresponding reports. 

 

4.7.1 Mutant Selection and Object Creation 

The process begins with the runTestOverHOM() method, which is defined in the test 

execution class. This method initiates the test execution by first browsing the file system to 

access the mutant files. Each mutant class file, along with its module name, is read using a 
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for-each loop. During each iteration of the loop, the selected mutant and its module name are 

passed to the setClassObject() method, which is responsible for creating a mutant object. 

Since the mutant class file is initially outside the Java classpath, it is relocated to the 

appropriate classpath to facilitate execution. After moving the file, the tool compiles the 

mutant class located in the classpath. Using the Class.forName() method, the tool creates an 

instance of the mutant class with newInstance(), assigning it to a variable of the same type as 

the new class instance. Finally, the testRunner() method is invoked with the module name 

and mutant file as parameters to commence the test execution. 

 

4.7.2 Test Runner 

The testRunner() method is designed to handle the execution of mutants within a module. 

Each test suite is saved under the respective module's name, aiding in the selection of the 

appropriate test suite for each mutant. The method iterates over all test suite files from the file 

system using a foreach loop and selects the correct test suite by comparing the test suite file 

name with the mutant module name. If the names match, the corresponding test suite is chosen 

for execution. The tool then creates a test suite object using Class.forName() and passes this 

object to JUnitCore.runClasses(), which executes the selected test suite class. The method 

returns a Result object, which is used to gather information on failed tests and the total number 

of tests run for the mutant. Subsequently, the HOMXMLReport() method is called with 

parameters including the number of killed tests, total tests, module name, and fitness value to 

generate a detailed XML report. 

 

4.7.3 XML Report Generator 

The HOMXMLReport() method is responsible for creating an XML-based report for each 

mutant class file. Initially, an XML file named HOMUsingCRO.xml is created to store data 

for all mutants. Using a Java XML parser, the method constructs XML elements to record 

details such as killed mutants, fitness value (or kinetic energy), and the total number of 

mutants. The XML report encompasses information on total killed mutants, total generated 

mutants, mutation scores, number of hits, and kinetic energy for each mutant. An example of 

the XML report format is illustrated in Figure 7. 
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Fig. 7. Sample XML Report 

 

4.8 The architecture of the proposed tool HOMUsingCRO 

The tool developed using the proposed algorithm is named HOMUsingCRO. Its architecture 

is structured into three main layers: the Upper Layer, the Middle Layer, and the Lower Layer. 

Each layer has distinct components that contribute to the overall functionality of the tool. 

 

4.8.1 Upper Layer 

The Upper Layer represents the graphical user interface (GUI) of HOMUsingCRO. It includes 

the following elements: 

• Buttons: There are three buttons: 

o Two buttons are used for browsing directories: one for the mutant directory 

and one for the test suite directory. 

o The third button initiates the execution process of the algorithm. 

• Text Fields: Two text fields display the paths of the selected directories for mutants 

and test suites. 

• Text Area: This area provides feedback by displaying a message indicating the 

completion of the algorithm's execution. 

 

4.8.2 Middle Layer 

The Middle Layer encompasses the core functionalities of the tool, which include: 

• Test Runner: This component executes JUnit test cases on the selected mutants and 

records the number of failed tests and the total number of tests executed. 

• Relevant Mutant Selector: This component filters out redundant mutants by 

removing those deemed irrelevant. 

• XML Report Generator: After test execution, this component stores the results in an 

XML format on the file system. 

• File Management: This component handles reading mutant and test files from the file 

system and writing higher-order mutants back to the file system. 

• Mutant Selector for CRO Operator: This component selects mutants for processing 

by the proposed Chemical Reaction Optimization (CRO) operator based on predefined 

conditions. 

• CRO Algorithm: This component implements the four operators defined in the CRO 

algorithm. 

• Test Case Selection: This component facilitates the selection of appropriate test cases 

for each mutant and passes them to the Test Runner. 

• Source Code Compiler: This component compiles the mutant and test case source 

codes after moving them to the correct Java classpath. 
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Fig. 8. The architecture of the proposed approach 

4.8.3 Lower Layer 

The Lower Layer contains external Java libraries essential for the tool’s operation: 

• JUnit: A Java-based testing framework used for writing and running JUnit test 

programs. 
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• Java Compiler: Part of the common Java libraries, this tool helps compile Java source 

code programmatically. 

• Java 1.8 Libraries: Includes common I/O libraries, Swing libraries for GUI 

development, and other standard Java libraries. 

4.9 Execution Process of HOMUsingCRO 

The execution process of HOMUsingCRO involves several key steps to ensure that the tool 

efficiently processes mutants and generates results. Here’s a detailed outline of the process: 

1. Input Preparation: The tool requires two inputs: a mutant directory and a test suite 

directory. The mutant directory contains subdirectories, with the final subdirectory 

holding the mutant source code and byte code files (.java and .class). The test suite 

directory provides the test cases. The tool reads the mutant directory and filters out 

relevant mutants. 

2. Classpath Adjustment: Since the mutants and test suite files are initially not in the 

correct Java classpath, the tool moves these files to the appropriate classpath. 

3. Compilation: The tool compiles both the mutant files and the test suite files that have 

been moved to the correct Java classpath. 

4. Test Execution: The test suite is run against the selected mutant. During this phase, 

the fitness value and mutation score for each mutant are calculated based on the test 

results. 

5. CRO Operator Selection: Based on the calculated fitness values and other 

parameters, the appropriate Chemical Reaction Optimization (CRO) operator is 

selected. The tool then selects a mutant for the chosen CRO operator and applies the 

CRO algorithm. 

6. Mutant Generation: The application of the CRO algorithm results in the generation 

of new mutants. These newly generated mutants are then compiled. 

7. Re-Execution and Recalculation: The test suite is run again against the newly 

generated mutants. The fitness values and mutation scores for these new mutants are 

recalculated. 

8. Iteration and Termination: If the stopping condition is not met, the process loops 

back to the CRO operator selection step. If the stopping condition is met, the execution 

terminates, and the final output is generated. 

This process ensures a systematic approach to mutant processing, including compilation, 

testing, optimization, and re-testing, culminating in the generation of comprehensive results. 

5. Results and Discussion 

 

5.1 CRO Algorithm Setup 

Before initiating the execution of the Chemical Reaction Optimization (CRO) algorithm, the 

user specifies the number of iterations for the algorithm. This flexibility allows the algorithm 
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to be adjusted according to the specific requirements of the experiment, thereby providing 

insights into how iteration counts affect mutant generation and mutation scores.  

For this study, the CRO algorithm was configured to run with varying numbers of generations: 

10, 30, and 50. In each generation, the entire set of mutant modules was executed, and one 

CRO elementary reaction was applied to each mutant module. The experiment involved 

processing 1,170 first-order mutants (FOM) and 140 test suite files generated by JUnit. After 

applying the CRO mutant filtering technique, 420 mutants were identified as relevant. To 

ensure proper execution, the test suite files and mutant files were relocated to the correct Java 

classpath. This step was crucial, as files need to be in the correct classpath to be active for 

execution. The experiments were conducted on an HP laptop equipped with an Intel Core i5 

processor and 4GB of RAM. This setup was used to evaluate the performance and 

effectiveness of the CRO algorithm in generating and filtering mutants. 

 

Fig. 9.Execution process of HOMUsingCRO 
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5.2 Test case execution result before applying CRO 

Once the tool accepted the mutant files from the file system, it proceeded with filtering out the 

relevant mutants. These mutants were then relocated to the project directory to streamline the 

processing. To facilitate organization and clarity, the mutants were renamed with a directory 

prefix "CRO_XXX," where "XXX" represents the specific module name or method name from 

the program. This renaming process is illustrated in Figure 10. The directory naming 

convention helps in managing and tracking the mutants more effectively during the subsequent 

stages of testing and analysis. 

 

 

Fig. 10. Generated Mutant File Structure 

HOMUsingCRO accepts test suite files from the file system and transfers them to the project's 

src directory inside the test package. Subsequently, the test suite is executed against the mutant 

files. The tool processes each mutant module individually, selecting the appropriate test suite 

file based on a match between the mutant module name and the test suite name. 

Each test suite consists of 10 test cases, with a default distribution of 50% failed tests and 50% 

passed tests. After executing the test suites, it was observed that all mutants were killed by at 

least one test case, resulting in a mutation score of 100%. This outcome indicates that all 

mutants were effectively identified by the test suite, suggesting that the test suite has a high 

capability to detect errors introduced by the mutations. Figure 11 provides a visual 

representation of the test case execution results before the application of the CRO algorithm. 
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Fig. 11. Mutant Execution Result before CRO 

5.3 Execution process and its outcome 

The number of iterations executed by the algorithm is user-defined. To assess the impact of 

the number of generations on the mutant creation process, the experiment specifically 

evaluates three different generation counts: 10, 30, and 50. For each generation count, the 

algorithm compares the mutation score value, the number of generated mutants, and the 

number of killed mutants with the initial values. 

Initially, all 420 mutants were effectively killed by the given test cases, resulting in a mutation 

score of 100%. When the number of generations was set to 10, the algorithm performed four 

elementary reactions of CRO, selected randomly. After 10 iterations, the results showed a total 

of 416 mutants generated, a 1% decrease from the initial count. Out of these, 408 mutants were 

killed, which is a 3% decrease from the initial number of killed mutants. Consequently, the 

mutation score dropped to 98%, a 2% reduction from the initial score. The execution of the 

algorithm with 10 generations took approximately 45 minutes. 

Given that these results were not satisfactory, an additional iteration with a higher number of 

generations was conducted. Figure 12 illustrates the execution results for 10 generations. 

 
Fig. 12.Execution result when generation equal to 10 
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When the number of generations was set to 30, the experiment yielded 320 mutants, 

representing a 23% reduction from the initial 420 mutants. Among these, 209 mutants were 

killed by the test cases, which is a 50% decrease compared to the initial number of killed 

mutants. This result indicates that the mutants generated with 30 iterations were more 

challenging to detect than both the initial mutants and those generated with 10 iterations. The 

mutation score dropped to 65%, reflecting a 35% decrease from the initial score. The algorithm 

required 110 minutes to complete the execution for 30 generations. Overall, this iteration 

provided a more effective mutation score, a lower number of generated mutants, and a higher 

proportion of killed mutants compared to the initial results and the results from 10 generations. 

Figure 13 illustrates the execution outcome when the generation count was 30. 

 

Fig. 13.Execution result when generation equal to 30 

 

When the number of generations was set to 50, the experiment produced a total of 108 mutants, 

a 75% reduction from the initial 420 mutants. Of these, only 30 mutants were killed by the test 

suite, which represents a 93% decrease from the initial number of killed mutants. Despite the 

significant drop in the number of killed mutants, the mutation score improved to 22.77%, 

which is a 72% increase compared to the original mutation score. The execution process took 

216 minutes to complete for 50 generations. These results suggest that increasing the number 

of iterations can lead to more refined mutant generation and improved mutation score 

outcomes. Figure 14 illustrates the execution results for 50 generations. 
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Fig. 14. Execution result when generation equal to 50 

 

5.4 Mutants before and after proposed algorithm 

This research utilized MuJava to generate initial mutants for the algorithm by applying it to 

the Store Management System project. Initially, a total of 1170 first-order mutants were 

generated, comprising 896 mutants created using 19 traditional-level operators and 274 

mutants created using 28 class-level operators. 

Upon applying the proposed algorithm filtering technique, the number of relevant mutants was 

reduced to 420. Each of these mutants was accompanied by an XML file detailing the method 

name, the line number where the mutated statement exists, the method's opening and ending 

braces, and the minimum hit number. This filtering process also involved removing all .class 

files to reduce execution time and creating new mutants based on the properties of the old 

ones. The application of CRO elementary reactions resulted in changes to the mutation score 

and other properties of the mutants.  

The following table summarizes the mutant properties before and after applying the CRO 

technique: 

Table 3: Mutant result before and after Proposed algorithm HOMUsingCRO 
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Propert

ies 

Before 

Applying 

the 

HOMUsing

CRO 

Filtering 

Technique 

After 

Filtering the 

HOMUsing

CRO 

Filtering 

Technique 

After 

Applying 

HOMUsing

CRO 

Gen=10 

After 

Applying 

HOMUsing

CRO 

Gen=30 

After 

Applying 

HOMUsing

CRO 

Gen=50 

No. of 

input 

mutants 

1170 420 420 420 420 

Generat

ed 

Mutants 

- - 416 320 108 

No. of 

killed 

mutants 

1170 420 408 209 30 

No. of 

test 

cases 

140 140 140 140 140 

Mutatio

n score 
100% 100% 98.07% 65.31% 27.77% 

Executi

on time 
5 minutes 1 minute 46 minutes 110 minutes 216 minutes 

 

5.5 The proposed algorithm Vs another algorithm on the process of higher-order mutant 

generation 

In this section, we compare our study with three previous studies, focusing on subject 

programs, problems addressed, techniques employed, and the strengths and limitations relative 

to our proposed method. 

 

When compared to Anas et al. [2], our study utilizes the Store Management project, which 

comprises 607 lines of code, 38 methods, and two classes. In contrast, Anas et al. used a 

smaller project with just one class, 23 methods, and 315 lines of code. This indicates that our 

subject program is larger and more complex, providing a more challenging environment for 

mutant generation and testing. In terms of mutant and test case ratios, our study involved 420 

mutants and 140 test cases, resulting in a ratio of 3:1. Anas et al., on the other hand, worked 

with 2000 mutants and 800 test cases, yielding a ratio of 5:2. This comparison highlights a 

more balanced ratio in our approach. While Anas et al. applied a genetic algorithm and 

achieved a mutation score of 99%, their method did not reduce the number of higher-order 

mutants (HOMs), maintaining the initial count of 2000 mutants. Conversely, our CRO-based 

method improved the mutation score by 73% and reduced the number of mutants by 73%. This 

demonstrates that our approach not only effectively reduces mutants but also maintains high 



1405 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....                                                                 

 

Nanotechnology Perceptions 20 No. S14 (2024)  

mutation scores. The potential exists for our method to achieve similar high mutation scores 

as Anas et al. with increased iterations. 

 

In comparison with Nguyen et al. [1], our study initially generated 1170 first-order mutants 

(FOMs), which were reduced to 420 FOMs using CRO filtering. After 50 iterations, we 

produced 108 higher-order mutants (HOMs), marking a 25% reduction from the filtered 

FOMs. Nguyen et al., on the other hand, employed a large subject program consisting of five 

Java projects, each with 51 to 144 class files. This broader testing context might influence the 

effectiveness of their algorithm. Our approach achieved a 91% reduction in the total number 

of mutants and a mutation score of 27% with the generated HOMs, demonstrating strong 

performance in realistic fault generation. While Nguyen et al.’s approach was tested on a larger 

scale, it did not match the reduction effectiveness observed with our method(Table 4). 

Table 4: Comparison of Proposed algorithm HOMUsingCRO with other existing algorithm 

Criteria Proposed Algorithm Anas et al. [2] Nguyen et al. [1] 

Subject 

Program 

Store Management Project 

(607 LOC, 38 methods, 2 

classes) 

Smaller project 

(315 LOC, 23 

methods, 1 class) 

Large-scale 

program (5 Java 

projects, 51-144 

class files per 

project) 

Mutants 

Generated 

1170 FOMs (reduced to 420 

FOMs using CRO filtering, 

108 HOMs after 50 iterations) 

2000 mutants (no 

reduction of 

HOMs) 

Not specified, 

focus on large-

scale testing 

context 

Test Cases 140 test cases 800 test cases Not specified 

Mutant/Test 

Case Ratio 

420 mutants : 140 test cases 

(3:1) 

2000 mutants : 

800 test cases 

(5:2) 

Not specified 

Mutation 

Score 

27% after 50 iterations 

(indicating hard-to-kill HOMs, 

aligned with the objective of 

generating complex mutants) 

99% Not specified 

Mutant 

Reduction 

91% reduction in total mutants 

(73% improvement in 

mutation score) 

No reduction in 

HOMs (2000 

mutants retained) 

Less effective in 

mutant reduction 
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Strengths 

Generates hard-to-kill HOMs, 

effectively reduces mutants, 

and encourages more robust 

test suite creation 

High mutation 

score (99%), but 

no focus on HOM 

complexity 

Broader context 

due to large 

subject programs 

Limitations 

Lower mutation score (27%) 

as HOMs are harder to kill, but 

this is a positive outcome in 

terms of the objective of 

generating complex mutants 

Did not address 

mutant reduction, 

no HOM 

reduction 

Did not achieve 

the same level of 

mutant reduction 

as our method 

 

HOMUsingCRO effectively balances mutant reduction and mutation score improvement, 

outperforming previous methods in both areas. Anas et al.’s approach achieved high mutation 

scores but did not address mutant reduction, while Nguyen et al.’s larger subject programs 

provided a broader context but did not achieve the same level of mutant reduction. Overall, 

our proposed algorithm offers a more effective solution for managing and evaluating mutants. 

 

6. Conclusion 

This study presented an innovative approach to generating higher-order mutants (HOMs) 

using the Chemical Reaction Optimization (CRO) algorithm. The method effectively balances 

the reduction in the number of mutants while increasing their complexity, making them more 

challenging to detect. By applying the CRO algorithm’s four operators on-wall ineffective, 

synthesis, decomposition, and inter-molecular ineffective this approach improves the rigor of 

mutation testing, helping to address the limitations in existing techniques that often prioritize 

either mutant reduction or complexity but not both. 

The experimental results demonstrated that with increased iterations (up to 50), there was a 

significant reduction (93%) in the total number of mutants while increasing their resistance to 

detection, as evidenced by a lowered mutation score (27.77%). This study’s findings 

underscore the CRO algorithm’s capability to improve mutation testing in more complex and 

realistic scenarios. When compared to previous approaches, this method showed better 

performance in reducing the number of mutants and maintaining a high mutation score, 

making it a valuable tool for enhancing software test suite evaluation. 

Future research should explore the application of the CRO algorithm across larger and more 

diverse subject programs, including languages like C++ and C#, to validate its effectiveness 

in different domains. Additionally, optimizing the algorithm to handle even larger scales of 

mutation testing will further contribute to improving fault detection in software systems. 



1407 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....                                                                 

 

Nanotechnology Perceptions 20 No. S14 (2024)  

References  

[1] Nguyen, Quang Vu, and Lech Madeyski. "Empirical evaluation of multiobjective optimization 

algorithms searching for higher order mutants." Cybernetics and Systems 47, no. 1-2 (2016): 48-

68. 

[2] Papadakis, Mike, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. "Are mutation scores correlated 

with real fault detection? a large scale empirical study on the relationship between mutants and real 

faults." In Proceedings of the 40th International Conference on Software Engineering, pp. 537-548. 

2018. 

[3] Papadakis, Mike, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. "Mutation 

testing advances: an analysis and survey." In Advances in Computers, vol. 112, pp. 275-378. 

Elsevier, 2019. 

[4] Omar, Elmahdi, Sudipto Ghosh, and Darrell Whitley. "Comparing search techniques for finding 

subtle higher order mutants." In Proceedings of the 2014 Annual Conference on Genetic and 

Evolutionary Computation, pp. 1271-1278. 2014. 

[5] Nayak, Janmenjoy, Bighnaraj Naik, and H. S. Behera. "A novel chemical reaction optimization 

based higher order neural network (CRO-HONN) for nonlinear classification." Ain Shams 

Engineering Journal 6, no. 3 (2015): 1069-1091. 

[6] Lam, Albert YS, and Victor OK Li. "Chemical reaction optimization: a tutorial." Memetic 

Computing 4 (2012): 3-17. 

[7] Lam, Albert YS, Jialing Xu, and Victor OK Li. "Chemical reaction optimization for population 

transition in peer-to-peer live streaming." In IEEE Congress on Evolutionary Computation, pp. 1-

8. IEEE, 2010. 

[8] James, J. Q., Albert YS Lam, and Victor OK Li. "Real-coded chemical reaction optimization with 

different perturbation functions." In 2012 IEEE Congress on Evolutionary Computation, pp. 1-8. 

IEEE, 2012. 

[9] Abuljadayel, Anas, and Fadi Wedyan. "An approach for the generation of higher order mutants 

using genetic algorithms." Int. J. Intell. Syst. Appl.(IJISA) 10, no. 1 (2018): 34-35. 

[10] Papadakis, Mike, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. "Mutation 

testing advances: an analysis and survey." In Advances in Computers, vol. 112, pp. 275-378. 

Elsevier, 2019. 

[11] Dang, Xiangying, Dunwei Gong, Xiangjuan Yao, Tian Tian, and Huai Liu. "Enhancement of 

mutation testing via fuzzy clustering and multi-population genetic algorithm." IEEE Transactions 

on Software Engineering 48, no. 6 (2021): 2141-2156. 

[12] Jatana, Nishtha, and Bharti Suri. "An improved crow search algorithm for test data generation using 

search-based mutation testing." Neural Processing Letters 52 (2020): 767-784. 

[13] Oh, Saeyoon, Seongmin Lee, and Shin Yoo. "Effectively sampling higher order mutants using 

causal effect." In 2021 IEEE International Conference on Software Testing, Verification and 

Validation Workshops (ICSTW), pp. 19-24. IEEE, 2021. 

[14] Diniz, João P., Chu-Pan Wong, Christian Kästner, and Eduardo Figueiredo. "Dissecting Strongly 

Subsuming Second-Order Mutants." In 2021 14th IEEE Conference on Software Testing, 

Verification and Validation (ICST), pp. 171-181. IEEE, 2021. 

[15] Amare, Melashu, Sudhir Kumar Mohapatra, and Tarini Prasad Panigrahy. "A Systematic Literature 

Review on Generating Higher-Order Mutant." In 2021 8th International Conference on Computing 

for Sustainable Global Development (INDIACom), pp. 131-136. IEEE, 2021. 

[16] Nguyen, Quang-Vu, and Hai-Bang Truong. "An improvement of applying multi-objective 

optimization algorithm into higher order mutation testing." In Advanced Computational Methods 

for Knowledge Engineering: Proceedings of the 6th International Conference on Computer Science, 



                                      A Novel Algorithm For Generating Hard.... Subhasish Mohanty et al. 1408  

 

Nanotechnology Perceptions 20 No. S14 (2024)  

Applied Mathematics and Applications, ICCSAMA 2019 6, pp. 361-369. Springer International 

Publishing, 2020. 

[17] Nguyen, Quang-Vu, and Hai-Bang Truong. "An improvement of applying multi-objective 

optimization algorithm into higher order mutation testing." In Advanced Computational Methods 

for Knowledge Engineering: Proceedings of the 6th International Conference on Computer Science, 

Applied Mathematics and Applications, ICCSAMA 2019 6, pp. 361-369. Springer International 

Publishing, 2020. 

[18] Ghiduk, Ahmed S., and M. Rokaya. "An empirical evaluation of the subtlety of the data-flow based 

higher-order mutants." J. Theor. Appl. Inf. Technol. 97, no. 15 (2019): 4061-4074. 

[19] do Prado Lima, Jackson Antonio, and Silvia Regina Vergilio. "A systematic mapping study on 

higher order mutation testing." Journal of Systems and Software 154 (2019): 92-109. 

[20] Ghiduk, Ahmed S., and S. F. El-Zoghdy. "CHOMK: Concurrent higher-order mutants killing using 

genetic algorithm." Arabian Journal for Science and Engineering 43 (2018): 7907-7922. 

[21] Ghiduk, Ahmed S., Moheb R. Girgis, and Marwa H. Shehata. "Reducing the cost of higher-order 

mutation testing." Arabian Journal for Science and Engineering 43 (2018): 7473-7486. 

[22] Do, Van-Nho, Quang-Vu Nguyen, and Thanh-Binh Nguyen. "Evaluating mutation operator and 

test case effectiveness by means of mutation testing." In Intelligent Information and Database 

Systems: 13th Asian Conference, ACIIDS 2021, Phuket, Thailand, April 7–10, 2021, Proceedings 

13, pp. 837-850. Springer International Publishing, 2021. 

[23] Rahman, Mizanur, Kamal Z. Zamli, Md. Abdul Kader, Roslina Mohd Sidek, and Fakhrud Din. 

2023. “Comprehensive Review on the State-of- the-Arts and Solutions to the Test Redundancy 

Reduction Problem With Taxonomy”. Journal of Advanced Research in Applied Sciences and 

Engineering Technology 35 (1):62-87. https://doi.org/10.37934/araset.34.3.6287. 

[24] Tengku Sulaiman, Tengku Mohd Sharir, Mohamad Minhat, Saiful Bahri Mohamed, Ahmad Syafiq 

Mohamed, Ahmad Ridhuan Mohamed, and Siti Nurul Akmal Yusof. 2020. “File and PC-Based 

CNC Controller Using Integrated Interface System (I2S)”. Journal of Advanced Research in 

Applied Mechanics 70 (1):1-8. https://doi.org/10.37934/aram.70.1.18. 

[25] Atamamen, Fidelis Osagie, Abdul Hakim Mohammed, and Temitope Folasade Atamamen. 2018. 

“Testing Measurement Invariance for Green Cleaning Services Implementation across Malaysian 

Cleaning Industry Stakeholders’ Group”. Progress in Energy and Environment 5 (May):50-61. 

https://www.akademiabaru.com/submit/index.php/progee/article/view/1045. 

[26] Iman Fitri Ismail, Akmal Nizam Mohammed, Bambang Basuno, Siti Aisyah Alimuddin, and 

Mustafa Alas. 2022. “Evaluation of CFD Computing Performance on Multi-Core Processors for 

Flow Simulations”. Journal of Advanced Research in Applied Sciences and Engineering 

Technology 28 (1):67-80.https://doi.org/10.37934/araset.28.1.6780. 

[27] Habtemariam, Getachew Mekuria, and Sudhir Kumar Mohapatra. "A genetic algorithm-based 

approach for test case prioritization." In Information and Communication Technology for 

Development for Africa: Second International Conference, ICT4DA 2019, Bahir Dar, Ethiopia, 

May 28-30, 2019, Revised Selected Papers 2, pp. 24-37. Springer International Publishing, 2019. 

[28] Getachew, Daniel, Sudhir Kumar Mohapatra, and Subhasish Mohanty. "A Heuristic-Based Test 

Case Prioritization Algorithm Using Static Metrics." In Optimization of Automated Software 

Testing Using Meta-Heuristic Techniques, pp. 45-58. Cham: Springer International Publishing, 

2022. 

[29] Mohapatra, Sudhir Kumar, and Srinivas Prasad. "A Chemical Reaction Optimization Approach to 

Prioritize the Regression Test Cases of Object-Oriented Programs." Journal of ICT Research & 

Applications 11, no. 2 (2017). 

[30] Mohapatra, Sudhir Kumar, Arnab Kumar Mishra, and Srinivas Prasad. "Intelligent Local Search 

for Test Case Minimization." Journal of The Institution of Engineers (India): Series B 101, no. 5 

https://doi.org/10.37934/araset.34.3.6287
https://doi.org/10.37934/aram.70.1.18
https://www.akademiabaru.com/submit/index.php/progee/article/view/1045
https://doi.org/10.37934/araset.28.1.6780


1409 Subhasish Mohanty et al. A Novel Algorithm For Generating Hard....                                                                 

 

Nanotechnology Perceptions 20 No. S14 (2024)  

(2020): 585-595. 

 


