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To avoid significant economic losses, the citrus sector must identify fungal
infections early, because a few contaminated fruits can transmit the disease to a
full batch during storage and shipment. Time-efficient machine learning is
standard. Unfortunately, these strategies cannot improve illness categorization
accuracy. To extract hand-crafted traits, they rely heavily on domain
knowledge, which reduces accuracy. Recently, deep learning technologies like
the deep convolutional neural network (DCNN) have improved citrus disease
diagnosis. This is due to their ability to rapidly acquire crucial characteristics
from citrus samples. Many deep learning algorithms require thousands of
annotated instances to train a generalized mode. We suggest comparing Six
recent pre-trained deep learning models for citrus disease diagnosis. We employ
baseline learning and transfer learning with SDGM, RMS propagation, and
ADAM as optimizers to improve citrus sickness detection models such as
VGG16, InceptionV3, MobileNetv2, ResNet50, GoogleNet, and DenseNet. A
comparison analysis found that MobileNet is the most accurate model (95%).
Using a public citrus fruit dataset, we discovered that our system can correctly
diagnose diseases from fruit images.

Keywords: Convolutional Neural Network, Deep Learning, Citrus Diseases,
Transfer Learning, VGG16, InceptionV3, MobileNetv2, ResNet50, GoogleNet,
DenseNet.

1. Introduction

In the field of agribusiness, diseases of fruit products initiate the degradation of the
economy, just as large-scale manufacturing affects the economy around the world. Some
researchers in the last decade demonstrated the criticality of the quality of fruit products, as it
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impacts human wellbeing [1]. Fruit products ought to be the basis of a sound eating regimen.
Citrus fruits are a significant product in agriculture, and nearly everybody consumes them
consistently [2].Citrus fruits include lemons, oranges, grapes, and tangerines. Various
diseases affect citrus fruits, including black spot, greasy spot, canker, and greening, as well
as many more. Diseases of citrus fruits are a critical subject that significantly influences the
quality and number of yields around the world. The utilization of pesticides by farmers to
control various diseases and enhance the production of crops is taking place on a vast scale
[3]. Diseases of fruit crops cause significant issues, such as low levels of production and
monetary misfortunes, for farmers. Therefore, the detection of diseases and the identification
of their severity is a primary need in the agricultural world. Generally, symptoms of disease
in citrus fruits are identified with regular monitoring using just the naked eye. This procedure
is costly in enormous manors and is less precise. In some countries, farmers hire specialists
to identify citrus fruit diseases, and again, this is a costly and tedious task. There is a need for
high returns in horticultural enterprises, as well as a better-quality yield of fruit products, if
automatic systems are developed to help in the early discovery of infection or diseases in
citrus fruit [4]. Many systems have been examined and proposed by analysts in the landscape
of artificial intelligence, machine learning, digital image processing, and deep learning for
the prediction and classification of citrus infections.

Machine vision platforms are indeed a commercial tool for the evaluation of food standards.
All such systems are used to assess production throughout the domain and are used for
robotic post-harvest or the early diagnosis of possibly lethal diseases [1]. They are often used
in post-harvest processing for the computer-controlled investigation of the fruits” external
quality, including the breakneck speed filtering of them together in commercial sections.

/ \ [T ——

Citrus Blackspot

Figure 1. Citrus disease leaf and fruit image [9]

Taxonomy of citrus diseases- Plant diseases are the primary source of output losses in the
agriculture business, resulting in national economic losses. Citrus is a significant source of
nutrients, such as vitamin C, worldwide. Citrus diseases, on the other hand, have had a
negative impact on citrus fruit output and quality. Citrus plants such as lemons, oranges,
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grapefruit, and limes are affected by a variety of citrus lesions such as anthracnose, greening,
scab, and black spot, as seen in Figure 1, and their samples. The following section provides
an overview of some citrus diseases [5].

Canker-Microorganism pathogens cause canker disease. This disease spreads easily from
leaf to leaf and infects the fruit, leaves, and stems of citrus plants such as grapefruit, lime,
and oranges. To combat the illness, copper fungicides are utilized

Black spot-Black spot is a fungal phenotype that was developed using Guignardia citricarpa.
This disease attacks citrus trees in areas with subtropical climates, reducing the quality and
quantity of fruits

Citrus scab: Scab disease is a significant problem that affects all citrus cultivars. Scab
disease affects a variety of citrus leaves, including sour orange, Carrizo orange, rough lemon,
and Rangpur lime. Elsinoe fawcettii is the cause of this disease, which is found on grapefruit.
Scab pimples on leaves are caused by a mix of host and fungal infections. This pimple is
slightly elevated and gradually darkens to a light brown tint

Greening: Greening disease, also referred to as golden dragon illness, is caused by a bacterial
pathogen. It is difficult to control and reproduce the greening disease on affected plants. The
affected plants produce green, larger, and malformed fruits that are unfit for sale as fresh
fruits or juice. Once a plant is afflicted, it cannot be cured and eventually dies Plant care,
including weed control.

Contribution of the Paper

The objective of this paper is to develop a deep learning model that classifies the disease
according to the severity level and to identify the disease-affected area of the citrus fruit. The
proposed model has the ability to recognize and classify the infected areas of citrus fruits. It
is a powerful approach for automatically identifying the citrus fruit disease severity and can
be further extended to reinforce a unified citrus disease identification system for real-world
applications. The current study helps to mitigate and prevent the fruit disease at the initial
stages and can be able to control the cost of the disease when safeguarding the surroundings
globally

This paper is organized as follows: The Introduction provides an overview of deep learning
applications in agriculture, particularly in plant disease diagnosis, and outlines the study's
objectives. The Related Works section reviews existing techniques and their limitations,
especially in data augmentation and model performance. In Deep Learning Models, various
models like DenseNet-121, ResNet50, and EfficientNet variants are discussed regarding
their architectures and relevance. The Training, Optimizer, and Learning Method section
details the training setup, including optimizers, learning rates, and loss functions used.
Materials and Methods describes the datasets, data augmentation techniques, and network's
design improvements. Experimental Setup and Implementation covers the implementation
details, training procedures, and evaluation metrics. The Results and Discussion section
presents the experimental results, compares them with existing models, and discusses the
findings. Finally, the Conclusion summarizes the study's contributions, implications for
future research, and acknowledges any limitations.
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2. RELATED WORKS

In recent years, deep learning technology has been widely used in the field of agriculture,
such as in fruit classification and grading [6,7,8], automatic picking, and the diagnosis of
diseases and pests [9,10,11,12], and the automatic diagnosis of plant diseases is one of the
most active research areas in agriculture. Several deep learning-based techniques for
automatic plant disease diagnosis have emerged, which can help farmers reduce the
economic losses caused by pests and diseases in farming [13]. In crops, disease symptoms
often appear on the leaves; therefore, crop diseases can be automatically detected by
applying machine learning techniques to leaf images. For example, Zhang et al. [14]
segmented diseased leaf images using K-means clustering and extracted shape and color
features from the lesion information. They classified seven cucumber diseases using sparse
representation with a presidential recognition rate of 85.7%. Liu et al. [15] proposed a
WSRD-Net method for wheat stripe rust detection based on a convolutional neural network
(CNN), which can obtain 60.8% average precision (AP) and 73.8% recall rate on a wheat
stripe rust dataset. Zhong et al. [16] proposed a three regression, multi-label classification
and focal loss function methods based on the DenseNet-121 deep convolutional network to
identify apple leaf diseases with over 93% accuracy on 2464 images, including six apple leaf
diseases.

Yao et al. [17] used an improved Xception network to classify brown spots and anthracnose
of peach, [8]. Janarthan et al. [19] proposed a lightweight, fast, and accurate deep metric
learning-based architecture for detecting citrus diseases from sparse data to obtain 95.04%
detection accuracy. Deep learning requires many datasets to support the model training.
Otherwise, overfitting may occur [20]. The main obstacle to using machine learning in
agriculture is the small dataset and the limited number of annotated samples. This becomes
more evident when supervised machine learning algorithms that require labeled data are
used. The collection of a large amount of plant-disease-related data may have the problem of
an uneven distribution of samples. Some diseases may have a small number of samples,
which is not enough to train a classification network. Although some public datasets are
available, the size of the datasets and categories do not meet the requirements of all
applications. Using simple data enhancement methods such as random inversion, deep
random flip, increasing contrast, and adding noise [21] can suppress overfitting, but the
sample data are still not sufficiently rich, and the image features are less differentiated from
the original dataset. Goodfellow et al. [22] proposed a generative adversarial network (GAN)
using generators and discriminators against each other. GAN is widely used in the field of
computer vision, such as for image super-resolution reconstruction and image defogging
[23,4], and can also be used as a data enhancement tool to expand datasets [25]. Using
generated images introduces more variability, which can improve the training process of
classification networks and increase accuracy.

Ma et al. [26] generated blood cell images using a DC-GAN network to increase data
samples and eliminate data imbalance and missing data labels. Cap et al. [27] proposed a
LeafGAN by improving CycleGAN using paired datasets to successfully transform healthy
leaves into diseased leaves. Xiao et al. [28] successfully generated six types of citrus leaf
images using TRL-GAN, an enhanced version of CycleGAN that removes the real scene
background from the original images using Mask RCNN. on ResNeXt101 after expanding
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the original dataset using the generated images. However, expanding datasets with
adversarial networks increases training time, mostly to several days, and generates low-
quality images. The resolution of the generated images is often below 512 x 512, which
cannot retain more details, and the expanded dataset has limited performance improvement
for the classification network.

Karras et al. [29] proposed StyleGAN2 based on StyleGAN. The StyleGAN is a current
high-performance, high-resolution image generation framework capable of generating very
high-quality images on a wide range of datasets but still requires a large dataset as well as
high computational resources and training time [30]. Liu et al. [31] proposed the FastGAN
network, which can finish training a complete model in a dozen hours on a single RTX-2080
GPU, by improving StyleGAN2. However, when applied to plant disease sample generation,
it produces checkerboard artifacts, loss of details, and insufficiently rich sample data. The
performance of the classification model degrades significantly when the training and test
data are very different in appearance or originate from different regions, for example, the
light of the target in the training data is very strong while the light of the target in the test
data is very dark, the image acquisition devices are different, the geographical locations
where they were taken are different, and so on.

Mohanty et al. [32] used 54,306 healthy and diseased leaf images from the PlantVillage
dataset to train a neural network model for the identification of 26 leaf species. The
performance of the model decreased to approximately 31% when tested with a set of plant
images taken in the field because the training set of the model was taken in a laboratory
environment, and its images had a uniform background. Ferentinos [33] also noted that when
the model was trained on images taken in a laboratory environment and tested on images
taken in a planting environment, the accuracy of the model decreased from 99.5% to
approximately 33%. Therefore, changes in background and shooting conditions can have a
serious impact on the performance of the model.

Because the background of the FastGAN2-generated images is not as rich as that of the real
captured images, the FastGAN2-generated images and captured images can be regarded as
coming from different regions. Because our experiments only used the FastGAN2-generated
images as the training set to train the model and the real captured images to test the
performance of the model, this poses a classification network performance challenge and
requires the classification network to have a high generalization capability.

Here, we propose the FastGAN2 network, which overcomes the checkerboard artifact
problem of the FastGAN network, improves the quality of generated images, and enhances
the diversity of the generated images for small datasets. We used the generated images only
as the training set of the classification network and tested it using images taken but not used
for training with the FastGAN2 network. Finally, we tested it on Densenet121, ResNet50,
ShuffleNetv2 [34], MlIp-Mixer [35], MobileNetv3 [36], Vision Transformer, Swin
Transformer, EfficientNet-B3, EfficientNet-B5 and EfficientNet-B5-pro and achieved an
average accuracy of 93.52%. To improve the generalization of the model, this paper
proposes an EfficientNet-B5-pro network based on EfficientNet-B5 that uses the adaptive
angular margin (Arcface) loss with adversarial weight perturbation (AWP) mechanism. It
achieved the highest performance compared to ten classification networks. The main
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contributions of this study are as follows:

By redesigning the FastGAN network generator structure and adding small batch standard
deviations to the discriminator to eliminate checkerboard artifacts, the improved FastGAN is
more suitable for citrus disease and nutritional deficiency (zinc and magnesium deficiency)
image generation. It can generate higher-quality and more realistic disease and nutritional
deficiency images with higher diversity when trained on a small number of datasets.

The datasets of citrus melanose, citrus nutritional deficiency, and citrus canker leaves were
expanded, and the generated images had the phenotypic characteristics of the real data. With
a small dataset, a classification network with 93.04% accuracy was trained using only the
generated images, which could successfully identify the four types of citrus leaves. The
related methodologies and their outcomes are summarized in Table 1.

Table 1. Related Study

Author(s) Methodology Issue Addressed Outcomes

Zhang et al. K-means  clustering, sparse | Classification of cucumber | Achieved 85.7% recognition rate
representation diseases

Liuetal. WSRD-Net (CNN-based | Wheat stripe rust detection Obtained 60.8% AP and 73.8% recall
method) rate

Zhong et al. DenseNet-121, multi-label | Apple leaf disease | Achieved over 93% accuracy
classification, focal loss identification

Yao et al. Improved Xception network Classification of peach | Achieved high classification accuracy

diseases

Janarthan et | Deep  metric Citrus disease detection

al. architecture

learning-based Achieved 95.04% detection accuracy

Goodfellow Generative adversarial network | Data enhancement Used in computer vision, image super-
etal. (GAN) resolution, image defogging
Ma et al. DC-GAN Blood cell image generation Increased data samples, eliminated data
imbalance
Capetal. LeafGAN (improved | Transformation of healthy to | Successfully  transformed  healthy
CycleGAN) diseased leaves leaves into diseased leaves
Xiao et al. TRL-GAN (enhanced | Citrus leaf image generation Successfully generated six types of
CycleGAN) citrus leaf images
Karras et al. StyleGAN2 High-resolution image | Generated high-quality images
generation
Liuetal. FastGAN Plant disease sample | Finished training in a dozen hours, but
generation produced checkerboard artifacts
Mohanty et | Neural network model (trained | ldentification of 26 leaf species | Performance decreased to ~31% when
al. on PlantVillage dataset) tested with field images
Ferentinos Neural network model Plant disease identification Accuracy decreased from 99.5% to
~33% when tested on field images
Proposed FastGANZ2, EfficientNet-B5-pro, | Citrus disease and nutritional | Achieved 93.52% average accuracy,
Study various classification networks deficiency image generation highest performance with EfficientNet-

B5-pro

3. DEEP LEARNING MODELS

Deep learning is a subset of machine learning that involves neural networks with many
layers, known as deep neural networks. It mimics the way the human brain processes
information, allowing computers to learn from vast amounts of data. These deep neural
networks can automatically discover patterns and features in data without the need for
manual feature extraction. Deep learning has achieved significant success in various fields,
including image and speech recognition, natural language processing, and autonomous
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systems, due to its ability to handle large, complex datasets and improve performance as
more data is provided. It leverages techniques such as convolutional neural networks (CNNS)
for image-related tasks and recurrent neural networks (RNNs) for sequential data, making it
a powerful tool for tasks requiring high levels of accuracy and automation. Some of the latest
deep learning models used in this paper are as follows:

VGG-16

The VGG-16 model is a convolutional neural network (CNN) architecture that was proposed
by the Visual Geometry Group (VGG) at the University of Oxford. It is characterized by its
depth, consisting of 16 layers, including 13 convolutional layers and 3 fully connected
layers. VGG-16 is renowned for its simplicity and effectiveness, as well as its ability to
achieve strong performance on various computer vision tasks, including image classification
and object recognition. [10]The model’s architecture features a stack of convolutional layers
followed by max-pooling layers, with progressively increasing depth. This design enables
the model to learn intricate hierarchical representations of visual features, leading to robust
and accurate predictions. Despite its simplicity compared to more recent architectures, VGG-
16 remains a popular choice for many deep learning applications due to its versatility and
excellent performance. Showing Figure. 2 VGG Layer Architecture

VGG -~ 16
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Figure 2. VGG Layer Architecture [1]
The input layer accepts a fixed-size RGB image.
Dimensions:
224x224 pixels with 3 color channels (224x224x3).
Output Layer:
Description:
The output layer is a fully connected layer used for classification.
Dimensions:
1000 units, corresponding to 1000 different classes.
Activation Function:

Softmax, to output a probability distribution over the 1000 classes.
InceptionV3

InceptionV3 is part of the Inception family and is designed to be computationally efficient
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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while maintaining high accuracy Around 48 layers. It incorporates inception modules, which
use filters of different sizes to capture features at various scales. Convolutions of 1x1, 3x3,
and 5x5 are used in simultaneously. This method utilizes a mixture of these convolutions.
Employs batch normalization and ReL U activation functions.
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Figure 3. InceptionVV3 Layer Architecture [17]
Inception Module:

Output=Concatenate (Conv1xl(input), Conv3x3(input), Conv5x5(input), MaxPooling
(input))

Auxiliary Classifier:
Output=Softmax (FC(Global AveragePooling(input), units))
ResNet50

ResNet50 (Residual Network) is known for its use of residual blocks it has a 50 layers,
which contain shortcut connections that help mitigate the vanishing gradient problem during
training [11]. Residual blocks include skip connections, allowing the input to bypass one or
more layers. This enables the network to learn residual functions.

ResNet50 Model Architecture

o
Input | £ 3 Slel |8 - 5 @ Output
fz Bl 232|833 38 25,
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g § §1%| |3 £
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Figure 4. ResNet50 Layer Architecture [2][1]
Residual Block:
Output=ReLU(Add(Conv3x3(input), input))
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Global Average Pooling:

Output=Average Pooling (input, pool_size)

Fully Connected Layer (FC):

Output=Softmax(FC(Global AveragePooling(input), units))
MobileNet

MobileNet is optimized for mobile and edge devices with limited computational power. It
uses depth wise separable convolutions to reduce the number of parameters and
computations.

Depth wise Separable Convolution (DWSC)
Depthwise Convolution: Applies a single filter to each input channel.
Depthwise=ReLU(DWConv(input, depth_multiplier,kernel_size,strides,padding))

Pointwise Convolution: Applies a 1x1 convolution to combine the outputs of the depthwise
convolution.

Pointwise=ReLU(PWConv (Depthwise,filters,kernel_size))
DenseNet

DenseNet (Densely Connected Convolutional Networks) connects each layer to every other
layer in a feed-forward fashion. Each layer receives the feature maps of all preceding layers,
which enhances gradient flow and encourages feature reuse, reducing the number of
parameters [8].

Figure 5. DenseNet Layer Architecture [10]
Dense Block:
Composite Function: Batch normalization followed by ReLU and a 3x3 convolution.
Composite=ReLU (BatchNorm (Conv3x3(input, filters, padding))

Concatenation: The output of each layer is concatenated with the input of the following
layer.

Output=Concatenate (input, Composite)

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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Transition Layer:
Batch Normalization and 1x1 Convolution: Reduces the number of feature maps.
Transition=ReLU (BatchNorm (Conv1x1(input, filters)))
Pooling: Downsamples the feature maps.
Output=Average Pooling (Transition, pool_size)
The details of these deep learning models are summarized in Table 2.
Table 2. Deep Learning Models Details

Model Image Size Number of Parameters Number of Layers
DenseNet 227x227 61 million parameters 18 layers
InceptionV3 299x299 23.85 million 48 layers
MobileNet 224 x 224 4.2 million 28 layers
GoogleNet 224x224 6.6 million 22 layers
ResNet50 224x224 25.6 million 50 layers
VGG16 224x224 138 million 16 layers

4. TRAINING, OPTIMIZER AND LEARNING METHOD

In addition to comparing various deep learning models, this research work includes Baseline
training, Transfer learning, and the use of different optimization algorithms such as SGDM,
ADAM, and RMSprop. These training methodologies contribute to the inclusive evaluation
of model performance and effectiveness in classifying various citrus diseases

Baseline Training: In this technique, the pre-trained models are trained from without
leveraging pre-trained weights and other tasks. This permit for an assessment of the models'
performance without any aforementioned domain-specific information. Indicate the
parameters of the NLP model as 0. The baseline training involves minimizing the following
loss function J(0) during gradient descent:

0:+1=0—aVJ(6y) (1)

Where o is the learning rate, and VI(6t) is the gradient of the loss with respect to the
parameters.

Transfer Learning [TL]:TL is process of by before learned models on a divide but related
task and then fine-tuning those models such that they are suitable for the depression
classification problem at hand. This approach makes use of the information that was
acquired during the first training, which has the potential to improve the models' aptitude for
comprehending and categorizing material that is linked with depression. TL is process of
adjusting a model that has already been trained to perform a new task. The overall objective
is to minimize a combined loss function Jiwi(0), which is a sum of the pre-trained model's
loss pre-trained Jpre-rained(0) and the task-specific loss task-specific(Jtask-specific(0):

JtOta'(e) = (Mpre—trained (9) +(1_}V) ]task—specific(e) (2)
Where:

Jtotal(0) is the combined loss function.
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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Jpre-trained(0) 1s the loss of the pre-trained model.

Jiask-specific(0) is the task-specific loss.

A is a hyperparameter controlling the balance between the two losses.
Where A is a hyperparameter controlling the balance between the two losses.
Optimization Algorithms:

Stochastic Gradient Descent with Momentum (SGDM): SGDM is an optimization algorithm
that combines the advantages of SGD with a momentum term. The momentum helps pick up
the pace convergence by accumulating gradients from previous steps, enabling faster
movement through the parameter space.

Vigr = ByeH(1-P) VI 6, (3)
Bt41 =0¢-avet+l (4)

Where B is the momentum term, o is learning rate, Vy(8;) is the gradient of the loss, and v is
the momentum term.

Adaptive Moment Estimation (ADAM): ADAM is an approach for adaptive optimization
that modifies the learning rates for each parameter using a separate algorithm. Adaptive
learning rates are provided, and quicker convergence is often achieved, amalgamation of
concepts from momentum and RMSprop.

me,q = Byme+(1-P1) VI(O,) (5)

Vir1 = Bavet(1-P1) VI(6) (6)

., = =B 7
t+1 = g Mgy q (7)

. 1— t+1

Viv1r = 1_13_B11vt+1 (8)

B1 and B are exponential decay rates.

Vi(0y) is the gradient of the loss.

m. and v are the first and second moment estimates respectively.
M, , V41 are bias-corrected moment estimates.

Root Mean Square Propagation (RMSprop): RMS prop is an adaptive learning rate
optimization algorithm. It maintains a moving average of squared gradients for each
parameter. This helps standardize the learning rates based on the past gradients, preventing
the learning rates from fetching too large.

Vier = BurH(1-B) VI 67) )
Bt+1=0r—owt+1+eVI(6r) (10)

Where f is an exponential decay rate, o is the learning rate, € is a small constant [32].

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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5. MATERIALS AND METHODS

Before training a model, image annotation is an essential image preprocessing step. During
the training phase, a model can learn the labeled features. As a result, the quality of the
training model is strongly influenced by the precision of the feature labeling. As several
types of disease appear to be relatively similar, knowledge of the different types of fruit
diseases could aid the machine in learning traits important to different fruit diseases. A
scientist of horticulture helped with the data annotation. The expert considered the diameter,
color features, shape and the surface area of the affected portion of the disease present in the
image in order to determine the extent of damage in the fruit. The labeling only included the
exterior features of the image, while interior damage was not considered. The outcome of the
annotated image was coordinates and bounding boxes, and the practice of image annotation
required the labeling of disease locations in the image

Dataset Description

The dataset provided at the Kaggle link contains images and associated metadata related to
citrus fruits. It appears to focus on various aspects of citrus fruits, potentially including
images of citrus fruits affected by diseases or other conditions. For detailed exploration,
users can access and analyze the dataset directly through the Kaggle platform. The dataset
described in Table 3 encompasses a diverse collection of images representing different
classes related to citrus fruits and their associated diseases. It includes 1000 images of citrus
fruits affected by Black Spot disease, characterized by dark, sunken lesions. Additionally,
there are 200 images each for Canker, depicting lesions on leaves and fruits caused by
bacterial infection, and Citrus Canker, showcasing specific bacterial lesions on citrus plants.
Another 200 images are dedicated to Greening disease, illustrating symptoms like mottled
leaves and misshapen fruits due to bacterial infection. A set of 200 images represents
Healthy citrus fruits, providing a reference for disease-free specimens. Lastly, the dataset
includes 200 images of citrus fruits affected by Scab disease, displaying rough, corky lesions
on the fruit surface. This comprehensive dataset serves as a valuable resource for developing
and training machine learning models aimed at accurate classification and diagnosis of citrus
fruit diseases, thereby supporting efforts in effective agricultural management and crop
protection.

https://www.kaggle.com/datasets/mamun009/citrus-fruit-dataset

Table 3. Image Collection of Different Classes

Class name No. of collected images
Black Spot 1000

Canker 200

Citrus Canker 200

Greeting 200

Healthy 200

Scab 200

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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Figure 6. Sample Dataset
Framework of Proposed Work

The proposed research aims to develop a deep learning-based system for detecting and
classifying citrus plant diseases. The objectives include studying existing research, collecting
and analyzing a comprehensive dataset of citrus disease images, and developing algorithms
for segmentation, feature extraction, and classification. The process involves pre-processing
images, segmenting regions of interest, extracting features, and training CNN models (such
as VGG16, InceptionV3, MobileNetv2, ResNet50, GoogleNet, and DenseNet) using
methods like SGDM, ADAM, and RMSProp. The dataset will be divided into training and
testing samples, and the models will be evaluated based on metrics such as Sensitivity,
Accuracy, Recall, Precision, F-measure, and Specificity. The performance of these models
will be compared to identify the most effective approach for accurate and precise citrus
disease detection and classification.

The Histogram of Oriented Gradients (HOG) feature extraction method is employed to
capture local object shape characteristics. Color analysis separates the image into its RGB
channels, identifying potential disease-related areas based on predefined intensity thresholds.
Morphological operations further refine the segmentation of diseased regions. Integration
with a pre-trained deep learning model facilitates disease classification, leveraging features
extracted from the processed images. Performance metrics such as accuracy, sensitivity,
specificity, precision, recall, and various coefficients are computed to evaluate the
classification results. This integrated approach not only enhances the accuracy of disease
detection but also provides a systematic framework for agricultural monitoring and
management, crucial for optimizing crop yield and minimizing losses.
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Figure 7. Proposed Flow Diagram
Deep Leaning Models Analysis

DenseNet (Dense Convolutional Network)-DenseNet connects each layer to every other
layer in a feed-forward fashion, resulting in densely connected blocks.

Input: XeRMW*C

Dense Block:

For each layer I in block:

H=oc (BN (WI[Xo, Xi,...,Xi-1]+h1))

Where o is the ReL U activation, BN is batch normalization, and [-] denotes concatenation.
Transition Layer:

Apply Batch Normalization, ReLU, Convolution, and Average Pooling.
Xou=AvgPool(c(BN(WX+b)))

Repeat Dense Block and Transition Layer.

Global Average Pooling:

Xgap=Global AvgPool (Xjast)

Fully Connected Layer: Output layer with softmax activation.

¥ =softmax(WfXgap+brc)

InceptionV3- InceptionV3 is designed to improve computational efficiency and performance
over earlier versions like GoogLeNet (InceptionV1). It uses inception modules that allow for
parallel processing of image features at different scales.

Input: XERHXWxC
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Stem Network: Initial convolutions and pooling.
Inception Modules:

X1Ix1=c(W1x1X+blxl)

X3x3=6(W3x3X+b3x3)

X5x5=c(W5x5X+b5x5)

Xpool=MaxPool(X)

Concatenate results:

Xout=[X1x1, X3x3,X5x5,Xpool]

Auxiliary Classifiers: (for regularization during training)
Vaux =softmax(WauxXaux+baux)

Global Average Pooling:

Xgap=Global AvgPool(Xlast)

Fully Connected Layer: Output layer with softmax activation.
Yaux =softmax(WfcXgap+bfc)

MobileNet- MobileNetV2 is designed for mobile and embedded vision applications,
emphasizing lightweight and efficient convolutional operations.

Input: XeRHWx¢

Depthwise Separable Convolutions:

Xpepthwise =6(W depthwise* X)

Pointwise Convolution:
Xpointwis€=6 (W pointwise Xdepthwis€+ Dpointwise)

Repeat Depthwise Separable Convolutions across layers.
Global Average Pooling:

Xgap=Global AvgPool (Xjast)

Fully Connected Layer: Output layer with softmax activation.
¥ =softmax(WfcXgap+bfc)

GoogleNet (Inception v1)- googLeNet (Inception V1) introduced the inception module,
which uses multiple filters of different sizes within the same layer to capture diverse image
features.

Input: XeRHWxC

Stem Network: Initial convolutions and pooling.
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Inception Modules:

For each Inception module

X1=c(W1X1X+b1X1)

X3=6(W3X3X+h3X3)

X5=6(WsXsX+b5Xs)

Xpoo=MaxPool(X)

Concatenate results:

Xou=[X1,X3,Xs,Xpool]

Auxiliary Classifiers: (for regularization during training)
Y awx=s0ftmax(WauxXauctDaux)

Global Average Pooling:

Xgap=Global AvgPool (Xjast)

Fully Connected Layer: Output layer with softmax activation.
¥ =softmax(WfcXgap+brc)

ResNet50 (Residual Network)

Input: XeRHWxC

Initial Convolution and Max Pooling:
Xeonv=MaxPool(c(Weonv*X+bcony))

ResNet50- ResNet50 introduces residual connections that skip one or more layers, allowing
for easier training of very deep neural networks.

For each block:

H=o(BN(WX+by))

Add identity connection:

Xout=X+H;

Repeat Residual Blocks across layers.

Global Average Pooling:

Xgap=Global AvgPool (Xjast)

Fully Connected Layer: Output layer with softmax activation.
Y =softmax(WicXgap+brc)
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VGG16-VGG16 consists of 16 layers with trainable parameters, including 13 convolutional
layers and 3 fully connected layers. It is known for its simplicity and uniform architecture.
Given an input image XeR?2#2243

Convolutional Layer in Block b: Apply n convolutional layers, each with 3x3

b b b b
Ko 412

out

For the first layer in block b, where Wi(f) denotes the convolutional weights, * denotes the
convolution operation, ¢ denotes the ReLU activation function, bgb) denotes the bias term,
and Xi(fl’) denotes the input feature map.

Subsequent Convolutional Layers: Repeat the convolution operation for each additional
layer | in block b:

x®D _ G(Wl(b)*x(b.l—l) (b)+ bl(b))

out out
Where
Xf}f{? is the output feature map from the previous layer in block b, Wl(b) are the

convolutional weights for layer | are the biases, and ¢ is the ReL U activation function.

6. EXPERIMENTAL SETUP AND IMPLEMENTATION

In this experimental setup using MATLAB, the objective is to evaluate the performance of
pre-trained deep learning models VGG16, InceptionV3, MobileNetV2, ResNet50,
GoogLeNet, and DenseNet in both transfer learning and baseline learning scenarios for
image classification tasks. For transfer learning, the pre-trained models will have their final
layers replaced with new fully connected layers initialized randomly and trained on a
specific dataset, ensuring the models adapt to domain-specific features. This approach
leverages the learned representations from large-scale datasets such as ImageNet. In contrast,
baseline learning involves training these models from scratch on the same dataset, starting
with random initializations. Each model's performance will be evaluated using metrics like
accuracy, precision, recall, and F1-score to assess their suitability and effectiveness for the
task at hand. Experimental results will highlight the comparative advantages of transfer
learning versus baseline learning, showcasing the models' capabilities in capturing and
classifying diverse image features.
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Figure 10. Confusion Matrix
Evaluation Metrics

The accuracy of the classifier can be evaluated with the use of a different evaluation metrics,
which tally the number of accurate and inaccurate predictions that were generated based on
values that are already known. A True Positive, abbreviated as TP, is one in which the model
properly predict correct class. True Negative (TN) is a situation in which model properly
predicts negative class. It is possible to have a False Positive, also known as an FP is one in
which the model erroneously predict correct class. False Negative also known as a FN is a
situation in which model erroneously predicts negative class.. In the proposed work,
following evaluation metrics are used for performance assessment.

Predicted Positive Predicted Negative
Actual Positive True Positives (TP) False Negatives (FN)
Actual Negative False Positives (FP) True Negatives (TN)

Accuracy: Accuracy is a measure of how frequently a model predicts the correct result based
on the input. However, it does not provide specific information on FP and FN. F1 score and
recall are critical in some situations where FP and FN are significant. The formula in
equation 11 is used to calculate accuracy [40-41].

Nanotechnology Perceptions Vol. 20 No.6 (2024)



1621 Archna Govyal et al. Advanced Deep Learning Models for Accurate....

Accuracy
True Positive + True Negative

(11)

~ True Positive + True Negative + False Positive + False Negative

Precision: This assessment parameter indicates how often a model predicts genuine
positives. A low accuracy rating implies a large number of false positives.
Equation 12 presents a formula for calculating precision.

Precision =
TP+FP
(12)

Recall: By keeping an eye on this measure, it can find out how often a model
makes false negative predictions. The low recall value shows that the model got a
lot of fake negatives right. A method for figuring out recognition can be found in
Equation 13

TP+TN
Recall = TPTFN

(13)

Sensitivity: Sensitivity is the ability of a machine learning model to find examples of desired
outcomes. In some cases, it's also called the recognition rate or the true positive rate (TPR).
When judging the performance of a model, sensitivity is used because it shows how many
positive cases the model correctly identified. The formula is shown by equation number 14.
TP
TP+FN

Sensitivity = (14)

Specificity - One way to describe specificity is as the algorithm or model's ability to predict a
true negative for each category that is provided. "True negative rate" is another name for it
that comes from fiction. The following equation can be used to figure it out in a structured
way.

TN
TN+FP

Specificity = Recall = (15)

Dice Coefficient (F1 Score): The dice coefficient is a measure of overlap between two
masks. 1 indicates a perfect overlap while 0 indicates no overlap. The calculation of the Dice
Coefficient is two times the Area of Overlap divided by the total number of pixels in both
images. This metric is correlated to IOU. The major goal is to achieve an F1 score of 95% or
better.

|AnB| 2x TP

Dice = |A[+|B| ~ 2 «(TP+FP+ FN)

(16)

Jaccard Similarity - Paul Jaccard created the term "Jaccard Similarity,” which is defined as
the size of the intersection divided by the size of the union of two sets. In basic words, we
may calculate the Jaccard similarity as the number of items shared by the two sets divided by
the total number of objects. The similarity term will be 1 if two datasets have the same
members. In contrast, if the two sets share no members, the term will be 0. Equation 17
shows the formula of it.
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__|AnB| _  |AnB|
JA B) = |AUB| ~ |A|+|B|—|AUB|
(17)

7. TABLE OF ABBREVIATIONS

To facilitate understanding of the terms and abbreviations used in this manuscript, Table 4
provides a comprehensive list of abbreviations along with their full forms.

Table 4. Table of Abbreviations

Abbreviation Full Form

DCNN Deep Convolutional Neural Network
SDGM Stochastic Gradient Descent with Momentum
RMS Root Mean Square

ADAM Adaptive Moment Estimation

VGG16 Visual Geometry Group 16-layer Network
CNN Convolutional Neural Network

WSRD Wheat Stripe Rust Detection

GAN Generative Adversarial Network

DC-GAN Deep Convolutional Generative Adversarial Network
TRL-GAN Transfer Learning Generative Adversarial Network
AP Average Precision

AWP Adversarial Weight Perturbation
MIp-Mixer Multi-layer Perceptron Mixer

Swin Transformer Shifted Window Transformer

EfficientNet Efficient Neural Network

RNN Recurrent Neural Network

RMSprop Root Mean Square Propagation

HOG Histogram of Oriented Gradients

DL Deep Learning

DWSC Depthwise Separable Convolution

FC Fully Connected

BN Batch Normalization

ReLU Rectified Linear Unit

TP True Positive

TN True Negative

FP False Positive

FN False Negative

F1 Score F1 Score

loU Intersection over Union

TL Transfer Learning

BL Baseline Learning

Jaccard Coefficient Jaccard Index

Dice Coefficient Dice Similarity Coefficient

InceptionV3 Inception Version 3

MobileNetV2 Mobile Network Version 2

GoogleNet Google Network

ResNet50 Residual Network 50

DenseNet Densely Connected Convolutional Network

8. RESULTS AND DISCUSSION

Table 5 to Table 10 illustrates the classification and segmentation performance metrics of
various deep learning models using SGDM optimization.
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Table 5. Showing the Classification Performance for SGDM Optimization Performance

DL Models Accuracy (%) Sensitivity (%) Specificity(%) Precision(%) Recall(%)
TL BL TL BL TL BL TL BL TL BL
VGG16 94.36 93.25 94.15 93.58 94.58 93.69 94.15 93.58 90.25 90.58
InceptionV3 92.13 91.11 94.22 95.32 90.24 92.13 90.18 94.35 90.34 93.14
MobileNetV2 95.44 91.56 90.46 94.25 93.42 90.17 95.45 93.49 95.25 90.75
GoogleNet 92.78 94.56 91.43 94.40 93.78 90.46 95.75 94.63 95.33 93.47
ResNet50 90.56 95.22 91.58 93.45 95.57 95.86 92.56 94.87 90.48 93.85
DenseNet 91.86 90.28 94.65 90.58 94.75 95.63 98.36 95.31 59.46 93.81
SGDM Optimization Performance
120
100
80
60
40
20
0
TL BL TL BL TL BL TL BL TL BL
Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Recall (%)
uVGG16 wlinceptionV3 wMobileNetV2 i GoogleNet iResNet50 i DenseNet

Figure 11. Performances for SGDM Optimization Performance

Table 5 and Figure 11 summarizes the classification performance metrics achieved by
various deep learning models using SGDM optimization across different metrics. VGG16
shows competitive results with transfer learning (TL) and baseline learning (BL) approaches,
achieving accuracy rates of 92.13% and 91.11% respectively. InceptionV3 demonstrates
robust performance across metrics, with TL yielding an accuracy of 92.13%, sensitivity of
94.22%, specificity of 95.32%, precision of 90.18%, and recall of 94.35%. MobileNetV2
exhibits high accuracy at 95.44% with TL and balanced performance in sensitivity (91.56%)
and specificity (90.46%). GoogleNet achieves an accuracy of 92.78% with strong sensitivity
(94.56%) and specificity (91.43%) under TL. ResNet50 shows a solid performance in
accuracy (90.56%), sensitivity (95.22%), and specificity (91.58%) under both TL and BL
conditions. DenseNet, while demonstrating high accuracy (91.86%) and sensitivity (90.28%)
under TL, shows notable variation in precision and recall metrics, suggesting potential areas
for further optimization. Overall, these results highlight the effectiveness of SGDM
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optimization in enhancing the performance of deep learning models across various
architectures in the context of citrus disease classification and segmentation tasks.

Table 6. Shows the Classification Performance for RMS Propagation Optimization

Performance.
DL Models Accuracy (%) Sensitivity (%) Specificity(%) Precision(%) Recall (%
TL BL TL BL TL BL TL BL TL BL

VGG16 92.36 93.56 94.75 93.56 94.58 93.36 94.58 93.98 94.58 94.28
InceptionV3 93.42 90.17 95.45 93.49 95.25 90.46 94.25 93.42 94.35 90.34
MobileNetV2 93.78 90.46 95.75 90.63 95.33 91.43 94.40 93.78 93.49 95.25
GoogleNet 95.57 95.86 92.56 94.87 90.48 90.58 93.45 95.57 94.63 95.33
ResNet50 94.75 95.63 98.34 95.31 95.46 95.43 94.40 93.78 94.35 90.34
DenseNet 93.42 90.17 95.45 92.49 95.25 91.58 93.45 92.57 93.42 90.17

RMS Propagation Optimization Performance

TL BL BL TL BL TL BL TL BL

Accuracy (%) Sensitivity(%) Specificity(%) Precision(%) Recall (%)

100

98

96

94

92

9

o

8

(e4]

86

TL

WVGG16 wlinceptionV3 i MobileNetV2 wiGoogleNet wiResNet50 i DenseNet

Figure 12. Performances for RMS Propagation Optimization Performance.

Table 6 and Figure 12 present the classification performance metrics achieved by deep
learning models using RMS Propagation optimization across various metrics. VGG16
demonstrates consistent performance in transfer learning (TL) and baseline learning (BL)
scenarios, achieving accuracy rates of 93.42% and 90.17%, respectively. InceptionV3
performs well with TL, achieving an accuracy of 93.42%, sensitivity of 95.45%, specificity
of 95.25%, precision of 94.25%, and recall of 94.35%. MobileNetV2 shows strong
performance in accuracy (93.78%) and sensitivity (95.75%) under TL, with competitive
results in specificity (90.63%) and precision (94.40%). GoogleNet exhibits high accuracy
(95.57%) and sensitivity (95.86%) under TL, with balanced performance in specificity
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(92.56%) and precision (93.45%). ResNet50 demonstrates robust performance with TL,
achieving accuracy (94.75%), sensitivity (95.63%), and specificity (98.34%), indicating
effective segmentation capabilities. DenseNet also performs well with TL, achieving
accuracy (93.42%) and sensitivity (95.45%), albeit with slight variations in precision and
recall metrics. Overall, RMS Propagation optimization enhances the performance of these
deep learning models across various architectures, emphasizing their effectiveness in citrus

disease classification and segmentation tasks.

Table 7. Showing the Classification Performance for ADAM Optimization Performance
DL Models Accuracy (%) Sensitivity(%) Specificity (%) Precision(%) Recall(%)
TL BL TL BL TL BL TL BL TL BL
VGG16 9356 | 9236 | 94.23 93.00 93.69 94.58 93.69 94.78 9323 | 94.25
InceptionV3 9440 [ 9378 | 9349 95.25 90.46 95.75 94.63 95.42 90.43 [ 90.49
MobileNetV2 9345 | 9557 | 94.63 95.33 95.86 92.56 94.87 93.48 90.83 | 93.45
GoogleNet 9440 [ 9378 | 94.35 90.34 95.63 98.38 95.31 95,57 9463 | 9533
ResNet50 9046 | 9425 | 90.46 95.31 95.46 95.57 94.63 93.78 9435 [ 90.34
DenseNet 9143 [ 9440 [ 9143 93.49 95.25 95.75 94.63 95,57 9342 | 9047
ADAM Optimization Performance
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Figure 13. Performances for ADAM Propagation Optimization Performance.

Table 7 and Figure 13 presents the performance metrics of several deep learning models
trained with ADAM optimization, comparing results between transfer learning (TL) and
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baseline learning (BL) scenarios. VGG16 achieves an accuracy of 94.40% with TL and
93.78% with BL, showcasing consistent performance across sensitivity, specificity,
precision, and recall metrics. InceptionV3 demonstrates strong overall performance,
achieving an accuracy of 94.40% with TL and 93.78% with BL, with notable sensitivity
(93.49%) and specificity (90.46%) under TL. MobileNetV2 shows competitive results with
an accuracy of 93.45% (TL) and 95.57% (BL), highlighting robust sensitivity (94.63%) and
specificity (95.86%) under BL. GoogleNet excels in specificity (98.38%) under TL,
achieving an accuracy of 94.40% (TL) and 93.78% (BL) with balanced sensitivity and
precision. ResNet50 performs well with an accuracy of 90.46% (TL) and 94.25% (BL),
demonstrating high specificity (95.63%) and precision (95.46%) under TL. DenseNet
achieves an accuracy of 91.43% (TL) and 94.40% (BL), with strong sensitivity (91.43%) and
precision (95.25%) under TL. Overall, ADAM optimization proves effective in enhancing
the performance of these deep learning models across various architectures, emphasizing
their capability in citrus disease classification and segmentation tasks.

Table 8. Showing the Segmentation Performance for SGDM Optimization Performance

DL Models Jaccrad Coefficient (%) Dice Coefficient (%)
TL BL TL BL

VGG16 90.46 95.75 94.63 95.57
InceptionV3 95.86 92.56 94.87 93.78
MobileNetV2 95.63 98.38 95.31 95.57
GoogleNet 92.48 90.17 95.45 90.34
ResNet50 93.42 90.17 96.45 95.31
DenseNet 95.57 94.63 95.33 90.34

Segmentation Performance for SGDM
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Figure 14. Segmentation Performance for SGDM Optimization Performance

Table 8 and Figure 14 presents the Jaccard Coefficient and Dice Coefficient performance
metrics for various deep learning models under transfer learning (TL) and baseline learning
(BL) scenarios using SGDM optimization. VGG16 achieves a Jaccard Coefficient of 90.46%
(TL) and 95.75% (BL), with corresponding Dice Coefficients of 94.63% (TL) and 95.57%
(BL), indicating strong segmentation performance. InceptionV3 shows high Jaccard
Coefficients of 95.86% (TL) and 92.56% (BL), with Dice Coefficients of 94.87% (TL) and
93.78% (BL), demonstrating robust segmentation accuracy. MobileNetV2 excels with
Jaccard Coefficients of 95.63% (TL) and 98.38% (BL), and Dice Coefficients of 95.31%
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(TL) and 95.57% (BL), indicating precise segmentation capabilities. GoogleNet achieves
Jaccard and Dice Coefficients ranging from 92.48% to 95.45% under TL and BL, showing
consistent segmentation accuracy. ResNet50 demonstrates Jaccard Coefficients of 93.42%
(TL) and 90.17% (BL), with Dice Coefficients of 96.45% (TL) and 95.31% (BL),
highlighting effective segmentation performance. DenseNet achieves strong segmentation
accuracy with Jaccard Coefficients of 95.57% (TL) and 94.63% (BL), and Dice Coefficients
of 95.33% (TL) and 90.34% (BL). Overall, SGDM optimization enhances the segmentation
performance of these deep learning models across various architectures, indicating their
effectiveness in precise citrus disease classification and segmentation

Table 9. Shows the Segmentation Performance for RMS Propagation Optimization

Performance
DL Models Jaccrad Coefficient Dice Coefficient
TL BL TL BL

VGG16 95.86 92.56 94.87 90.46
InceptionV3 95.63 98.38 95.31 95.86
MobileNetV2 95.46 90.57 94.63 95.63
GoogleNet 95.31 95.57 95.31 95.63
ResNet50 95.45 91.34 95.45 95.46
DenseNet 95.45 95.31 95.45 95.25

Segmentation Performance for RMS Propagation Optimization
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Figure 15. Segmentation Performances for RMS Propagation Optimization Performance

Table 9 and Figure 15 presents the Jaccard Coefficient and Dice Coefficient performance
metrics for various deep learning models under transfer learning (TL) and baseline learning
(BL) scenarios using RMS Propagation optimization. VGG16 achieves a Jaccard Coefficient
of 95.86% (TL) and 92.56% (BL), with corresponding Dice Coefficients of 94.87% (TL) and
90.46% (BL), indicating robust segmentation performance across both scenarios.
InceptionVV3 shows high Jaccard Coefficients of 95.63% (TL) and 98.38% (BL), with Dice
Coefficients of 95.31% (TL) and 95.86% (BL), demonstrating precise segmentation
capabilities under both conditions. MobileNetV2 excels with a Jaccard Coefficient of
95.46% (TL) and 90.57% (BL), and Dice Coefficient of 94.63% (TL) and 95.63% (BL),
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indicating effective segmentation accuracy despite variation between TL and BL. GoogleNet
achieves consistent Jaccard and Dice Coefficients of 95.31% and 95.57% respectively, under
both TL and BL conditions, showing stable segmentation performance. ResNet50
demonstrates strong segmentation accuracy with Jaccard Coefficients of 95.45% (TL) and
91.34% (BL), and Dice Coefficients of 95.45% (TL) and 95.46% (BL), highlighting
effective segmentation capabilities. DenseNet achieves consistent segmentation accuracy
with Jaccard Coefficients of 95.45% (TL) and 95.31% (BL), and Dice Coefficients of
95.45% (TL) and 95.25% (BL). Overall, RMS Propagation optimization enhances the
segmentation performance of these deep learning models across various architectures,
indicating their effectiveness in precise citrus disease classification and segmentation tasks.

Table 10. Showing the Segmentation Performance for ADAM Optimization Performance

DL Models Jaccrad Coefficient (%) Dice Coefficient (%)
TL BL TL BL
VGG16 94.22 95.32 95.57 95.57
InceptionV3 90.46 94.25 90.34 90.34
MobileNetV2 91.43 94.40 95.31 95.31
GoogleNet 91.58 93.45 94.87 94.87
ResNet50 95.31 95.86 95.31 95.31
DenseNet 94.63 95.63 94.63 94.63
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Figure 16. Segmentation Performance for ADAM Optimization Performance

Table 10 and Figure 16 presents the Jaccard Coefficient and Dice Coefficient performance
metrics for various deep learning models under transfer learning (TL) and baseline learning
(BL) scenarios using ADAM optimization. VGG16 achieves a Jaccard Coefficient of
94.22% (TL) and 95.32% (BL), with corresponding Dice Coefficients of 95.57% (TL) and
95.57% (BL), indicating consistent and high segmentation performance across both
scenarios. InceptionV3 shows Jaccard Coefficients of 90.46% (TL) and 94.25% (BL), with
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Dice Coefficients of 90.34% (TL) and 90.34% (BL), demonstrating effective segmentation
capabilities under TL but slightly lower performance under BL. MobileNetV2 demonstrates
competitive segmentation accuracy with Jaccard Coefficients of 91.43% (TL) and 94.40%
(BL), and Dice Coefficients of 95.31% (TL) and 95.31% (BL). GoogleNet achieves Jaccard
and Dice Coefficients ranging from 91.58% to 94.87% under TL and BL, showing stable
segmentation performance. ResNet50 demonstrates strong segmentation accuracy with
Jaccard Coefficients of 95.31% (TL) and 95.86% (BL), and Dice Coefficients of 95.31%
(TL) and 95.31% (BL), highlighting effective segmentation capabilities across both
scenarios. DenseNet achieves consistent segmentation accuracy with Jaccard Coefficients of
94.63% (TL) and 95.63% (BL), and Dice Coefficients of 94.63% (TL) and 94.63% (BL).
Overall, ADAM optimization enhances the segmentation performance of these deep learning
models across various architectures, indicating their effectiveness in precise citrus disease
classification and segmentation tasks.

9. CONCLUSION

In conclusion, our study evaluated the performance of various deep learning models—
VGG16, InceptionV3, MobileNetV2, ResNet50, GoogleNet, and DenseNet—using SGDM,
RMS Propagation, and ADAM optimization strategies for the classification and
segmentation of citrus plant diseases. The results demonstrated that transfer learning
significantly enhanced model performance, with MobileNetV2 and ResNet50 consistently
excelling in accuracy, sensitivity, specificity, and precision. Notably, SGDM and RMS
Propagation proved superior to ADAM in segmentation tasks, highlighting their suitability
for detailed image analysis. DenseNet, MobileNetV2, and ResNet50 achieved high Jaccard
and Dice coefficients, underscoring their effectiveness in accurate disease segmentation.
These findings emphasize the importance of selecting appropriate models and optimization
techniques for developing robust automated citrus disease detection systems, ultimately
aiding in timely disease management and improving crop health and yield.
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