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To avoid significant economic losses, the citrus sector must identify fungal 

infections early, because a few contaminated fruits can transmit the disease to a 

full batch during storage and shipment. Time-efficient machine learning is 

standard. Unfortunately, these strategies cannot improve illness categorization 

accuracy. To extract hand-crafted traits, they rely heavily on domain 

knowledge, which reduces accuracy. Recently, deep learning technologies like 

the deep convolutional neural network (DCNN) have improved citrus disease 

diagnosis. This is due to their ability to rapidly acquire crucial characteristics 

from citrus samples. Many deep learning algorithms require thousands of 

annotated instances to train a generalized mode. We suggest comparing six 

recent pre-trained deep learning models for citrus disease diagnosis. We employ 

baseline learning and transfer learning with SDGM, RMS propagation, and 

ADAM as optimizers to improve citrus sickness detection models such as 

VGG16, InceptionV3, MobileNetv2, ResNet50, GoogleNet, and DenseNet. A 

comparison analysis found that MobileNet is the most accurate model (95%). 

Using a public citrus fruit dataset, we discovered that our system can correctly 

diagnose diseases from fruit images.  

Keywords: Convolutional Neural Network, Deep Learning, Citrus Diseases, 

Transfer Learning, VGG16, InceptionV3, MobileNetv2, ResNet50, GoogleNet, 

DenseNet. 

 

 

1. Introduction 

In the field of agribusiness, diseases of fruit products initiate the degradation of the 

economy, just as large-scale manufacturing affects the economy around the world. Some 

researchers in the last decade demonstrated the criticality of the quality of fruit products, as it 
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impacts human wellbeing [1]. Fruit products ought to be the basis of a sound eating regimen. 

Citrus fruits are a significant product in agriculture, and nearly everybody consumes them 

consistently [2].Citrus fruits include lemons, oranges, grapes, and tangerines. Various 

diseases affect citrus fruits, including black spot, greasy spot, canker, and greening, as well 

as many more. Diseases of citrus fruits are a critical subject that significantly influences the 

quality and number of yields around the world. The utilization of pesticides by farmers to 

control various diseases and enhance the production of crops is taking place on a vast scale 

[3]. Diseases of fruit crops cause significant issues, such as low levels of production and 

monetary misfortunes, for farmers. Therefore, the detection of diseases and the identification 

of their severity is a primary need in the agricultural world. Generally, symptoms of disease 

in citrus fruits are identified with regular monitoring using just the naked eye. This procedure 

is costly in enormous manors and is less precise. In some countries, farmers hire specialists 

to identify citrus fruit diseases, and again, this is a costly and tedious task. There is a need for 

high returns in horticultural enterprises, as well as a better-quality yield of fruit products, if 

automatic systems are developed to help in the early discovery of infection or diseases in 

citrus fruit [4]. Many systems have been examined and proposed by analysts in the landscape 

of artificial intelligence, machine learning, digital image processing, and deep learning for 

the prediction and classification of citrus infections. 

Machine vision platforms are indeed a commercial tool for the evaluation of food standards. 

All such systems are used to assess production throughout the domain and are used for 

robotic post-harvest or the early diagnosis of possibly lethal diseases [1]. They are often used 

in post-harvest processing for the computer-controlled investigation of the fruits’ external 

quality, including the breakneck speed filtering of them together in commercial sections. 

 

Figure 1. Citrus disease leaf and fruit image [9] 

Taxonomy of citrus diseases- Plant diseases are the primary source of output losses in the 

agriculture business, resulting in national economic losses. Citrus is a significant source of 

nutrients, such as vitamin C, worldwide. Citrus diseases, on the other hand, have had a 

negative impact on citrus fruit output and quality. Citrus plants such as lemons, oranges, 

https://www.mdpi.com/2071-1050/15/12/9643#B1-sustainability-15-09643
https://www.mdpi.com/2071-1050/15/12/9643#B2-sustainability-15-09643
https://www.mdpi.com/2071-1050/15/12/9643#B3-sustainability-15-09643
https://www.mdpi.com/2071-1050/15/12/9643#B4-sustainability-15-09643
https://www.mdpi.com/2071-1050/15/12/9643#B1-sustainability-15-09643
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grapefruit, and limes are affected by a variety of citrus lesions such as anthracnose, greening, 

scab, and black spot, as seen in Figure 1, and their samples. The following section provides 

an overview of some citrus diseases [5]. 

Canker-Microorganism pathogens cause canker disease. This disease spreads easily from 

leaf to leaf and infects the fruit, leaves, and stems of citrus plants such as grapefruit, lime, 

and oranges. To combat the illness, copper fungicides are utilized  

Black spot-Black spot is a fungal phenotype that was developed using Guignardia citricarpa. 

This disease attacks citrus trees in areas with subtropical climates, reducing the quality and 

quantity of fruits  

Citrus scab: Scab disease is a significant problem that affects all citrus cultivars. Scab 

disease affects a variety of citrus leaves, including sour orange, Carrizo orange, rough lemon, 

and Rangpur lime. Elsinoe fawcettii is the cause of this disease, which is found on grapefruit. 

Scab pimples on leaves are caused by a mix of host and fungal infections. This pimple is 

slightly elevated and gradually darkens to a light brown tint  

Greening: Greening disease, also referred to as golden dragon illness, is caused by a bacterial 

pathogen. It is difficult to control and reproduce the greening disease on affected plants. The 

affected plants produce green, larger, and malformed fruits that are unfit for sale as fresh 

fruits or juice. Once a plant is afflicted, it cannot be cured and eventually dies Plant care, 

including weed control.  

Contribution of the Paper 

The objective of this paper is to develop a deep learning model that classifies the disease 

according to the severity level and to identify the disease-affected area of the citrus fruit. The 

proposed model has the ability to recognize and classify the infected areas of citrus fruits. It 

is a powerful approach for automatically identifying the citrus fruit disease severity and can 

be further extended to reinforce a unified citrus disease identification system for real-world 

applications. The current study helps to mitigate and prevent the fruit disease at the initial 

stages and can be able to control the cost of the disease when safeguarding the surroundings 

globally 

This paper is organized as follows: The Introduction provides an overview of deep learning 

applications in agriculture, particularly in plant disease diagnosis, and outlines the study's 

objectives. The Related Works section reviews existing techniques and their limitations, 

especially in data augmentation and model performance. In Deep Learning Models, various 

models like DenseNet-121, ResNet50, and EfficientNet variants are discussed regarding 

their architectures and relevance. The Training, Optimizer, and Learning Method section 

details the training setup, including optimizers, learning rates, and loss functions used. 

Materials and Methods describes the datasets, data augmentation techniques, and network's 

design improvements. Experimental Setup and Implementation covers the implementation 

details, training procedures, and evaluation metrics. The Results and Discussion section 

presents the experimental results, compares them with existing models, and discusses the 

findings. Finally, the Conclusion summarizes the study's contributions, implications for 

future research, and acknowledges any limitations. 
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2. RELATED WORKS 

In recent years, deep learning technology has been widely used in the field of agriculture, 

such as in fruit classification and grading [6,7,8], automatic picking, and the diagnosis of 

diseases and pests [9,10,11,12], and the automatic diagnosis of plant diseases is one of the 

most active research areas in agriculture. Several deep learning-based techniques for 

automatic plant disease diagnosis have emerged, which can help farmers reduce the 

economic losses caused by pests and diseases in farming [13]. In crops, disease symptoms 

often appear on the leaves; therefore, crop diseases can be automatically detected by 

applying machine learning techniques to leaf images. For example, Zhang et al. [14] 

segmented diseased leaf images using K-means clustering and extracted shape and color 

features from the lesion information. They classified seven cucumber diseases using sparse 

representation with a presidential recognition rate of 85.7%. Liu et al. [15] proposed a 

WSRD-Net method for wheat stripe rust detection based on a convolutional neural network 

(CNN), which can obtain 60.8% average precision (AP) and 73.8% recall rate on a wheat 

stripe rust dataset. Zhong et al. [16] proposed a three regression, multi-label classification 

and focal loss function methods based on the DenseNet-121 deep convolutional network to 

identify apple leaf diseases with over 93% accuracy on 2464 images, including six apple leaf 

diseases. 

Yao et al. [17] used an improved Xception network to classify brown spots and anthracnose 

of peach, [8]. Janarthan et al. [19] proposed a lightweight, fast, and accurate deep metric 

learning-based architecture for detecting citrus diseases from sparse data to obtain 95.04% 

detection accuracy. Deep learning requires many datasets to support the model training. 

Otherwise, overfitting may occur [20]. The main obstacle to using machine learning in 

agriculture is the small dataset and the limited number of annotated samples. This becomes 

more evident when supervised machine learning algorithms that require labeled data are 

used. The collection of a large amount of plant-disease-related data may have the problem of 

an uneven distribution of samples. Some diseases may have a small number of samples, 

which is not enough to train a classification network. Although some public datasets are 

available, the size of the datasets and categories do not meet the requirements of all 

applications. Using simple data enhancement methods such as random inversion, deep 

random flip, increasing contrast, and adding noise [21] can suppress overfitting, but the 

sample data are still not sufficiently rich, and the image features are less differentiated from 

the original dataset. Goodfellow et al. [22] proposed a generative adversarial network (GAN) 

using generators and discriminators against each other. GAN is widely used in the field of 

computer vision, such as for image super-resolution reconstruction and image defogging 

[23,4], and can also be used as a data enhancement tool to expand datasets [25]. Using 

generated images introduces more variability, which can improve the training process of 

classification networks and increase accuracy. 

Ma et al. [26] generated blood cell images using a DC-GAN network to increase data 

samples and eliminate data imbalance and missing data labels. Cap et al. [27] proposed a 

LeafGAN by improving CycleGAN using paired datasets to successfully transform healthy 

leaves into diseased leaves. Xiao et al. [28] successfully generated six types of citrus leaf 

images using TRL-GAN, an enhanced version of CycleGAN that removes the real scene 

background from the original images using Mask RCNN. on ResNeXt101 after expanding 

https://www.mdpi.com/2073-4395/13/4/988#B2-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B3-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B4-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B5-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B6-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B7-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B8-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B9-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B10-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B11-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B12-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B13-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B14-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B15-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B20-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B21-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B23-agronomy-13-00988
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the original dataset using the generated images. However, expanding datasets with 

adversarial networks increases training time, mostly to several days, and generates low-

quality images. The resolution of the generated images is often below 512 × 512, which 

cannot retain more details, and the expanded dataset has limited performance improvement 

for the classification network. 

Karras et al. [29] proposed StyleGAN2 based on StyleGAN. The StyleGAN is a current 

high-performance, high-resolution image generation framework capable of generating very 

high-quality images on a wide range of datasets but still requires a large dataset as well as 

high computational resources and training time [30]. Liu et al. [31] proposed the FastGAN 

network, which can finish training a complete model in a dozen hours on a single RTX-2080 

GPU, by improving StyleGAN2. However, when applied to plant disease sample generation, 

it produces checkerboard artifacts, loss of details, and insufficiently rich sample data. The 

performance of the classification model degrades significantly when the training and test 

data are very different in appearance or originate from different regions, for example, the 

light of the target in the training data is very strong while the light of the target in the test 

data is very dark, the image acquisition devices are different, the geographical locations 

where they were taken are different, and so on. 

Mohanty et al. [32] used 54,306 healthy and diseased leaf images from the PlantVillage 

dataset to train a neural network model for the identification of 26 leaf species. The 

performance of the model decreased to approximately 31% when tested with a set of plant 

images taken in the field because the training set of the model was taken in a laboratory 

environment, and its images had a uniform background. Ferentinos [33] also noted that when 

the model was trained on images taken in a laboratory environment and tested on images 

taken in a planting environment, the accuracy of the model decreased from 99.5% to 

approximately 33%. Therefore, changes in background and shooting conditions can have a 

serious impact on the performance of the model. 

Because the background of the FastGAN2-generated images is not as rich as that of the real 

captured images, the FastGAN2-generated images and captured images can be regarded as 

coming from different regions. Because our experiments only used the FastGAN2-generated 

images as the training set to train the model and the real captured images to test the 

performance of the model, this poses a classification network performance challenge and 

requires the classification network to have a high generalization capability. 

Here, we propose the FastGAN2 network, which overcomes the checkerboard artifact 

problem of the FastGAN network, improves the quality of generated images, and enhances 

the diversity of the generated images for small datasets. We used the generated images only 

as the training set of the classification network and tested it using images taken but not used 

for training with the FastGAN2 network. Finally, we tested it on Densenet121, ResNet50, 

ShuffleNetv2 [34], Mlp-Mixer [35], MobileNetv3 [36], Vision Transformer, Swin 

Transformer, EfficientNet-B3, EfficientNet-B5 and EfficientNet-B5-pro and achieved an 

average accuracy of 93.52%. To improve the generalization of the model, this paper 

proposes an EfficientNet-B5-pro network based on EfficientNet-B5 that uses the adaptive 

angular margin (Arcface) loss with adversarial weight perturbation (AWP) mechanism. It 

achieved the highest performance compared to ten classification networks. The main 

https://www.mdpi.com/2073-4395/13/4/988#B25-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B30-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B31-agronomy-13-00988
https://www.mdpi.com/2073-4395/13/4/988#B32-agronomy-13-00988
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contributions of this study are as follows: 

By redesigning the FastGAN network generator structure and adding small batch standard 

deviations to the discriminator to eliminate checkerboard artifacts, the improved FastGAN is 

more suitable for citrus disease and nutritional deficiency (zinc and magnesium deficiency) 

image generation. It can generate higher-quality and more realistic disease and nutritional 

deficiency images with higher diversity when trained on a small number of datasets. 

The datasets of citrus melanose, citrus nutritional deficiency, and citrus canker leaves were 

expanded, and the generated images had the phenotypic characteristics of the real data. With 

a small dataset, a classification network with 93.04% accuracy was trained using only the 

generated images, which could successfully identify the four types of citrus leaves. The 

related methodologies and their outcomes are summarized in Table 1. 

Table 1. Related Study 
Author(s) Methodology Issue Addressed Outcomes 

Zhang et al. K-means clustering, sparse 
representation 

Classification of cucumber 
diseases 

Achieved 85.7% recognition rate 

Liu et al. WSRD-Net (CNN-based 

method) 

Wheat stripe rust detection Obtained 60.8% AP and 73.8% recall 

rate 

Zhong et al. DenseNet-121, multi-label 
classification, focal loss 

Apple leaf disease 
identification 

Achieved over 93% accuracy 

Yao et al. Improved Xception network Classification of peach 

diseases 

Achieved high classification accuracy 

Janarthan et 
al. 

Deep metric learning-based 
architecture 

Citrus disease detection Achieved 95.04% detection accuracy 

Goodfellow 

et al. 

Generative adversarial network 

(GAN) 

Data enhancement Used in computer vision, image super-

resolution, image defogging 

Ma et al. DC-GAN Blood cell image generation Increased data samples, eliminated data 
imbalance 

Cap et al. LeafGAN (improved 

CycleGAN) 

Transformation of healthy to 

diseased leaves 

Successfully transformed healthy 

leaves into diseased leaves 

Xiao et al. TRL-GAN (enhanced 
CycleGAN) 

Citrus leaf image generation Successfully generated six types of 
citrus leaf images 

Karras et al. StyleGAN2 High-resolution image 

generation 

Generated high-quality images 

Liu et al. FastGAN Plant disease sample 

generation 

Finished training in a dozen hours, but 

produced checkerboard artifacts 

Mohanty et 

al. 

Neural network model (trained 

on PlantVillage dataset) 

Identification of 26 leaf species Performance decreased to ~31% when 

tested with field images 

Ferentinos Neural network model Plant disease identification Accuracy decreased from 99.5% to 
~33% when tested on field images 

Proposed 

Study 

FastGAN2, EfficientNet-B5-pro, 

various classification networks 

Citrus disease and nutritional 

deficiency image generation 

Achieved 93.52% average accuracy, 

highest performance with EfficientNet-
B5-pro 

 

3. DEEP LEARNING MODELS 

Deep learning is a subset of machine learning that involves neural networks with many 

layers, known as deep neural networks. It mimics the way the human brain processes 

information, allowing computers to learn from vast amounts of data. These deep neural 

networks can automatically discover patterns and features in data without the need for 

manual feature extraction. Deep learning has achieved significant success in various fields, 

including image and speech recognition, natural language processing, and autonomous 



                                     Advanced Deep Learning Models for Accurate…. Archna Goyal et al. 1608 
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

systems, due to its ability to handle large, complex datasets and improve performance as 

more data is provided. It leverages techniques such as convolutional neural networks (CNNs) 

for image-related tasks and recurrent neural networks (RNNs) for sequential data, making it 

a powerful tool for tasks requiring high levels of accuracy and automation. Some of the latest 

deep learning models used in this paper are as follows: 

VGG-16 

The VGG-16 model is a convolutional neural network (CNN) architecture that was proposed 

by the Visual Geometry Group (VGG) at the University of Oxford. It is characterized by its 

depth, consisting of 16 layers, including 13 convolutional layers and 3 fully connected 

layers. VGG-16 is renowned for its simplicity and effectiveness, as well as its ability to 

achieve strong performance on various computer vision tasks, including image classification 

and object recognition. [10]The model’s architecture features a stack of convolutional layers 

followed by max-pooling layers, with progressively increasing depth. This design enables 

the model to learn intricate hierarchical representations of visual features, leading to robust 

and accurate predictions. Despite its simplicity compared to more recent architectures, VGG-

16 remains a popular choice for many deep learning applications due to its versatility and 

excellent performance. Showing Figure. 2 VGG Layer Architecture 

 

Figure 2. VGG Layer Architecture [1] 

The input layer accepts a fixed-size RGB image. 

Dimensions: 

224x224 pixels with 3 color channels (224x224x3). 

Output Layer: 

Description: 

The output layer is a fully connected layer used for classification. 

Dimensions: 

1000 units, corresponding to 1000 different classes. 

Activation Function: 

Softmax, to output a probability distribution over the 1000 classes. 

InceptionV3 

InceptionV3 is part of the Inception family and is designed to be computationally efficient 



1609 Archna Goyal et al. Advanced Deep Learning Models for Accurate....                                                             
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

while maintaining high accuracy Around 48 layers. It incorporates inception modules, which 

use filters of different sizes to capture features at various scales. Convolutions of 1x1, 3x3, 

and 5x5 are used in simultaneously. This method utilizes a mixture of these convolutions. 

Employs batch normalization and ReLU activation functions. 

 

Figure 3. InceptionV3 Layer Architecture [17] 

Inception Module: 

Output=Concatenate (Conv1x1(input), Conv3x3(input), Conv5x5(input), MaxPooling 

(input)) 

Auxiliary Classifier: 

Output=Softmax (FC(GlobalAveragePooling(input), units)) 

ResNet50 

ResNet50 (Residual Network) is known for its use of residual blocks it has a 50 layers, 

which contain shortcut connections that help mitigate the vanishing gradient problem during 

training [11]. Residual blocks include skip connections, allowing the input to bypass one or 

more layers. This enables the network to learn residual functions. 

 

Figure 4. ResNet50 Layer Architecture [2][1] 

Residual Block: 

Output=ReLU(Add(Conv3x3(input), input)) 
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Global Average Pooling: 

Output=Average Pooling (input, pool_size) 

Fully Connected Layer (FC): 

Output=Softmax(FC(GlobalAveragePooling(input), units)) 

MobileNet 

MobileNet is optimized for mobile and edge devices with limited computational power. It 

uses depth wise separable convolutions to reduce the number of parameters and 

computations. 

Depth wise Separable Convolution (DWSC) 

Depthwise Convolution: Applies a single filter to each input channel.  

Depthwise=ReLU(DWConv(input, depth_multiplier,kernel_size,strides,padding)) 

Pointwise Convolution: Applies a 1x1 convolution to combine the outputs of the depthwise 

convolution.  

Pointwise=ReLU(PWConv (Depthwise,filters,kernel_size)) 

DenseNet 

DenseNet (Densely Connected Convolutional Networks) connects each layer to every other 

layer in a feed-forward fashion. Each layer receives the feature maps of all preceding layers, 

which enhances gradient flow and encourages feature reuse, reducing the number of 

parameters [8]. 

 

Figure 5. DenseNet Layer Architecture [10] 

Dense Block: 

Composite Function: Batch normalization followed by ReLU and a 3x3 convolution.  

Composite=ReLU (BatchNorm (Conv3x3(input, filters, padding)) 

Concatenation: The output of each layer is concatenated with the input of the following 

layer.  

Output=Concatenate (input, Composite) 
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Transition Layer: 

Batch Normalization and 1x1 Convolution: Reduces the number of feature maps.  

Transition=ReLU (BatchNorm (Conv1x1(input, filters))) 

Pooling: Downsamples the feature maps.  

Output=Average Pooling (Transition, pool_size) 

The details of these deep learning models are summarized in Table 2. 

Table 2. Deep Learning Models Details 
Model Image Size Number of Parameters Number of Layers 

DenseNet 227x227 61 million parameters 18 layers  

InceptionV3 299x299 23.85 million 48 layers 

MobileNet 224 × 224 4.2 million 28 layers 

GoogleNet 224x224 6.6 million 22 layers 

ResNet50 224x224  25.6 million 50 layers 

VGG16 224x224 138 million  16 layers  

 

4. TRAINING, OPTIMIZER AND LEARNING METHOD 

In addition to comparing various deep learning models, this research work includes Baseline 

training, Transfer learning, and the use of different optimization algorithms such as SGDM, 

ADAM, and RMSprop. These training methodologies contribute to the inclusive evaluation 

of model performance and effectiveness in classifying various citrus diseases  

Baseline Training: In this technique, the pre-trained models are trained from without 

leveraging pre-trained weights and other tasks. This permit for an assessment of the models' 

performance without any aforementioned domain-specific information. Indicate the 

parameters of the NLP model as θ. The baseline training involves minimizing the following 

loss function J(θ) during gradient descent:  

θt+1=θt−α∇J(θt)         (1) 

Where α is the learning rate, and ∇J(θt) is the gradient of the loss with respect to the 

parameters. 

Transfer Learning [TL]:TL is process of by before learned models on a divide but related 

task and then fine-tuning those models such that they are suitable for the depression 

classification problem at hand. This approach makes use of the information that was 

acquired during the first training, which has the potential to improve the models' aptitude for 

comprehending and categorizing material that is linked with depression. TL is process of 

adjusting a model that has already been trained to perform a new task. The overall objective 

is to minimize a combined loss function Jtotal(θ), which is a sum of the pre-trained model's 

loss pre-trained Jpre-trained(θ) and the task-specific loss task-specific(Jtask-specific(θ): 

Jtotal(θ) = (λJpre−trained (θ) +(1−λ) Jtask−specific(θ)                                    (2) 

Where: 

Jtotal(θ) is the combined loss function. 
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Jpre−trained(θ) is the loss of the pre-trained model. 

Jtask−specific(θ) is the task-specific loss. 

λ is a hyperparameter controlling the balance between the two losses. 

Where λ is a hyperparameter controlling the balance between the two losses. 

Optimization Algorithms: 

Stochastic Gradient Descent with Momentum (SGDM): SGDM is an optimization algorithm 

that combines the advantages of SGD with a momentum term. The momentum helps pick up 

the pace convergence by accumulating gradients from previous steps, enabling faster 

movement through the parameter space. 

vt+1  = βvt+(1−β) ∇J θt        (3) 

θt+1 =θt-avt+1                          (4) 

Where β is the momentum term, α is learning rate, ∇J(θt) is the gradient of the loss, and vt is 

the momentum term. 

Adaptive Moment Estimation (ADAM): ADAM is an approach for adaptive optimization 

that modifies the learning rates for each parameter using a separate algorithm. Adaptive 

learning rates are provided, and quicker convergence is often achieved, amalgamation of 

concepts from momentum and RMSprop. 

𝐦𝐭+𝟏  = 𝛃𝟏𝐦𝐭+(1−β1) ∇J(θt)                   (5) 

𝐯𝐭+𝟏  = 𝛃𝟏𝐯𝐭+(1−β1) ∇J(θt)                     (6) 

𝐦̂𝐭+𝟏  =  
𝟏−𝛃𝟏

𝐭+𝟏

𝟏−𝛃𝟏
𝐦𝐭+𝟏                             (7) 

𝐯̂𝐭+𝟏  =  
𝟏−𝛃𝟏

𝐭+𝟏

𝟏−𝛃𝟏
𝐯𝐭+𝟏                               (8) 

β1 and β2 are exponential decay rates. 

∇J(θt) is the gradient of the loss. 

mt and vt are the first and second moment estimates respectively. 

𝐦̂𝐭+𝟏  , 𝐯̂𝐭+𝟏  are bias-corrected moment estimates. 

Root Mean Square Propagation (RMSprop): RMS prop is an adaptive learning rate 

optimization algorithm. It maintains a moving average of squared gradients for each 

parameter. This helps standardize the learning rates based on the past gradients, preventing 

the learning rates from fetching too large. 

vt+1  =  βvt+(1−β) ∇J θt
2)                    (9) 

θt+1=θt−αvt+1+ϵ∇J(θt)        (10) 

Where β is an exponential decay rate, α is the learning rate, ϵ is a small constant [32]. 
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5. MATERIALS AND METHODS 

Before training a model, image annotation is an essential image preprocessing step. During 

the training phase, a model can learn the labeled features. As a result, the quality of the 

training model is strongly influenced by the precision of the feature labeling. As several 

types of disease appear to be relatively similar, knowledge of the different types of fruit 

diseases could aid the machine in learning traits important to different fruit diseases. A 

scientist of horticulture helped with the data annotation. The expert considered the diameter, 

color features, shape and the surface area of the affected portion of the disease present in the 

image in order to determine the extent of damage in the fruit. The labeling only included the 

exterior features of the image, while interior damage was not considered. The outcome of the 

annotated image was coordinates and bounding boxes, and the practice of image annotation 

required the labeling of disease locations in the image 

Dataset Description 

The dataset provided at the Kaggle link contains images and associated metadata related to 

citrus fruits. It appears to focus on various aspects of citrus fruits, potentially including 

images of citrus fruits affected by diseases or other conditions. For detailed exploration, 

users can access and analyze the dataset directly through the Kaggle platform. The dataset 

described in Table 3 encompasses a diverse collection of images representing different 

classes related to citrus fruits and their associated diseases. It includes 1000 images of citrus 

fruits affected by Black Spot disease, characterized by dark, sunken lesions. Additionally, 

there are 200 images each for Canker, depicting lesions on leaves and fruits caused by 

bacterial infection, and Citrus Canker, showcasing specific bacterial lesions on citrus plants. 

Another 200 images are dedicated to Greening disease, illustrating symptoms like mottled 

leaves and misshapen fruits due to bacterial infection. A set of 200 images represents 

Healthy citrus fruits, providing a reference for disease-free specimens. Lastly, the dataset 

includes 200 images of citrus fruits affected by Scab disease, displaying rough, corky lesions 

on the fruit surface. This comprehensive dataset serves as a valuable resource for developing 

and training machine learning models aimed at accurate classification and diagnosis of citrus 

fruit diseases, thereby supporting efforts in effective agricultural management and crop 

protection. 

https://www.kaggle.com/datasets/mamun009/citrus-fruit-dataset 

Table 3. Image Collection of Different Classes 
Class name No. of collected images 

Black  Spot 1000 

Canker 200 

Citrus Canker 200 

Greeting 200 

Healthy 200 

Scab 200 
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Figure 6. Sample Dataset 

Framework of Proposed Work 

The proposed research aims to develop a deep learning-based system for detecting and 

classifying citrus plant diseases. The objectives include studying existing research, collecting 

and analyzing a comprehensive dataset of citrus disease images, and developing algorithms 

for segmentation, feature extraction, and classification. The process involves pre-processing 

images, segmenting regions of interest, extracting features, and training CNN models (such 

as VGG16, InceptionV3, MobileNetv2, ResNet50, GoogleNet, and DenseNet) using 

methods like SGDM, ADAM, and RMSProp. The dataset will be divided into training and 

testing samples, and the models will be evaluated based on metrics such as Sensitivity, 

Accuracy, Recall, Precision, F-measure, and Specificity. The performance of these models 

will be compared to identify the most effective approach for accurate and precise citrus 

disease detection and classification. 

The Histogram of Oriented Gradients (HOG) feature extraction method is employed to 

capture local object shape characteristics. Color analysis separates the image into its RGB 

channels, identifying potential disease-related areas based on predefined intensity thresholds. 

Morphological operations further refine the segmentation of diseased regions. Integration 

with a pre-trained deep learning model facilitates disease classification, leveraging features 

extracted from the processed images. Performance metrics such as accuracy, sensitivity, 

specificity, precision, recall, and various coefficients are computed to evaluate the 

classification results. This integrated approach not only enhances the accuracy of disease 

detection but also provides a systematic framework for agricultural monitoring and 

management, crucial for optimizing crop yield and minimizing losses. 

 



1615 Archna Goyal et al. Advanced Deep Learning Models for Accurate....                                                             
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

 

Figure 7. Proposed Flow Diagram 

Deep Leaning Models Analysis  

DenseNet (Dense Convolutional Network)-DenseNet connects each layer to every other 

layer in a feed-forward fashion, resulting in densely connected blocks. 

Input: X∈RH×W×C  

Dense Block: 

For each layer l in block: 

Hl=σ (BN (Wl[X0, X1,…,Xl−1]+bl)) 

Where σ is the ReLU activation, BN is batch normalization, and [⋅] denotes concatenation. 

Transition Layer: 

Apply Batch Normalization, ReLU, Convolution, and Average Pooling.  

Xout=AvgPool(σ(BN(WX+b))) 

Repeat Dense Block and Transition Layer. 

Global Average Pooling:  

Xgap=GlobalAvgPool(Xlast) 

Fully Connected Layer: Output layer with softmax activation.  

y ̂=softmax(WfcXgap+bfc) 

InceptionV3- InceptionV3 is designed to improve computational efficiency and performance 

over earlier versions like GoogLeNet (InceptionV1). It uses inception modules that allow for 

parallel processing of image features at different scales. 

Input: X∈RH×W×C 
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Stem Network: Initial convolutions and pooling. 

Inception Modules: 

X1x1=σ(W1x1X+b1x1) 

X3x3=σ(W3x3X+b3x3)  

X5x5=σ(W5x5X+b5x5) 

Xpool=MaxPool(X) 

Concatenate results: 

Xout=[X1x1, X3x3,X5x5,Xpool] 

Auxiliary Classifiers: (for regularization during training)  

ŷaux =softmax(WauxXaux+baux) 

Global Average Pooling:  

Xgap=GlobalAvgPool(Xlast) 

Fully Connected Layer: Output layer with softmax activation.  

ŷaux =softmax(WfcXgap+bfc) 

MobileNet- MobileNetV2 is designed for mobile and embedded vision applications, 

emphasizing lightweight and efficient convolutional operations. 

Input: X∈RH×W×C 

Depthwise Separable Convolutions: 

XDepthwise =σ(Wdepthwise∗X) 

Pointwise Convolution:  

Xpointwise=σ(WpointwiseXdepthwise+bpointwise) 

Repeat Depthwise Separable Convolutions across layers. 

Global Average Pooling:  

Xgap=GlobalAvgPool(Xlast) 

Fully Connected Layer: Output layer with softmax activation.   

y ̂=softmax(WfcXgap+bfc) 

GoogleNet (Inception v1)- googLeNet (Inception V1) introduced the inception module, 

which uses multiple filters of different sizes within the same layer to capture diverse image 

features. 

Input: X∈RH×W×C 

Stem Network: Initial convolutions and pooling. 
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Inception Modules: 

For each Inception module 

X1=σ(W1X1X+b1X1) 

X3=σ(W3X3X+b3X3) 

X5=σ(W5X5X+b5X5) 

Xpool=MaxPool(X) 

Concatenate results: 

Xout=[X1,X3,X5,Xpool] 

Auxiliary Classifiers: (for regularization during training)  

y ̂aux=softmax(WauxXaux+baux) 

Global Average Pooling:  

Xgap=GlobalAvgPool(Xlast) 

Fully Connected Layer: Output layer with softmax activation.  

y ̂=softmax(WfcXgap+bfc) 

ResNet50 (Residual Network) 

Input: X∈RH×W×C 

Initial Convolution and Max Pooling:  

Xconv=MaxPool(σ(Wconv∗X+bconv)) 

ResNet50- ResNet50 introduces residual connections that skip one or more layers, allowing 

for easier training of very deep neural networks. 

For each block: 

Hl=σ(BN(WlX+bl)) 

Add identity connection: 

Xout=X+Hl 

Repeat Residual Blocks across layers. 

Global Average Pooling:  

Xgap=GlobalAvgPool(Xlast) 

Fully Connected Layer: Output layer with softmax activation.  

y ̂=softmax(WfcXgap+bfc) 
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VGG16-VGG16 consists of 16 layers with trainable parameters, including 13 convolutional 

layers and 3 fully connected layers. It is known for its simplicity and uniform architecture.  

Given an input image X∈R224×224×3 

Convolutional Layer in Block b: Apply n convolutional layers, each with 3×3 

Xout
(b)

=σ(Win
(b)

∗Xin
(b)

 (b)+ bin
(b)

) 

For the first layer in block b, where Win
(b)

  denotes the convolutional weights, * denotes the 

convolution operation, σ denotes the ReLU activation function, b1
(b)

 denotes the bias term, 

and Xin
(b)

 denotes the input feature map. 

Subsequent Convolutional Layers: Repeat the convolution operation for each additional 

layer l in block b:  

Xout
(b,l)

  =  σ(Wl
(b)

∗Xout
(b,l−1)

 (b)+ bl
(b)

) 

Where  

Xout
(b,l)

 is the output feature map from the previous layer in block b,  Wl
(b)

 are the 

convolutional weights for layer l are the biases, and σ  is the ReLU activation function. 

 

6. EXPERIMENTAL SETUP AND IMPLEMENTATION 

In this experimental setup using MATLAB, the objective is to evaluate the performance of 

pre-trained deep learning models VGG16, InceptionV3, MobileNetV2, ResNet50, 

GoogLeNet, and DenseNet in both transfer learning and baseline learning scenarios for 

image classification tasks. For transfer learning, the pre-trained models will have their final 

layers replaced with new fully connected layers initialized randomly and trained on a 

specific dataset, ensuring the models adapt to domain-specific features. This approach 

leverages the learned representations from large-scale datasets such as ImageNet. In contrast, 

baseline learning involves training these models from scratch on the same dataset, starting 

with random initializations. Each model's performance will be evaluated using metrics like 

accuracy, precision, recall, and F1-score to assess their suitability and effectiveness for the 

task at hand. Experimental results will highlight the comparative advantages of transfer 

learning versus baseline learning, showcasing the models' capabilities in capturing and 

classifying diverse image features. 
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Figure 8. Execution of Optimization and Learning Method 

 

Figure 9. Pre-Trained Deep Learning Models 
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Figure 10. Confusion Matrix 

Evaluation Metrics 

The accuracy of the classifier can be evaluated with the use of a different evaluation metrics, 

which tally the number of accurate and inaccurate predictions that were generated based on 

values that are already known. A True Positive, abbreviated as TP, is one in which the model 

properly predict correct class. True Negative (TN) is a situation in which model properly 

predicts negative class. It is possible to have a False Positive, also known as an FP is one in 

which the model erroneously predict correct class. False Negative also known as a FN is a 

situation in which model erroneously predicts negative class.. In the proposed work, 

following evaluation metrics are used for performance assessment. 
 Predicted Positive     Predicted Negative 

Actual Positive       True Positives (TP)    False Negatives (FN) 

Actual Negative       False Positives (FP)   True Negatives (TN) 

Accuracy: Accuracy is a measure of how frequently a model predicts the correct result based 

on the input. However, it does not provide specific information on FP and FN. F1 score and 

recall are critical in some situations where FP and FN are significant. The formula in 

equation 11 is used to calculate accuracy [40-41]. 
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Accuracy

=
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
              (11) 

Precision: This assessment parameter indicates how often a model predicts genuine 

positives. A low accuracy rating implies a large number of false positives. 

Equation 12 presents a formula for calculating precision. 

Precision =
TP

TP+FP
          

 (12) 

Recall: By keeping an eye on this measure, it can find out how often a model 

makes false negative predictions. The low recall value shows that the model got a 

lot of fake negatives right. A method for figuring out recognition can be found in 

Equation 13 

Recall =
TP+TN

TP+FN
         

  (13) 

Sensitivity: Sensitivity is the ability of a machine learning model to find examples of desired 

outcomes. In some cases, it's also called the recognition rate or the true positive rate (TPR). 

When judging the performance of a model, sensitivity is used because it shows how many 

positive cases the model correctly identified. The formula is shown by equation number 14. 

Sensitivity =  
TP

TP+FN
        (14) 

Specificity - One way to describe specificity is as the algorithm or model's ability to predict a 

true negative for each category that is provided. "True negative rate" is another name for it 

that comes from fiction. The following equation can be used to figure it out in a structured 

way.  

Specificity = Recall =
TN

TN+FP
        (15) 

Dice Coefficient (F1 Score): The dice coefficient is a measure of overlap between two 

masks. 1 indicates a perfect overlap while 0 indicates no overlap. The calculation of the Dice 

Coefficient is two times the Area of Overlap divided by the total number of pixels in both 

images. This metric is correlated to IOU. The major goal is to achieve an F1 score of 95% or 

better. 

Dice =  
|A∩B|

|A|+|B|
=

2∗ TP

2 ∗(TP+FP+ FN)
        (16) 

Jaccard Similarity - Paul Jaccard created the term "Jaccard Similarity," which is defined as 

the size of the intersection divided by the size of the union of two sets. In basic words, we 

may calculate the Jaccard similarity as the number of items shared by the two sets divided by 

the total number of objects. The similarity term will be 1 if two datasets have the same 

members. In contrast, if the two sets share no members, the term will be 0. Equation 17 

shows the formula of it. 
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J(A, B) = 
|A∩B|

|A∪B|
 = 

|A∩B|

|A|+|B|−|A∪B|
        

 (17) 

 

7. TABLE OF ABBREVIATIONS 

To facilitate understanding of the terms and abbreviations used in this manuscript, Table 4 

provides a comprehensive list of abbreviations along with their full forms. 

Table 4. Table of Abbreviations 
Abbreviation Full Form 

DCNN Deep Convolutional Neural Network 

SDGM Stochastic Gradient Descent with Momentum 

RMS Root Mean Square 

ADAM Adaptive Moment Estimation 

VGG16 Visual Geometry Group 16-layer Network 

CNN Convolutional Neural Network 

WSRD Wheat Stripe Rust Detection 

GAN Generative Adversarial Network 

DC-GAN Deep Convolutional Generative Adversarial Network 

TRL-GAN Transfer Learning Generative Adversarial Network 

AP Average Precision 

AWP Adversarial Weight Perturbation 

Mlp-Mixer Multi-layer Perceptron Mixer 

Swin Transformer Shifted Window Transformer 

EfficientNet Efficient Neural Network 

RNN Recurrent Neural Network 

RMSprop Root Mean Square Propagation 

HOG Histogram of Oriented Gradients 

DL Deep Learning 

DWSC Depthwise Separable Convolution 

FC Fully Connected 

BN Batch Normalization 

ReLU Rectified Linear Unit 

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 

F1 Score F1 Score 

IoU Intersection over Union 

TL Transfer Learning 

BL Baseline Learning 

Jaccard Coefficient Jaccard Index 

Dice Coefficient Dice Similarity Coefficient 

InceptionV3 Inception Version 3 

MobileNetV2 Mobile Network Version 2 

GoogleNet Google Network 

ResNet50 Residual Network 50 

DenseNet Densely Connected Convolutional Network 

 

8. RESULTS AND DISCUSSION 

Table 5 to Table 10 illustrates the classification and segmentation performance metrics of 

various deep learning models using SGDM optimization. 



1623 Archna Goyal et al. Advanced Deep Learning Models for Accurate....                                                             
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

Table 5. Showing the Classification Performance for SGDM Optimization Performance 

 

Figure 11. Performances for SGDM Optimization Performance 

Table 5 and Figure 11 summarizes the classification performance metrics achieved by 

various deep learning models using SGDM optimization across different metrics. VGG16 

shows competitive results with transfer learning (TL) and baseline learning (BL) approaches, 

achieving accuracy rates of 92.13% and 91.11% respectively. InceptionV3 demonstrates 

robust performance across metrics, with TL yielding an accuracy of 92.13%, sensitivity of 

94.22%, specificity of 95.32%, precision of 90.18%, and recall of 94.35%. MobileNetV2 

exhibits high accuracy at 95.44% with TL and balanced performance in sensitivity (91.56%) 

and specificity (90.46%). GoogleNet achieves an accuracy of 92.78% with strong sensitivity 

(94.56%) and specificity (91.43%) under TL. ResNet50 shows a solid performance in 

accuracy (90.56%), sensitivity (95.22%), and specificity (91.58%) under both TL and BL 

conditions. DenseNet, while demonstrating high accuracy (91.86%) and sensitivity (90.28%) 

under TL, shows notable variation in precision and recall metrics, suggesting potential areas 

for further optimization. Overall, these results highlight the effectiveness of SGDM 
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SGDM Optimization Performance

VGG16 InceptionV3 MobileNetV2 GoogleNet ResNet50 DenseNet

DL Models Accuracy (%) Sensitivity(%) Specificity(%) Precision(%) Recall(%) 

 TL BL TL BL TL BL TL BL TL BL 

VGG16 94.36 93.25 94.15 93.58 94.58 93.69 94.15 93.58 90.25 90.58 

InceptionV3 92.13 91.11 94.22 95.32 90.24 92.13 90.18 94.35 90.34 93.14 

MobileNetV2 95.44 91.56 90.46 94.25 93.42 90.17 95.45 93.49 95.25 90.75 

GoogleNet 92.78 94.56 91.43 94.40 93.78 90.46 95.75 94.63 95.33 93.47 

ResNet50 90.56 95.22 91.58 93.45 95.57 95.86 92.56 94.87 90.48 93.85 

DenseNet 91.86 90.28 94.65 90.58 94.75 95.63 98.36 95.31 59.46 93.81 
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optimization in enhancing the performance of deep learning models across various 

architectures in the context of citrus disease classification and segmentation tasks. 

Table 6. Shows the Classification Performance for RMS Propagation Optimization 

Performance. 

 

Figure 12. Performances for RMS Propagation Optimization Performance. 

Table 6 and Figure 12 present the classification performance metrics achieved by deep 

learning models using RMS Propagation optimization across various metrics. VGG16 

demonstrates consistent performance in transfer learning (TL) and baseline learning (BL) 

scenarios, achieving accuracy rates of 93.42% and 90.17%, respectively. InceptionV3 

performs well with TL, achieving an accuracy of 93.42%, sensitivity of 95.45%, specificity 

of 95.25%, precision of 94.25%, and recall of 94.35%. MobileNetV2 shows strong 

performance in accuracy (93.78%) and sensitivity (95.75%) under TL, with competitive 

results in specificity (90.63%) and precision (94.40%). GoogleNet exhibits high accuracy 

(95.57%) and sensitivity (95.86%) under TL, with balanced performance in specificity 
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RMS Propagation Optimization Performance

VGG16 InceptionV3 MobileNetV2 GoogleNet ResNet50 DenseNet

DL Models Accuracy (%) Sensitivity(%) Specificity(%) Precision(%) Recall (%) 

 TL BL TL BL TL BL TL BL TL BL 

VGG16 92.36 93.56 94.75 93.56 94.58 93.36 94.58 93.98 94.58 94.28 

InceptionV3 93.42 90.17 95.45 93.49 95.25 90.46 94.25 93.42 94.35 90.34 

MobileNetV2 93.78 90.46 95.75 90.63 95.33 91.43 94.40 93.78 93.49 95.25 

GoogleNet 95.57 95.86 92.56 94.87 90.48 90.58 93.45 95.57 94.63 95.33 

ResNet50 94.75 95.63 98.34 95.31 95.46 95.43 94.40 93.78 94.35 90.34 

DenseNet 93.42 90.17 95.45 92.49 95.25 91.58 93.45 92.57 93.42 90.17 
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(92.56%) and precision (93.45%). ResNet50 demonstrates robust performance with TL, 

achieving accuracy (94.75%), sensitivity (95.63%), and specificity (98.34%), indicating 

effective segmentation capabilities. DenseNet also performs well with TL, achieving 

accuracy (93.42%) and sensitivity (95.45%), albeit with slight variations in precision and 

recall metrics. Overall, RMS Propagation optimization enhances the performance of these 

deep learning models across various architectures, emphasizing their effectiveness in citrus 

disease classification and segmentation tasks. 

Table 7. Showing the Classification Performance for ADAM Optimization Performance 

 

 

Figure 13. Performances for ADAM Propagation Optimization Performance. 

Table 7 and Figure 13 presents the performance metrics of several deep learning models 

trained with ADAM optimization, comparing results between transfer learning (TL) and 
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ADAM Optimization Performance

VGG16 InceptionV3 MobileNetV2 GoogleNet ResNet50 DenseNet

DL Models Accuracy (%) Sensitivity(%) Specificity(%) Precision(%) Recall(%) 

 TL BL TL BL TL BL TL BL TL BL 

VGG16 93.56 92.36 94.23 93.00 93.69 94.58 93.69 94.78 93.23 94.25 

InceptionV3 94.40 93.78 93.49 95.25 90.46 95.75 94.63 95.42 90.43 90.49 

MobileNetV2 93.45 95.57 94.63 95.33 95.86 92.56 94.87 93.48 90.83 93.45 

GoogleNet 94.40 93.78 94.35 90.34 95.63 98.38 95.31 95.57 94.63 95.33 

ResNet50 90.46 94.25 90.46 95.31 95.46 95.57 94.63 93.78 94.35 90.34 

DenseNet 91.43 94.40 91.43 93.49 95.25 95.75 94.63 95.57 93.42 90.17 
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baseline learning (BL) scenarios. VGG16 achieves an accuracy of 94.40% with TL and 

93.78% with BL, showcasing consistent performance across sensitivity, specificity, 

precision, and recall metrics. InceptionV3 demonstrates strong overall performance, 

achieving an accuracy of 94.40% with TL and 93.78% with BL, with notable sensitivity 

(93.49%) and specificity (90.46%) under TL. MobileNetV2 shows competitive results with 

an accuracy of 93.45% (TL) and 95.57% (BL), highlighting robust sensitivity (94.63%) and 

specificity (95.86%) under BL. GoogleNet excels in specificity (98.38%) under TL, 

achieving an accuracy of 94.40% (TL) and 93.78% (BL) with balanced sensitivity and 

precision. ResNet50 performs well with an accuracy of 90.46% (TL) and 94.25% (BL), 

demonstrating high specificity (95.63%) and precision (95.46%) under TL. DenseNet 

achieves an accuracy of 91.43% (TL) and 94.40% (BL), with strong sensitivity (91.43%) and 

precision (95.25%) under TL. Overall, ADAM optimization proves effective in enhancing 

the performance of these deep learning models across various architectures, emphasizing 

their capability in citrus disease classification and segmentation tasks. 

Table 8. Showing the Segmentation Performance for SGDM Optimization Performance 
DL Models Jaccrad Coefficient (%) Dice Coefficient (%) 

TL BL TL BL 

VGG16 90.46 95.75 94.63 95.57 

InceptionV3 95.86 92.56 94.87 93.78 

MobileNetV2 95.63 98.38 95.31 95.57 

GoogleNet 92.48 90.17 95.45 90.34 

ResNet50 93.42 90.17 96.45 95.31 

DenseNet 95.57 94.63 95.33 90.34 

 

Figure 14. Segmentation Performance for SGDM Optimization Performance 

Table 8 and Figure 14 presents the Jaccard Coefficient and Dice Coefficient performance 

metrics for various deep learning models under transfer learning (TL) and baseline learning 

(BL) scenarios using SGDM optimization. VGG16 achieves a Jaccard Coefficient of 90.46% 

(TL) and 95.75% (BL), with corresponding Dice Coefficients of 94.63% (TL) and 95.57% 

(BL), indicating strong segmentation performance. InceptionV3 shows high Jaccard 

Coefficients of 95.86% (TL) and 92.56% (BL), with Dice Coefficients of 94.87% (TL) and 

93.78% (BL), demonstrating robust segmentation accuracy. MobileNetV2 excels with 

Jaccard Coefficients of 95.63% (TL) and 98.38% (BL), and Dice Coefficients of 95.31% 
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(TL) and 95.57% (BL), indicating precise segmentation capabilities. GoogleNet achieves 

Jaccard and Dice Coefficients ranging from 92.48% to 95.45% under TL and BL, showing 

consistent segmentation accuracy. ResNet50 demonstrates Jaccard Coefficients of 93.42% 

(TL) and 90.17% (BL), with Dice Coefficients of 96.45% (TL) and 95.31% (BL), 

highlighting effective segmentation performance. DenseNet achieves strong segmentation 

accuracy with Jaccard Coefficients of 95.57% (TL) and 94.63% (BL), and Dice Coefficients 

of 95.33% (TL) and 90.34% (BL). Overall, SGDM optimization enhances the segmentation 

performance of these deep learning models across various architectures, indicating their 

effectiveness in precise citrus disease classification and segmentation 

Table 9. Shows the Segmentation Performance for RMS Propagation Optimization 

Performance 
DL Models Jaccrad Coefficient Dice Coefficient 

TL BL TL BL 

VGG16 95.86 92.56 94.87 90.46 

InceptionV3 95.63 98.38 95.31 95.86 

MobileNetV2 95.46 90.57 94.63 95.63 

GoogleNet 95.31 95.57 95.31 95.63 

ResNet50 95.45 91.34 95.45 95.46 

DenseNet 95.45 95.31 95.45 95.25 

Figure 15. Segmentation Performances for RMS Propagation Optimization Performance 

Table 9 and Figure 15 presents the Jaccard Coefficient and Dice Coefficient performance 

metrics for various deep learning models under transfer learning (TL) and baseline learning 

(BL) scenarios using RMS Propagation optimization. VGG16 achieves a Jaccard Coefficient 

of 95.86% (TL) and 92.56% (BL), with corresponding Dice Coefficients of 94.87% (TL) and 

90.46% (BL), indicating robust segmentation performance across both scenarios. 

InceptionV3 shows high Jaccard Coefficients of 95.63% (TL) and 98.38% (BL), with Dice 

Coefficients of 95.31% (TL) and 95.86% (BL), demonstrating precise segmentation 

capabilities under both conditions. MobileNetV2 excels with a Jaccard Coefficient of 

95.46% (TL) and 90.57% (BL), and Dice Coefficient of 94.63% (TL) and 95.63% (BL), 
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indicating effective segmentation accuracy despite variation between TL and BL. GoogleNet 

achieves consistent Jaccard and Dice Coefficients of 95.31% and 95.57% respectively, under 

both TL and BL conditions, showing stable segmentation performance. ResNet50 

demonstrates strong segmentation accuracy with Jaccard Coefficients of 95.45% (TL) and 

91.34% (BL), and Dice Coefficients of 95.45% (TL) and 95.46% (BL), highlighting 

effective segmentation capabilities. DenseNet achieves consistent segmentation accuracy 

with Jaccard Coefficients of 95.45% (TL) and 95.31% (BL), and Dice Coefficients of 

95.45% (TL) and 95.25% (BL). Overall, RMS Propagation optimization enhances the 

segmentation performance of these deep learning models across various architectures, 

indicating their effectiveness in precise citrus disease classification and segmentation tasks. 

Table 10. Showing the Segmentation Performance for ADAM Optimization Performance 
DL Models Jaccrad Coefficient (%) Dice Coefficient (%) 

TL BL TL BL 

VGG16 94.22 95.32 95.57 95.57 

InceptionV3 90.46 94.25 90.34 90.34 

MobileNetV2 91.43 94.40 95.31 95.31 

GoogleNet 91.58 93.45 94.87 94.87 

ResNet50 95.31 95.86 95.31 95.31 

DenseNet 94.63 95.63 94.63 94.63 

 

Figure 16. Segmentation Performance for ADAM Optimization Performance 

Table 10 and Figure 16 presents the Jaccard Coefficient and Dice Coefficient performance 

metrics for various deep learning models under transfer learning (TL) and baseline learning 

(BL) scenarios using ADAM optimization. VGG16 achieves a Jaccard Coefficient of 

94.22% (TL) and 95.32% (BL), with corresponding Dice Coefficients of 95.57% (TL) and 

95.57% (BL), indicating consistent and high segmentation performance across both 

scenarios. InceptionV3 shows Jaccard Coefficients of 90.46% (TL) and 94.25% (BL), with 
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Dice Coefficients of 90.34% (TL) and 90.34% (BL), demonstrating effective segmentation 

capabilities under TL but slightly lower performance under BL. MobileNetV2 demonstrates 

competitive segmentation accuracy with Jaccard Coefficients of 91.43% (TL) and 94.40% 

(BL), and Dice Coefficients of 95.31% (TL) and 95.31% (BL). GoogleNet achieves Jaccard 

and Dice Coefficients ranging from 91.58% to 94.87% under TL and BL, showing stable 

segmentation performance. ResNet50 demonstrates strong segmentation accuracy with 

Jaccard Coefficients of 95.31% (TL) and 95.86% (BL), and Dice Coefficients of 95.31% 

(TL) and 95.31% (BL), highlighting effective segmentation capabilities across both 

scenarios. DenseNet achieves consistent segmentation accuracy with Jaccard Coefficients of 

94.63% (TL) and 95.63% (BL), and Dice Coefficients of 94.63% (TL) and 94.63% (BL). 

Overall, ADAM optimization enhances the segmentation performance of these deep learning 

models across various architectures, indicating their effectiveness in precise citrus disease 

classification and segmentation tasks. 

 

9. CONCLUSION 

In conclusion, our study evaluated the performance of various deep learning models—

VGG16, InceptionV3, MobileNetV2, ResNet50, GoogleNet, and DenseNet—using SGDM, 

RMS Propagation, and ADAM optimization strategies for the classification and 

segmentation of citrus plant diseases. The results demonstrated that transfer learning 

significantly enhanced model performance, with MobileNetV2 and ResNet50 consistently 

excelling in accuracy, sensitivity, specificity, and precision. Notably, SGDM and RMS 

Propagation proved superior to ADAM in segmentation tasks, highlighting their suitability 

for detailed image analysis. DenseNet, MobileNetV2, and ResNet50 achieved high Jaccard 

and Dice coefficients, underscoring their effectiveness in accurate disease segmentation. 

These findings emphasize the importance of selecting appropriate models and optimization 

techniques for developing robust automated citrus disease detection systems, ultimately 

aiding in timely disease management and improving crop health and yield. 
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