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In this paper, we introduce and investigate Pythagorean fuzzy M-continuous 
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one real life applications, we applied entropy measure for decision making 

problem of calculation of incentive based on the performance of salesman 

during the seasons.  
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1. Introduction 

Considering the imprecision in decision-making, Zadeh [29] introduced the idea of fuzzy set 

which has a membership function, μ that assigns to each element of the universe of 

discourse, a number from the unit interval [0,1] to indicate the degree of belongingness to 

the set under consideration. The notion of fuzzy sets generalizes classical sets theory by 

allowing intermediate situations between the whole and nothing. In a fuzzy set, a 

membership function is defined to describe the degree of membership of an element to a 

class. The membership value ranges from 0 to 1, where 0 shows that the element does not 

belong to a class, 1 means belongs, and other values indicate the degree of membership to a 

class. For fuzzy sets, the membership function replaced the characteristic function in crisp 

sets. The concept of fuzzy set theory seems to be inconclusive because of the exclusion of 

nonmembership function and the disregard for the possibility of hesitation margin. 

http://www.nano-ntp.com/


                                                 More on Maps and its Application in.... B. Vijayalakshmi et al. 1602 
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

Atanassov critically studied these shortcomings and proposed a concept called intuitionistic 

fuzzy sets (IFSs) [1, 2, 4, 5]. The construct (that is, IFS’s) incorporates both membership 

function, μ and nonmembership function, ν with hesitation margin, π (that is, neither 

membership nor non-membership functions), such that μ + ν ≤ 1 and μ + ν + π = 1. 
Atanassov [3] introduced intuitionistic fuzzy sets of second type (IFSST) with the property 

that the sum of the square of the membership and non-membership degrees is less than or 

equal to one. This concept generalizes IFS’s in a way. The notion of IFS’s provides a flexible 

framework to elaborate uncertainty and vagueness. The idea of IFS seems to be resourceful 

in modelling many real-life situations like medical diagnosis [7, 8, 12, 23, 24], career 

determination [10], selection process [11], and multi-criteria decision-making [15, 16, 17], 

among others. 

There are situations where μ + ν ≥ 1 unlike the cases capture in IFS’s. This limitation in IFS 

naturally led to a construct, called Pythagorean fuzzy sets (pfs’s). Pythagorean fuzzy set 

(pfs) proposed in [26, 27, 28] is a new tool to deal with vagueness considering the 

membership grade, μ and non-membership grade, ν satisfying the conditions μ + ν ≤ 1 or 

μ + ν ≥ 1, and also, it follows that μ2 + ν2 + π2 = 1, where π is the Pythagorean fuzzy set 

index. In fact, the origin of Pythagorean fuzzy sets emanated from IFSST earlier studied in 

the literature. As a generalized set, PFS has close relationship with IFS. The construct of 

PFS’s can be used to characterize uncertain information more sufficiently and accurately 

than IFS. Garg [14] presented an improved score function for the ranking order of interval-

valued Pythagorean fuzzy sets (IVPFSs). Based on it, a Pythagorean fuzzy technique for 

order of preference by similarity to ideal solution (TOPSIS) method by taking the preferences 

of the experts in the form of interval-valued Pythagorean fuzzy decision matrices was 

discussed. Other explorations of the theory of PFS’s can be found in [6, 9, 13, 18, 19, 21, 

22]. 

Entropy can be viewed as a gauge of the degree of uncertainty present in a set, regardless of 

how fuzzy, intuitionistic, ambiguous, etc. the set may be. Since the pfs in this case can also 

handle uncertain data, it follows naturally that we are also interested in determining the 

entropy of an pfs. In 1965, Zadeh [29] made the firs reference to entropy as a fuzziness 

metric. More recently, De Luca-Termini [8] axiomatized the entropy that is not probabilistic. 

The remainder of this paper is organized as follows. In section 2, some basic definitions of 

fs’s, IFS’s and pfs’s are briefly reviewed. In section 3, We develop the concept of some 

Pythagorean fuzzy continuous and irresolute maps in Pythagorean fuzzy topological space 

and also specialized some of their basic properties with examples. Finally, we presented an 

entropy measure for pfs’s and one real- world scenarios where this entropy measure can be 

used are mentioned in section 4. The paper is concluded in section 5. 

 

2  Preliminaries 

 We recall some basic notions of fuzzy sets, IFS’s and pfs’s . 

Definition 2.1  [29] Let X be a nonempty set. A fuzzy set A in X is characterized by a 

membership function μA: X → [0,1]. That is:  
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 μA(x) = {
1,    if        x ∈ X
0,    if        x ∉ X
(0,1)    if x ispartlyin X.

 

Alternatively, a fuzzy set A in X is an object having the form A = {< x, μA(x) > |x ∈ X} or 

A = {⟨
μA(x)

x
⟩ |x ∈ X}, where the function μA(x): X → [0,1] defines the degree of membership 

of the element, x ∈ X. 

The closer the membership value μA(x) to 1, the more x belongs to A, where the grades 1 

and 0 represent full membership and full nonmembership. Fuzzy set is a collection of objects 

with graded membership, that is, having degree of membership. Fuzzy set is an extension of 

the classical notion of set. In classical set theory, the membership of elements in a set is 

assessed in a binary terms according to a bivalent condition; an element either belongs or 

does not belong to the set. Classical bivalent sets are in fuzzy set theory called crisp sets. 

Fuzzy sets are generalized classical sets, since the indicator function of classical sets is 

special cases of the membership functions of fuzzy sets, if the latter only take values 0 or 1. 

Fuzzy sets theory permits the gradual assessment of the membership of element in a set; this 

is described with the aid of a membership function valued in the real unit interval [0,1]. 

Let us consider two examples: 

(i) all employees of XYZ who are over 1.8m in height; (ii) all employees of XYZ who are tall. 

The first example is a classical set with a universe (all XYZ employees) and a membership 

rule that divides the universe into members (those over 1.8m) and nonmembers. The second 

example is a fuzzy set, because some employees are definitely in the set and some are 

definitely not in the set, but some are borderline. 

This distinction between the ins, the outs, and the borderline is made more exact by the 

membership function, μ. If we return to our second example and let A represent the fuzzy set 

of all tall employees and x represent a member of the universe X (i.e. all employees), then 

μA(x) would be μA(x) = 1 if x is definitely tall or μA(x) = 0 if x is definitely not tall or 0 <
μA(x) < 1 for borderline cases.  

Definition 2.2  [1, 2, 4, 5] Let a nonempty set X be fixed. An IFS A in X is an object having 

the form: A = {< x, μA(x), νA(x) > |x ∈ X} or A = {⟨
μA(x),νA(x)

x
⟩ |x ∈ X}, where the functions 

μA(x): X → [0,1] and νA(x): X → [0,1] define the degree of membership and the degree of 

nonmembership, respectively, of the element x ∈ X to A, which is a subset of X, and for 

every x ∈ X: 0 ≤ μA(x) + νA(x) ≤ 1. For each A in X: πA(x) = 1 − μA(x) − νA(x) is the 

intuitionistic fuzzy set index or hesitation margin of x in X. The hesitation margin πA(x) is 

the degree of nondeterminacy of x ∈ X to the set A and πA(x) ∈ [0,1]. The hesitation margin 

is the function that expresses lack of knowledge of whether x ∈ X or x ∉ X. Thus: μA(x) +
νA(x) + πA(x) = 1.  

Example 2.1  Let X = {x, y, z} be a fixed universe of discourse and A =

{⟨
0.6,0.1

x
⟩ , ⟨

0.8,0.1

y
⟩ , ⟨

0.5,0.3

z
⟩}, be the intuitionistic fuzzy set in X. The hesitation margins of the 

elements x, y, z to A are as follows: πA(x) = 0.3, πA(y) = 0.1 and πA(z) = 0.2.  
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Definition 2.3  [26, 27, 28] Let X be a universal set. Then, a Pythagorean fuzzy set A, which 

is a set of ordered pairs over X, is defined by the following: A = {< x, μA(x), νA(x)|x ∈ X} or 

A = {⟨
μA(x),νA(x)

x
⟩ |x ∈ X}, where the functions μA(x): X → [0,1] and νA(x): X → [0,1] define 

the degree of membership and the degree of nonmembership, respectively, of the element 

x ∈ X to A, which is a subset of X, and for every x ∈ X, 0 ≤ (μA(x))2 + (νA(x))2 ≤ 1. 

Supposing (μA(x))2 + (νA(x))2 ≤ 1, then there is a degree of indeterminacy of x ∈ X to A 

defined by πA(x) = √1 − [(μA(x))2 + (νA(x))2] and πA(x) ∈ [0,1]. In what follows, 

(μA(x))2 + (νA(x))2 + (πA(x))2 = 1. Otherwise, πA(x) = 0 whenever (μA(x))2 +
(νA(x))2 = 1. We denote the set of all PFS’s over X by pfs(X).  

Definition 2.4  [28] Let A and B be pfs’s of the forms A = {< a, λA(a), μA(a) > |a ∈ X} and 

B = {< a, λB(a), μB(a) > |a ∈ X}. Then  

    1.  A ⊆ B if and only if λA(a) ≤ λB(a) and μA(a) ≥ μB(a) for all a ∈ X.  

    2.  A = B if and only if A ⊆ B and B ⊆ A.  

    3.  A̅ = {< a, μA(a), λA(a) > |a ∈ X}.  

    4.  A ∩ B = {< a, λA(a) ∧ λB(a), μA(a) ∨ μB(a) > |a ∈ X}.  

    5.  A ∪ B = {< a, λA(a) ∨ λB(a), μA(a) ∧ μB(a) > |a ∈ X}.  

    6.  ϕ = {< a, ϕ, X > |a ∈ X} and X = {< a, X, ϕ > |a ∈ X}.  

    7.  X̅ = ϕ and ϕ̅ = X.  

Definition 2.5  [20] An Pythagorean fuzzy topology by subsets of a non-empty set X is a 

family τ of pfs’s satisfying the following axioms.  

    1.  ϕ, X ∈ τ.  

    2.  G1 ∩ G2 ∈ τ for every G1, G2 ∈ τ and  

    3.  ⋃ Gi ∈ τ for any arbitrary family {Gi|i ∈ j} ⊆ τ. The pair (X, τ) is called an 

Pythagorean fuzzy topological space (pfts in short) and any pfs G in τ is called an 

Pythagorean fuzzy open set (pfos in short) in X. The complement A̅ of an Pythagorean fuzzy 

open set A in an pfts(X, τ) is called an Pythagorean fuzzy closed set (pfcs in short).  

Definition 2.6  [20] Let (X, τ) be an pfts and A = {< a, λA(a), μA(a) > |a ∈ X} be an pfs in 

X. Then the interior and the closure of A are denoted by pfint(A) and pfcl(A) and are defined 

as follows: pfcl(A) =∩ {K|K isan pfcs and A ⊆ K} and pfint(A) =∪
{G|G isan pfos and G ⊆ A}. Also, it can be established that pfcl(A) is an pfcs and pfint(A) is 

an pfos, A is an pfcs if and only if pfcl(A) = A and A is an pfos if and only if pfint(A) = A. 
We say that A is pf-dense if pfcl(A) = X.  

Lemma 2.1  [25]  For any Pythagorean fuzzy set A in (X, τ), we have X − pfint(A) =
pfcl(X − A) and X − pfcl(A) = pfint(X − A).  

Definition 2.7  [25] Let (𝑋, 𝜏) be an 𝑝𝑓𝑡𝑠 and 𝐴 be an 𝑝𝑓𝑠. Then 𝐴 is said to be an 

Pythagorean fuzzy (i) regular open set (𝑝𝑓𝑟𝑜𝑠 in short) if 𝐴 = 𝑝𝑓𝑖𝑛𝑡(𝑝𝑓𝑐𝑙(𝐴)). (ii) regular 
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closed set (𝑝𝑓𝑟𝑐𝑠 in short) if 𝐴 = 𝑝𝑓𝑐𝑙(𝑝𝑓𝑖𝑛𝑡(𝐴)). By Lemma 2.1, it follows that 𝐴 is an 

𝑝𝑓𝑟𝑜𝑠 iff 𝐴̅ is an 𝑝𝑓𝑟𝑐𝑠.  

 

3  Pythagorean fuzzy 𝑴-continuous maps 

Definition 3.1   Let (𝑋1, 𝛤𝑃) (or 𝑋1) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋1} be 

an 𝑝𝑓𝑠 in 𝑋1. Then the 𝛿-interior and the 𝛿-closure of 𝐴 are denoted by 𝑝𝑓𝛿𝑖𝑛𝑡(𝐴) and 

𝑝𝑓𝛿𝑐𝑙(𝐴) and are defined as follows. 𝑝𝑓𝛿𝑐𝑙(𝐴) =∩ {𝐾|𝐾 is an 𝑝𝑓𝑟𝑐𝑠 and 𝐴 ⊆ 𝐾}, 

(𝑝𝑓𝛿𝑖𝑛𝑡(𝐴) =∪ {𝐺|𝐺 is an 𝑝𝑓𝑟𝑜𝑠 and 𝐺 ⊆ 𝐴}.  

Definition 3.2  Let (𝑋1, 𝛤𝑃) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋1} be an 𝑝𝑓𝑠 in 

𝑋1. A set 𝐴 is said to be 𝑝𝑓  

    1.  𝛿-open set (briefly, 𝑝𝑓𝛿𝑜𝑠) if 𝐴 = 𝑝𝑓𝛿𝑖𝑛𝑡(𝐴),  

    2.  𝛿-pre open set (briefly, 𝑝𝑓𝛿𝒫𝑜𝑠) if 𝐴 ⊆ 𝑝𝑓𝑖𝑛𝑡(𝑝𝑓𝛿𝑐𝑙(𝐴)).  

    3.  𝛿-semi open set (briefly, 𝑝𝑓𝛿𝒮𝑜𝑠) if 𝐴 ⊆ 𝑝𝑓𝑐𝑙(𝑝𝑓𝛿𝑖𝑛𝑡(𝐴)).  

    4.  𝑒 open set (briefly, 𝑝𝑓𝑒𝑜𝑠 ) if 𝐴 ⊆ 𝑝𝑓𝑐𝑙(𝑝𝑓𝛿𝑖𝑛𝑡(𝐴)) ∪ 𝑝𝑓𝑖𝑛𝑡(𝑝𝑓𝛿𝑐𝑙(𝐴)).  

    5.  𝛿 (resp. 𝛿-pre, 𝛿-semi and 𝑒) dense if 𝑝𝑓𝛿𝑐𝑙(𝐴) (resp. 𝑝𝑓𝛿𝒫𝑐𝑙(𝐴), 𝑝𝑓𝛿𝒮𝑐𝑙(𝐴) and 

𝑝𝑓𝑒𝑐𝑙(𝐴)) = 𝑋1. 

The complement of an 𝑝𝑓𝛿𝑜𝑠 (resp. 𝑝𝑓𝛿𝒫𝑜𝑠, 𝑝𝑓𝛿𝒮𝑜𝑠 and 𝑝𝑓𝑒𝑜𝑠) is called an 𝑝𝑓𝛿 (resp. 

𝑝𝑓𝛿𝒫, 𝑝𝑓𝛿𝒮 and 𝑝𝑓𝑒) closed set (briefly, 𝑝𝑓𝛿𝑐𝑠 (resp. 𝑝𝑓𝛿𝒫𝑐𝑠, 𝑝𝑓𝛿𝒮𝑐𝑠 and 𝑝𝑓𝑒𝑐𝑠 in 𝑋1. 

The family of all 𝑝𝑓𝛿𝑜𝑠 (resp. 𝑝𝑓𝛿𝑐𝑠, 𝑝𝑓𝛿𝒫𝑜𝑠, 𝑝𝑓𝛿𝒫𝑐𝑠, 𝑝𝑓𝛿𝒮𝑜𝑠, 𝑝𝑓𝛿𝒮𝑐𝑠, 𝑝𝑓𝑒𝑜𝑠 and 

𝑝𝑓𝑒𝑐𝑠) of 𝑋1 is denoted by 𝑝𝑓𝛿𝑂𝑆(𝑋1), (resp. 

𝑝𝑓𝛿𝐶𝑆(𝑋1), 𝑝𝑓𝛿𝒫𝑂𝑆(𝑋1), 𝑝𝑓𝛿𝒫𝐶𝑆(𝑋1), 𝑝𝑓𝛿𝒮𝑂𝑆(𝑋1), 𝑝𝑓𝛿𝒮𝐶𝑆(𝑋1), 𝑝𝑓𝑒𝑂𝑆(𝑋1) and 

𝑝𝑓𝑒𝐶𝑆(𝑋1)). 

Definition 3.3  Let (𝑋, 𝜏) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋1} be an 𝑝𝑓𝑠 in 

𝑋1. Then the 𝑝𝑓𝛿-pre (resp. 𝑝𝑓𝛿-semi and 𝑝𝑓𝛿𝛽)-interior and the 𝑝𝑓𝛿-pre (resp. 𝑝𝑓𝛿-semi 

and 𝑝𝑓𝑒)-closure of 𝐴 are denoted by 𝑝𝑓𝛿𝒫𝑖𝑛𝑡(𝐴) (resp. 𝑝𝑓𝛿𝒮𝑖𝑛𝑡(𝐴) and 𝑝𝑓𝑒𝑖𝑛𝑡(𝐴)) and 

the 𝑝𝑓𝑒𝑐𝑙(𝐴) (resp. 𝑝𝑓𝛿𝒮𝑐𝑙(𝐴) and 𝑝𝑓𝑒𝑐𝑙(𝐴) and are defined as follows: 

𝑝𝑓𝛿𝒫𝑖𝑛𝑡(𝐴) (resp. 𝑝𝑓𝛿𝒮𝑖𝑛𝑡(𝐴) and 𝑝𝑓𝑒𝑖𝑛𝑡(𝐴) =∪ {𝐺|𝐺 in a 𝑝𝑓𝛿𝒫𝑜𝑠 (resp. 𝑝𝑓𝛿𝒮𝑜𝑠 and 

𝑝𝑓𝑒𝑜𝑠) 

and 𝐺 ⊆ 𝐴} and 𝑝𝑓𝛿𝒫𝑐𝑙(𝐴) (resp. 𝑝𝑓𝛿𝒮𝑐𝑙(𝐴) and 𝑝𝑓𝑒𝑐𝑙(𝐴)) =∩ {𝐾|𝐾 is an 𝑝𝑓𝛿𝒫𝑐𝑠 (resp. 

𝑝𝑓𝛿𝒮𝑐𝑠, 𝑝𝑓𝑒𝑐𝑠) and 𝐴 ⊆ 𝐾}.  

Definition 3.4   Let (𝑋1, 𝛤𝑃) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋1} be an 𝑝𝑓𝑠 in 

𝑋1. A set 𝐴 is said to be 𝑝𝑓 

    1.  𝜃-interior of 𝐴 (briefly, 𝑝𝑓𝜃𝑖𝑛𝑡(𝐴)) is defined by 𝑝𝑓𝜃𝑖𝑛𝑡(𝐴) = ⋃ {𝑝𝑓𝑖𝑛𝑡(𝐵): 𝐵 ⊆
𝐴 & 𝐵 𝑖𝑠𝑎 𝑝𝑓𝑐𝑠𝑖𝑛𝑋1}.  

    2.  𝜃-open set (briefly, 𝑝𝑓𝜃𝑜𝑠) if 𝐴 = 𝑝𝑓𝜃𝑖𝑛𝑡(𝐴).  

    3.  𝜃 -semi open set (briefly, 𝑝𝑓𝜃𝒮𝑜𝑠) if 𝐴 ⊆ 𝑝𝑓𝑐𝑙(𝑝𝑓𝜃𝑖𝑛𝑡(𝐴)).  
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    4.  𝑀-open set (briefly, 𝑝𝑓𝑀𝑜𝑠) if 𝐴 ⊆ 𝑝𝑓𝑐𝑙(𝑝𝑓𝜃𝑖𝑛𝑡(𝐴)) ∪ 𝑝𝑓𝑖𝑛𝑡(𝑝𝑓𝛿𝑐𝑙(𝐴)).  

The complement of a 𝑝𝑓𝑀𝑜𝑠 (resp. 𝑝𝑓𝜃𝑜𝑠 & 𝑝𝑓𝜃𝒮𝑜𝑠) is called an 𝑝𝑓𝑀 (resp. 𝑝𝑓𝜃 & 𝑝𝑓𝜃𝒮) 

closed set (briefly, 𝑝𝑓𝑀𝑐𝑠 (resp. 𝑝𝑓𝜃𝑐𝑠 & 𝑝𝑓𝜃𝒮𝑐𝑠)) in 𝑋1. 

The family of all 𝑝𝑓𝜃𝑜𝑠 (resp. 𝑝𝑓𝜃𝑐𝑠, 𝑝𝑓𝜃𝒮𝑜𝑠, 𝑝𝑓𝜃𝒮𝑐𝑠, 𝑝𝑓𝑀𝑜𝑠 𝑎𝑛𝑑 𝑝𝑓𝑀𝑐𝑠) of 𝑋1 is 

denoted by 𝑝𝑓𝜃𝑂𝑆(𝑋1), (resp. 𝑝𝑓𝜃𝐶𝑆(𝑋1), 𝑝𝑓𝜃𝒮𝑂𝑆(𝑋1), 𝑝𝑓𝜃𝒮𝐶𝑆(𝑋1), 𝑝𝑓𝑀𝑂𝑆(𝑋1) and 

𝑝𝑓𝑀𝐶𝑆(𝑋1)). 

Definition 3.5  Let (𝑋1, 𝛤𝑃) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋1} be an 𝑝𝑓𝑠 in 

𝑋1. Then the 𝑝𝑓 

    1.  𝑀-interior (resp. 𝑝𝑓𝜃-interior and 𝑝𝑓𝜃-semi interior) of 𝐴 (briefly,  𝑝𝑓𝑀𝑖𝑛𝑡(𝐴) (resp. 

𝑝𝑓𝜃𝑖𝑛𝑡(𝐴), 𝑝𝑓𝜃𝒮𝑖𝑛𝑡(𝐴)) is defined by 𝑝𝑓𝑀𝑖𝑛𝑡(𝐴) (resp. 𝑝𝑓𝜃𝑖𝑛𝑡(𝐴) and 𝑝𝑓𝜃𝒮𝑖𝑛𝑡(𝐴)) =∪
{𝐵: 𝐵 ⊆ 𝐴 and 𝐵 is a 𝑝𝑓𝑀𝑜𝑠 (resp. 𝑝𝑓𝜃𝑜𝑠, 𝑝𝑓𝜃𝒮𝑜𝑠)} in 𝑋1.  

    2.  𝑀-closure (resp. 𝜃-closure and 𝜃-semi closure) of 𝐴 (briefly, 𝑝𝑓𝑀𝑐𝑙(𝐴) (resp. 

𝑝𝑓𝜃𝑐𝑙(𝐴)& 𝑝𝑓𝜃𝒮𝑐𝑙(𝐴)) is defined by 𝑝𝑓𝑀𝑐𝑙(𝐴) (resp. 𝑝𝑓𝜃𝑐𝑙(𝐴) and 𝑝𝑓𝜃𝒮𝑐𝑙(𝐴)) =∩
{𝐵: 𝐴 ⊆ 𝐵 and 𝐴 is a 𝑝𝑓𝑀𝑐𝑠 (resp. 𝑝𝑓𝜃𝑐𝑠, 𝑝𝑓𝜃𝒮𝑐𝑠)} in 𝑋1.  

Definition 3.6  Let (𝑋1, 𝛤𝑃) and (𝑋2, 𝛹𝑃) be any two 𝑝𝑓𝑡𝑠’s. A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) →
(𝑋2, 𝛹𝑃) is said to be a Pythagorean fuzzy (resp. 𝛿, 𝛿𝒫, 𝛿𝒮, 𝑒, 𝜃, 𝜃𝒮 and 𝑀 )-continuous 

(briefly, 𝑝𝑓𝐶𝑡𝑠 (resp. 𝑝𝑓𝛿𝐶𝑡𝑠, 𝑝𝑓𝛿𝒫𝐶𝑡𝑠, 𝑝𝑓𝛿𝒮𝐶𝑡𝑠, 𝑝𝑓𝑒𝐶𝑡𝑠, 𝑝𝑓𝜃𝐶𝑡𝑠, 𝑝𝑓𝜃𝒮𝐶𝑡𝑠 and 

𝑝𝑓𝑀𝐶𝑡𝑠)) if the inverse image of every 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃) is a 𝑝𝑓𝑜𝑠 (resp. 𝑝𝑓𝛿𝑜𝑠, 𝑝𝑓𝛿𝒫𝑜𝑠, 

𝑝𝑓𝛿𝒮𝑜𝑠, 𝑝𝑓𝑒𝑜𝑠, 𝑝𝑓𝜃𝑜𝑠, 𝑝𝑓𝜃𝒮𝑜𝑠 and 𝑝𝑓𝑀𝑜𝑠) in (𝑋1, 𝛤𝑃).  

Proposition 3.1  Let (𝑋1, 𝛤𝑃) & (𝑋2, 𝛹𝑃) be a 𝑝𝑓𝑡𝑠’s. Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a 

mapping. Then the following statements are hold for 𝑝𝑓𝑡𝑠, but not conversely.  

    1.  Every 𝑝𝑓𝜃𝐶𝑡𝑠 is a 𝑝𝑓𝐶𝑡𝑠.  

    2.  Every 𝑝𝑓𝜃𝐶𝑡𝑠 is a 𝑝𝑓𝜃𝒮𝐶𝑡𝑠.  

    3.  Every 𝑝𝑓𝜃𝒮𝐶𝑡𝑠 is a 𝑝𝑓𝑀𝐶𝑡𝑠.  

    4.  Every 𝑝𝑓𝛿𝐶𝑡𝑠 is a 𝑝𝑓𝛿𝒮𝐶𝑡𝑠.  

    5.  Every 𝑝𝑓𝛿𝐶𝑡𝑠 is a 𝑝𝑓𝛿𝒫𝐶𝑡𝑠.  

    6.  Every 𝑝𝑓𝛿𝒮𝐶𝑡𝑠 is a 𝑝𝑓𝑒𝐶𝑡𝑠.  

    7.  Every 𝑝𝑓𝛿𝒫𝐶𝑡𝑠 is a 𝑝𝑓𝑀𝐶𝑡𝑠.  

    8.  Every 𝑝𝑓𝑀𝐶𝑡𝑠 is a 𝑝𝑓𝑒𝐶𝑡𝑠.  

    9.  Every 𝑝𝑓𝛿𝐶𝑡𝑠 is a 𝑝𝑓𝐶𝑡𝑠.  

  Proof. [(i)] 

    1.  Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 𝑝𝑓𝜃𝐶𝑡𝑠, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝜃𝑜𝑠 in (𝑋1, 𝛤𝑃). Since 

every 𝑝𝑓𝜃𝑜𝑠 is a 𝑝𝑓𝑜𝑠, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is a 𝑝𝑓𝐶𝑡𝑠. 

    2.  Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 𝑝𝑓𝜃𝐶𝑡𝑠, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝜃𝑜𝑠 in (𝑋1, 𝛤𝑃). Since 

every 𝑝𝑓𝜃𝑜𝑠 is a 𝑝𝑓𝜃𝒮𝑜𝑠, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is a 𝑝𝑓𝜃𝒮𝐶𝑡𝑠. 
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    3.  Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 𝑝𝑓𝜃𝒮𝐶𝑡𝑠, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝜃𝒮𝑜𝑠 in (𝑋1, 𝛤𝑃). 

Since every 𝑝𝑓𝜃𝒮𝑜𝑠 is a 𝑝𝑓𝑀𝑜𝑠, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is a 𝑝𝑓𝑀𝐶𝑡𝑠. 

    4.  Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 𝑝𝑓𝛿𝐶𝑡𝑠, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝛿𝑜𝑠 in (𝑋1, 𝛤𝑃). Since 

every 𝑝𝑓𝛿𝑜𝑠 is a 𝑝𝑓𝛿𝒮𝑜𝑠, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝛿𝒮𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is a 𝑝𝑓𝛿𝒮𝐶𝑡𝑠. 

    5.  Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 𝑝𝑓𝛿𝐶𝑡𝑠, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝛿𝑜𝑠 in (𝑋1, 𝛤𝑃). Since 

every 𝑝𝑓𝛿𝑜𝑠 is a 𝑝𝑓𝛿𝒫𝑜𝑠, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝛿𝒫𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is a 𝑝𝑓𝛿𝒫𝐶𝑡𝑠. 

    6.  Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 𝑝𝑓𝛿𝒮𝐶𝑡𝑠, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝛿𝒮𝑜𝑠 in (𝑋1, 𝛤𝑃). 

Since every 𝑝𝑓𝛿𝒮𝑜𝑠 is a 𝑝𝑓𝑒𝑜𝑠, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑒𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is a 𝑝𝑓𝑒𝐶𝑡𝑠. 

    7.  Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 𝑝𝑓𝛿𝒫𝐶𝑡𝑠, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝛿𝒫𝑜𝑠 in (𝑋1, 𝛤𝑃). 

Since every 𝑝𝑓𝛿𝒫𝑜𝑠 is a 𝑝𝑓𝑀𝑜𝑠, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is a 𝑝𝑓𝑀𝐶𝑡𝑠. 

    8.  Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 𝑝𝑓𝑀𝐶𝑡𝑠, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝑀𝑜𝑠 in (𝑋1, 𝛤𝑃). Since 

every 𝑝𝑓𝑀𝑜𝑠 is a 𝑝𝑓𝑒𝑜𝑠, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑒𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is a 𝑝𝑓𝑒𝐶𝑡𝑠.  

    9.  Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 𝑝𝑓𝛿𝐶𝑡𝑠, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝛿𝑜𝑠 in (𝑋1, 𝛤𝑃). Since 

every 𝑝𝑓𝛿𝑜𝑠 is a 𝑝𝑓𝑜𝑠, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is a 𝑝𝑓𝐶𝑡𝑠. 

Remark 3.1  We obtain the following diagram from the results are discussed above.  

 

Note: 𝐴 → 𝐵 denotes 𝐴 implies 𝐵, but not conversely. 

Example 3.1   Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠’s 𝐴1, 𝐴2, 𝐴3  & 𝐴4 in 𝑋1 are defined as, 

 𝐴1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 

 𝐴2 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 

 𝐴3 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 

 𝐴4 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 

 Then, we have 𝛤𝑃 = 𝛹𝑃 = {0𝑋, 1𝑋 , 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be an 
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identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝐶𝑡𝑠 but not 𝑝𝑓𝜃𝐶𝑡𝑠, because the set 𝐴1 is 𝑝𝑓𝑜𝑠 in 𝑋2 but 

ℎ𝑃
−1(𝐴1) = 𝐴1 is not 𝑝𝑓𝜃𝑜𝑠 in 𝑋1.  

Example 3.2   Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋1  & 𝐵1 in 𝑋2 are defined 

as, 

 𝐴1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 

 𝐴2 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 

 𝐴3 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 

 𝐴4 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 

 𝐵1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 

 Then, we have 𝛤𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4} and 𝛹𝑃 = {0𝑋, 1𝑋, 𝐵1}. Let ℎ𝑃: (𝑋1, 𝛤𝑃) →
(𝑋2, 𝛹𝑃) be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝜃𝒮𝐶𝑡𝑠 (resp. 𝑝𝑓𝛿𝒮𝐶𝑡𝑠) but not 𝑝𝑓𝜃𝐶𝑡𝑠 

(resp. 𝑝𝑓𝛿𝐶𝑡𝑠), because the set 𝐵1 is 𝑝𝑓𝑜𝑠 in 𝑋2 but ℎ𝑃
−1(𝐵1) = 𝐵1 is not 𝑝𝑓𝜃𝑜𝑠 (resp. 

𝑝𝑓𝛿𝑜𝑠) in 𝑋1.  

Example 3.3   Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋1  & 𝐵1 in 𝑋2 are defined 

as, 

 𝐴1 = 𝐵1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 

 𝐴2 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 

 𝐴3 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 

 𝐴4 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 

 Then, we have 𝛤𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4} and 𝛹𝑃 = {0𝑋, 1𝑋, 𝐵1}. Let ℎ𝑃: (𝑋1, 𝛤𝑃) →
(𝑋2, 𝛹𝑃) be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑀𝐶𝑡𝑠 but not 𝑝𝑓𝜃𝒮𝐶𝑡𝑠, because the set 𝐵1 

is 𝑝𝑓𝑜𝑠 in 𝑋2 but ℎ𝑃
−1(𝐵1) = 𝐵1 is not 𝑝𝑓𝜃𝒮𝑜𝑠 in 𝑋1.  

Example 3.4   Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋1  & 𝐵1 in 𝑋2 are defined 

as, 

 𝐴1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 

 𝐴2 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 

 𝐴3 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 

 𝐴4 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 

 𝐵1 = {< 𝑥1, 0.40,0.20 >, < 𝑥2, 0.40,0.40 >} 

 Then, we have 𝛤𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4} and 𝛹𝑃 = {0𝑋, 1𝑋, 𝐵1}. Let ℎ𝑃: (𝑋1, 𝛤𝑃) →
(𝑋2, 𝛹𝑃) be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑒𝐶𝑡𝑠 but not 𝑝𝑓𝑀𝐶𝑡𝑠, because the set 𝐵1 is 

𝑝𝑓𝑜𝑠 in 𝑋2 but ℎ𝑃
−1(𝐵1) = 𝐵1 is not 𝑝𝑓𝑀𝑜𝑠 in 𝑋1.  

Example 3.5   Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋1  & 𝐵1 in 𝑋2 are defined 

as, 
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 𝐴1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 

 𝐴2 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 

 𝐴3 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 

 𝐵1 = 𝐴4 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 

 Then, we have 𝛤𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4} and 𝛹𝑃 = {0𝑋, 1𝑋, 𝐵1}. Let ℎ𝑃: (𝑋1, 𝛤𝑃) →
(𝑋2, 𝛹𝑃) be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝐶𝑡𝑠 (resp. 𝑝𝑓𝑒𝐶𝑡𝑠 and 𝑝𝑓𝛿𝒫𝐶𝑡𝑠 ) but not 

𝑝𝑓𝛿𝐶𝑡𝑠 (resp. 𝑝𝑓𝛿𝒮𝐶𝑡𝑠 and 𝑝𝑓𝛿𝐶𝑡𝑠), because the set 𝐵1 is 𝑝𝑓𝑜𝑠 in 𝑋2 but ℎ𝑃
−1(𝐵1) = 𝐵1 is 

not 𝑝𝑓𝛿𝑜𝑠 (resp. 𝑝𝑓𝛿𝒮𝑜𝑠 and 𝑝𝑓𝛿𝑜𝑠) in 𝑋1.  

Example 3.6   Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋1  & 𝐵1 in 𝑋2 are defined 

as, 

 𝐴1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 

 𝐴2 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 

 𝐴3 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 

 𝐴4 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 

 𝐵1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.30 >} 

 Then, we have 𝛤𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4} and 𝛹𝑃 = {0𝑋, 1𝑋, 𝐵1}. Let ℎ𝑃: (𝑋1, 𝛤𝑃) →
(𝑋2, 𝛹𝑃) be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑀𝐶𝑡𝑠 but not 𝑝𝑓𝛿𝒫𝐶𝑡𝑠, because the set 𝐵1 

is 𝑝𝑓𝑜𝑠 in 𝑋2 but ℎ𝑃
−1(𝐵1) = 𝐵1 is not 𝑝𝑓𝛿𝒫𝑜𝑠 in 𝑋1.  

Theorem 3.1  A map ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) is 𝑝𝑓𝑀𝐶𝑡𝑠 (resp. 𝑝𝑓𝐶𝑡𝑠, 𝑝𝑓𝛿𝐶𝑡𝑠, 𝑝𝑓𝛿𝒮𝐶𝑡𝑠, 

𝑝𝑓𝛿𝒫𝐶𝑡𝑠, 𝑝𝑓𝜃𝐶𝑡𝑠, 𝑝𝑓𝑒𝐶𝑡𝑠 and 𝑝𝑓𝜃𝒮𝐶𝑡𝑠 ) iff the inverse image of each 𝑝𝑓𝑐𝑠 in (𝑋2, 𝛹𝑃) is 

𝑝𝑓𝑀𝑐𝑠 (resp. 𝑝𝑓𝑐𝑠, 𝑝𝑓𝛿𝑐𝑠, 𝑝𝑓𝛿𝒮𝑐𝑠, 𝑝𝑓𝛿𝒫𝑐𝑠, 𝑝𝑓𝜃𝑐𝑠, 𝑝𝑓𝑒𝑐𝑠 and 𝑝𝑓𝜃𝒮𝑐𝑠 ) in (𝑋1, 𝛤𝑃).  

  Proof. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋2, 𝛹𝑃). This implies 𝐵𝑐 is 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). Since ℎ𝑃 is 

𝑝𝑓𝑀𝐶𝑡𝑠, ℎ𝑃
−1(𝐵𝑐) is 𝑝𝑓𝑀𝑜𝑠 in (𝑋1, 𝛤𝑃). Since, ℎ𝑃

−1(𝐵𝑐) = ℎ𝑃
−1(𝐵)𝑐, ℎ𝑃

−1(𝐵) is a 𝑝𝑓𝑀𝑐𝑠 in 

(𝑋1, 𝛤𝑃). 

Conversely, let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋2, 𝛹𝑃). Then, 𝐵𝑐 is a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃). By hypothesis 

ℎ𝑃
−1(𝐵𝑐) is 𝑝𝑓𝑀𝑜𝑠 in (𝑋1, 𝛤𝑃). Since, ℎ𝑃

−1(𝐵𝑐) = (ℎ𝑃
−1(𝐵))𝑐 , (ℎ𝑃

−1(𝐵))𝑐 is a 𝑝𝑓𝑀𝑜𝑠 in 

(𝑋1, 𝛤𝑃). Therefore, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 in (𝑋1, 𝛤𝑃). Hence, ℎ𝑃 is 𝑝𝑓𝑀𝐶𝑡𝑠. The proof of 

other cases are similar. 

Definition 3.7  A 𝑝𝑓𝑡𝑠 (𝑋1, 𝛤𝑃) is said to be a Pythagorean fuzzy 𝑀𝑈1/2 (resp. 𝑝𝑓𝛿𝒮𝑈1/2, 

𝑝𝑓𝛿𝒫𝑈1/2, 𝑝𝑓𝜃𝑈1/2, 𝑝𝑓𝑒𝑈1/2 and 𝑝𝑓𝜃𝒮𝑈1/2 )-space, if every 𝑝𝑓𝑀𝑜𝑠 (resp. 𝑝𝑓𝛿𝒮𝑜𝑠, 

𝑝𝑓𝛿𝒫𝑜𝑠, 𝑝𝑓𝜃𝑜𝑠, 𝑝𝑓𝑒𝑜𝑠 and 𝑝𝑓𝜃𝒮𝑜𝑠 ) in 𝑋1 is a 𝑝𝑓𝑜𝑠 in 𝑋1.  

Theorem 3.2  Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a 𝑝𝑓𝑀𝐶𝑡𝑠 (resp. 𝑝𝑓𝛿𝒮𝐶𝑡𝑠, 𝑝𝑓𝛿𝒫𝐶𝑡𝑠, 𝑝𝑓𝜃𝐶𝑡𝑠, 

𝑝𝑓𝑒𝐶𝑡𝑠 and 𝑝𝑓𝜃𝒮𝐶𝑡𝑠 ), then ℎ𝑃 is a 𝑝𝑓𝐶𝑡𝑠 if 𝑋1 is a 𝑝𝑓𝑀𝑈1/2) (resp. 𝑝𝑓𝛿𝒮𝑈1/2, 

𝑝𝑓𝛿𝒫𝑈1/2, 𝑝𝑓𝜃𝑈1/2, 𝑝𝑓𝑒𝑈1/2 and 𝑝𝑓𝜃𝒮𝑈1/2 )-space.  
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  Proof. Let 𝐵 be a 𝑃𝑓𝑜𝑠 in 𝑋2. Then, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋1, by hypothesis. Since 𝑋1 is a 

𝑝𝑓𝑀𝑈1/2)-space, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 𝑝𝑓𝑀𝐶𝑡𝑠. The proof of other cases 

are similar. 

Theorem 3.3   Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a 𝑝𝑓𝑀𝐶𝑡𝑠 map and 𝑔𝑃: (𝑋2, 𝛹𝑃) → (𝑋3, 𝛷𝑃) 

be a 𝑝𝑓𝐶𝑡𝑠, then 𝑔𝑃 ∘ ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋3, 𝛷𝑃) is a 𝑝𝑓𝑀𝐶𝑡𝑠.  

  Proof. Let 𝐾 be a 𝑝𝑓𝑜𝑠 in 𝑋3. Then, 𝑔𝑃
−1(𝐾) is a 𝑝𝑓𝑜𝑠 in 𝑋2, by hypothesis. Since ℎ𝑃 is a 

𝑝𝑓𝑀𝐶𝑡𝑠 map, ℎ𝑃
−1(𝑔𝑃

−1(𝐾)) is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋1. Hence 𝑔𝑃 ∘ 𝑓𝑃 is a 𝑝𝑓𝑀𝐶𝑡𝑠 map. The proof 

of other cases are similar. 

Theorem 3.4   Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a 𝑝𝑓𝑀𝐶𝑡𝑠 map. Then, the following 

conditions are hold.  

    1.  ℎ𝑃(𝑝𝑓𝑀𝑐𝑙(𝐴)) ≤ 𝑝𝑓𝑐𝑙(ℎ𝑃(𝐴)), for all 𝑝𝑓𝑐𝑠(𝐴) in 𝑋1.  

    2.  𝑝𝑓𝑀𝑐𝑙(ℎ𝑃
−1(𝐵)) ≤ ℎ𝑃

−1(𝑝𝑓𝑐𝑙(𝐵)), for all 𝑝𝑓𝑐𝑠(𝐵) in 𝑋2.  

  Proof. [(i)]  

    1.  Since 𝑝𝑓𝑀𝑐𝑙(𝑓(𝐴)) is a 𝑝𝑓𝑀𝑐𝑠 in 𝑋2 and ℎ𝑃 is 𝑝𝑓𝑀𝐶𝑡𝑠, then ℎ𝑃
−1(𝑝𝑓𝑀𝑐𝑙(ℎ𝑃(𝐴))) is 

𝑝𝑓𝑀𝑐𝑠 in 𝑋. Now, since 𝐴 ≤ ℎ𝑃
−1(𝑝𝑓𝑐𝑙(ℎ𝑃(𝐴))), 𝑝𝑓𝑀𝑐𝑙(𝐴) ≤ ℎ𝑃

−1(𝑝𝑓𝑀𝑐𝑙(ℎ𝑃(𝐴))). 

Therefore, ℎ𝑃(𝑝𝑓𝑀𝑐𝑙(𝐴)) ≤ 𝑝𝑓𝑐𝑙(ℎ𝑃(𝐴)) ≤ 𝑝𝑓𝑐𝑙(ℎ𝑃(𝐴)). 

    2.  By replacing 𝐴 with 𝐵 in (i), we obtain ℎ𝑃(𝑝𝑓𝑀𝑐𝑙(ℎ𝑃
−1(𝐵))) ≤ 𝑝𝑓𝑐𝑙(ℎ𝑃(ℎ𝑃

−1(𝐵))) ≤
𝑝𝑓𝑐𝑙(𝐵). Hence, 𝑝𝑓𝑀𝑐𝑙(ℎ𝑃

−1(𝐵)) ≤ ℎ𝑃
−1(𝑝𝑓𝑐𝑙(𝐵)).  

Theorem 3.5   For ℎ𝑃 is 𝑝𝑓𝑀𝐶𝑡𝑠 iff ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(𝐵)) ≤ 𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃
−1(𝐵)), for all 𝑝𝑓𝑐𝑠 𝐵 in 

𝑋2.  

  Proof. Let ℎ𝑃 be 𝑝𝑓𝑀𝐶𝑡𝑠 and 𝐵 ∈ 𝑋2. 𝑝𝑓𝑖𝑛𝑡(𝐵) is 𝑝𝑓𝑜𝑠 in 𝑋2 and hence, ℎ𝑃
−1(𝑝𝑓𝑖𝑛𝑡(𝐵)) 

is 𝑝𝑓𝑀𝑜𝑠 in 𝑋1. Therefore, 𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃
−1(𝑝𝑓𝑀𝑖𝑛𝑡(𝐵))) = ℎ𝑃

−1(𝑝𝑓𝑖𝑛𝑡(𝐵)). Also, 

𝑝𝑓𝑖𝑛𝑡(𝐵) ≤ 𝐵 implies that ℎ𝑃
−1(𝑝𝑓𝑖𝑛𝑡(𝐵)) ≤ ℎ𝑃

−1(𝐵). Therefore, 

𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃
−1(𝑝𝑓𝑖𝑛𝑡(𝐵))) ≤ 𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃

−1(𝐵)). That is, ℎ𝑃
−1(𝑝𝑓𝑖𝑛𝑡(𝐵)) ≤

𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃
−1(𝐵)). 

Conversely, let ℎ𝑃
−1(𝑝𝑓𝑖𝑛𝑡(𝐵)) ≤ 𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃

−1(𝐵)), for all subset 𝐵 of 𝑋2. If 𝐵 is 𝑝𝑓𝑜𝑠 in 

𝑋2, then 𝑝𝑓𝑖𝑛𝑡(𝐵) = 𝐵. By assumption, ℎ𝑃
−1(𝑝𝑓𝑖𝑛𝑡(𝐵)) ≤ 𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃

−1(𝐵)). Thus, 

ℎ𝑃
−1(𝐵) ≤ 𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃

−1(𝐵)). But 𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃
−1(𝐵)) ≤ ℎ𝑃

−1(𝐵). Therefore, 

𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃
−1(𝐵)) = ℎ𝑃

−1(𝐵). That is, ℎ𝑃
−1(𝐵) is 𝑝𝑓𝑀𝑜𝑠 in 𝑋1, for all 𝑝𝑓𝑜𝑠(𝐵) in 𝑋2. 

Therefore, ℎ𝑃 is 𝑝𝑓𝑀𝐶𝑡𝑠 on 𝑋1. 

Remark 3.2  Theorems 3.3, 3.4 and 3.5 are true for 𝑝𝑓𝛿𝐶𝑡𝑠, 𝑝𝑓𝛿𝒮𝐶𝑡𝑠, 𝑝𝑓𝛿𝒫𝐶𝑡𝑠, 𝑝𝑓𝜃𝐶𝑡𝑠, 

𝑝𝑓𝑒𝐶𝑡𝑠 and 𝑝𝑓𝜃𝒮𝐶𝑡𝑠.  

 

4  Pythagorean fuzzy 𝑴 -irresolute maps in 𝒑𝒇𝒕𝒔 

 In this section, we introduce 𝑝𝑓𝑀𝐼𝑟𝑟 (resp. 𝑝𝑓𝐼𝑟𝑟, 𝑝𝑓𝛿𝐼𝑟𝑟, 𝑝𝑓𝛿𝒮𝐼𝑟𝑟, 𝑝𝑓𝛿𝒫𝐼𝑟𝑟, 𝑝𝑓𝜃𝐼𝑟𝑟, 

𝑝𝑓𝑒𝐼𝑟𝑟 and 𝑝𝑓𝜃𝒮𝐼𝑟𝑟) maps and study some of its characterizations. 
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Definition 4.1  A map ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) is called a Pythagorean fuzzy 𝑀 (resp. 𝑝𝑓, 

𝑝𝑓𝛿, 𝑝𝑓𝛿𝒮, 𝑝𝑓𝛿𝒫, 𝑝𝑓𝜃, 𝑝𝑓𝑒 and 𝑝𝑓𝜃𝒮) -irresolute (briefly, 𝑝𝑓𝐼𝑟𝑟, 𝑝𝑓𝑀𝐼𝑟𝑟 (resp. 𝑝𝑓𝛿𝐼𝑟𝑟, 

𝑝𝑓𝛿𝒮𝐼𝑟𝑟, 𝑝𝑓𝛿𝒫𝐼𝑟𝑟, 𝑝𝑓𝜃𝐼𝑟𝑟, 𝑝𝑓𝑒𝐼𝑟𝑟 and 𝑝𝑓𝜃𝒮𝐼𝑟𝑟)) map if ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 (resp. 

𝑝𝑓𝒮𝑜𝑠, 𝑝𝑓𝛿𝑜𝑠, 𝑝𝑓𝛿𝒮𝑜𝑠, 𝑝𝑓𝛿𝒫𝑜𝑠, 𝑝𝑓𝜃𝑜𝑠, 𝑝𝑓𝑒𝑜𝑠 and 𝑝𝑓𝜃𝒮𝑜𝑠) in (𝑋1, 𝛤𝑃) for every 𝑝𝑓𝑀𝑜𝑠 

(resp. 𝑝𝑓𝒮𝑜𝑠, 𝑝𝑓𝛿𝑜𝑠, 𝑝𝑓𝛿𝒮𝑜𝑠, 𝑝𝑓𝛿𝒫𝑜𝑠, 𝑝𝑓𝜃𝑜𝑠, 𝑝𝑓𝑒𝑜𝑠 and 𝑝𝑓𝜃𝒮𝑜𝑠) 𝐵 of (𝑋2, 𝛹𝑃).  

Theorem 4.1  Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a 𝑝𝑓𝐼𝑟𝑟 (resp. 𝑝𝑓𝑀𝐼𝑟𝑟, 𝑝𝑓𝛿𝐼𝑟𝑟, 𝑝𝑓𝛿𝒮𝐼𝑟𝑟, 

𝑝𝑓𝛿𝒫𝐼𝑟𝑟, 𝑝𝑓𝜃𝐼𝑟𝑟, 𝑝𝑓𝑒𝐼𝑟𝑟 and 𝑝𝑓𝜃𝒮𝐼𝑟𝑟), then ℎ𝑃 is a 𝑝𝑓𝒮𝐶𝑡𝑠 (resp. 𝑝𝑓𝑀𝐶𝑡𝑠, 𝑝𝑓𝐶𝑡𝑠, 

𝑝𝑓𝛿𝒮𝐶𝑡𝑠, 𝑝𝑓𝛿𝒫𝐶𝑡𝑠, 𝑝𝑓𝐶𝑡𝑠, 𝑝𝑓𝑒𝐶𝑡𝑠 and 𝑝𝑓𝜃𝒮𝐶𝑡𝑠 ) map. But not conversely.  

  Proof. (i) Let ℎ𝑃 be a 𝑝𝑓𝐼𝑟𝑟 map. Let 𝐵 be any 𝑝𝑓𝑜𝑠 in 𝑋2. Since every 𝑝𝑓𝑜𝑠 is a 𝑝𝑓𝒮𝑜𝑠, 𝐵 

is a 𝑝𝑓𝒮𝑜𝑠 in 𝑋2. By hypothesis ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝒮𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 𝑝𝑓𝒮𝐶𝑡𝑠 map. 

(ii) Let ℎ𝑃 be a 𝑝𝑓𝑀𝐼𝑟𝑟 map. Let 𝐵 be any 𝑝𝑓𝑜𝑠 in 𝑋2. Since every 𝑝𝑓𝑜𝑠 is a 𝑝𝑓𝑀𝑜𝑠, 𝐵 is a 

𝑝𝑓𝑀𝑜𝑠 in 𝑋2. By hypothesis ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 𝑝𝑓𝑀𝐶𝑡𝑠 map. 

(iii) Let ℎ𝑃 be a 𝑝𝑓𝛿𝐼𝑟𝑟 map. Let 𝐵 be any 𝑝𝑓𝛿𝑜𝑠 in 𝑋2. Since every 𝑝𝑓𝛿𝑜𝑠 is a 𝑝𝑓𝑜𝑠, 𝐵 is a 

𝑝𝑓𝑜𝑠 in 𝑋2. By hypothesis ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 𝑝𝑓𝐶𝑡𝑠 map. 

(iv) Let ℎ𝑃 be a 𝑝𝑓𝛿𝒮𝐼𝑟𝑟 map. Let 𝐵 be any 𝑝𝑓𝛿𝑜𝑠 in 𝑋2. Since every 𝑝𝑓𝛿𝑜𝑠 is a 𝑝𝑓𝑜𝑠, 𝐵 is 

a 𝑝𝑓𝑜𝑠 in 𝑋2. By hypothesis ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝛿𝒮𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 𝑝𝑓𝛿𝒮𝐶𝑡𝑠 map. 

(v) Let ℎ𝑃 be a 𝑝𝑓𝛿𝒫𝐼𝑟𝑟 map. Let 𝐵 be any 𝑝𝑓𝛿𝑜𝑠 in 𝑋2. Since every 𝑝𝑓𝛿𝑜𝑠 is a 𝑝𝑓𝑜𝑠, 𝐵 is 

a 𝑝𝑓𝑜𝑠 in 𝑋2. By hypothesis ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝛿𝒫𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 𝑝𝑓𝛿𝒫𝐶𝑡𝑠 map. 

(vi) Let ℎ𝑃 be a 𝑝𝑓𝜃𝐼𝑟𝑟 map. Let 𝐵 be any 𝑝𝑓𝜃𝑜𝑠 in 𝑋2. Since every 𝑝𝑓𝜃𝑜𝑠 is a 𝑝𝑓𝑜𝑠, 𝐵 is a 

𝑝𝑓𝑜𝑠 in 𝑋2. By hypothesis ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝜃𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 𝑝𝑓𝜃𝐶𝑡𝑠 map. 

(vii) Let ℎ𝑃 be a 𝑝𝑓𝑒𝐼𝑟𝑟 map. Let 𝐵 be any 𝑝𝑓𝑜𝑠 in 𝑋2. Since every 𝑝𝑓𝑜𝑠 is a 𝑝𝑓𝑒𝑜𝑠, 𝐵 is a 

𝑝𝑓𝑒𝑜𝑠 in 𝑋2. By hypothesis ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑒𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 𝑝𝑓𝑒𝐶𝑡𝑠 map. 

(viii) Let ℎ𝑃 be a 𝑝𝑓𝜃𝒮𝐼𝑟𝑟 map. Let 𝐵 be any 𝑝𝑓𝜃𝑜𝑠 in 𝑋2. Since every 𝑝𝑓𝜃𝑜𝑠 is a 𝑝𝑓𝑜𝑠, 𝐵 

is a 𝑝𝑓𝑜𝑠 in 𝑋2. By hypothesis ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝜃𝒮𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 𝑝𝑓𝜃𝒮𝐶𝑡𝑠 map. 

Example 4.1   Let 𝑋 = {𝑥1, 𝑥2} = 𝑌 = {𝑦1, 𝑦2} and 𝑝𝑓𝑠’s 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5  & 𝐴6 in 𝑋 and 

𝐵1 &𝐵2 in 𝑌 are defined as, 

 𝐴1 = {< 𝑥1, 0.00020,0.00080 >, < 𝑥2, 0.00040,0.00060 >} 

 𝐴2 = {< 𝑥1, 0.00010,0.00090 >, < 𝑥2, 0.00030,0.00070 >} 

 𝐴3 = {< 𝑥1, 0.00090,0.00010 >, < 𝑥2, 0.00070,0.00030 >} 

 𝐴4 = {< 𝑥1, 0.00020,0.00080 >, < 𝑥2, 0.00030,0.00070 >} 

 𝐵1 = {< 𝑦1, 0.00090,0.00010 >, < 𝑦2, 0.00070,0.00030 >} 

 𝐵2 = {< 𝑦1, 0.00040,0.00020 >, < 𝑦2, 0.00040,0.00040 >}. 

 Here, 𝜏1 = {0𝑋, 1𝑋 , 𝐴1, 𝐴2, 𝐴3, 𝐴4}, 𝜏2 = {0𝑌, 1𝑌, 𝐵1}, 𝜏3 = {0𝑌, 1𝑌, 𝐴2}, 𝜏4 = {0𝑌, 1𝑌, 𝐴4} 

and 𝜏5 = {0𝑌, 1𝑌, 𝐴2, 𝐴3}.  

(i) Let 𝑓1: (𝑋, 𝜏1) → (𝑌, 𝜏2) be an identity mapping. Then, 𝑓1 is 𝑝𝑓𝑀𝐶𝑡𝑠 but not 𝑝𝑓𝑀𝐼𝑟𝑟, 

because the set 𝐵2 is a 𝑝𝑓𝑀𝑜𝑠 in 𝑌 but 𝑓−1(𝐵2) is not 𝑝𝑓𝑀𝑜𝑠 in 𝑋. (ii) Let 𝑓2: (𝑋, 𝜏1) →
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(𝑌, 𝜏3) be an identity mapping. Then, 𝑓2 is 𝑝𝑓𝒮𝐶𝑡𝑠 but not 𝑝𝑓𝐼𝑟𝑟, because the set 𝐴2 is a 

𝑝𝑓𝒮𝑜𝑠 in 𝑌 but 𝑓2
−1(𝐴2) is not 𝑝𝑓𝒮𝑜𝑠 in 𝑋. (iii) Let 𝑓3: (𝑋, 𝜏1) → (𝑌, 𝜏4) be an identity 

mapping. Then, 𝑓3 is 𝑝𝑓𝐶𝑡𝑠 (resp. 𝑝𝑓𝛿𝒮𝐶𝑡𝑠) but not 𝑝𝑓𝛿𝐼𝑟𝑟 (resp. 𝑝𝑓𝛿𝒮𝐼𝑟𝑟), because the 

set 𝐴4 is a 𝑝𝑓𝛿𝑜𝑠 (resp. 𝑝𝑓𝛿𝒮𝑜𝑠) in 𝑌 but 𝑓3
−1(𝐴4) is not 𝑝𝑓𝛿𝑜𝑠 (resp. 𝑝𝑓𝛿𝒮𝑜𝑠) in 𝑋.  

Theorem 4.2  Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a 𝑝𝑓𝑀𝐼𝑟𝑟 (resp. 𝑝𝑓𝛿𝐼𝑟𝑟, 𝑝𝑓𝛿𝒮𝐼𝑟𝑟, 𝑝𝑓𝛿𝒫𝐼𝑟𝑟, 

𝑝𝑓𝜃𝐼𝑟𝑟, 𝑝𝑓𝑒𝐼𝑟𝑟 and 𝑝𝑓𝜃𝒮𝐼𝑟𝑟), then ℎ𝑃 is a 𝑝𝑓𝐶𝑡𝑠 map if 𝑋1 is a 𝑝𝑓𝑀𝑈1/2 (resp. 𝑝𝑓𝛿𝑈1/2, 

𝑝𝑓𝛿𝒮𝑈1/2, 𝑝𝑓𝛿𝒫𝑈1/2, 𝑝𝑓𝜃𝑈1/2, 𝑝𝑓𝑒𝑈1/2 and 𝑝𝑓𝜃𝒮𝑈1/2 )-space.  

  Proof. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in 𝑋2. Then, 𝐵 is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋2. Therefore ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 in 

𝑋1, by hypothesis. Since 𝑋1 is a 𝑝𝑓𝑀𝑈1/2 -space, ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑜𝑠 in 𝑋1. Hence, ℎ𝑃 is a 

𝑝𝑓𝐶𝑡𝑠 map. The proof of other cases is similar. 

Theorem 4.3  Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) and 𝑔𝑃: (𝑋2, 𝛹𝑃) → (𝑋3, 𝛷𝑃) be a 𝑝𝑓𝑀𝐼𝑟𝑟 (resp. 

𝑝𝑓𝛿𝐼𝑟𝑟, 𝑝𝑓𝛿𝒮𝐼𝑟𝑟, 𝑝𝑓𝛿𝒫𝐼𝑟𝑟, 𝑝𝑓𝜃𝐼𝑟𝑟, 𝑝𝑓𝑒𝐼𝑟𝑟 and 𝑝𝑓𝜃𝒮𝐼𝑟𝑟) maps, then 𝑔𝑃 ∘ ℎ𝑃: (𝑋1, 𝛤𝑃) →
(𝑋3, 𝛷𝑃) is a 𝑝𝑓𝑀𝐼𝑟𝑟 (resp. 𝑝𝑓𝛿𝐼𝑟𝑟, 𝑝𝑓𝛿𝒮𝐼𝑟𝑟, 𝑝𝑓𝛿𝒫𝐼𝑟𝑟, 𝑝𝑓𝜃𝐼𝑟𝑟, 𝑝𝑓𝑒𝐼𝑟𝑟 and 𝑝𝑓𝜃𝒮𝐼𝑟𝑟) 

map.  

  Proof. Let 𝐾 be a 𝑝𝑓𝑀𝑜𝑠 in 𝑋3. Then, 𝑔𝑃
−1(𝐾) is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋2. Since ℎ𝑃 is a 𝑝𝑓𝑀𝐼𝑟𝑟 

map, ℎ𝑃
−1(𝑔𝑃

−1(𝐾)) is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋1. Hence 𝑔𝑃 ∘ 𝑓𝑃 is a 𝑝𝑓𝑀𝐼𝑟𝑟 map. The proof of other 

cases is similar. 

Theorem 4.4  Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a 𝑝𝑓𝑀𝐼𝑟𝑟 (resp. 𝑝𝑓𝛿𝐼𝑟𝑟, 𝑝𝑓𝛿𝒮𝐼𝑟𝑟, 𝑝𝑓𝛿𝒫𝐼𝑟𝑟, 

𝑝𝑓𝜃𝐼𝑟𝑟, 𝑝𝑓𝑒𝐼𝑟𝑟 and 𝑝𝑓𝜃𝒮𝐼𝑟𝑟) map and 𝑔𝑃: (𝑋2, 𝛹𝑃) → (𝑋3, 𝛷𝑃) be a 𝑝𝑓𝑀𝐶𝑡𝑠 (resp. 

𝑝𝑓𝛿𝐶𝑡𝑠, 𝑝𝑓𝛿𝒮𝐶𝑡𝑠, 𝑝𝑓𝛿𝒫𝐶𝑡𝑠, 𝑝𝑓𝜃𝐶𝑡𝑠, 𝑝𝑓𝑒𝐶𝑡𝑠 and 𝑝𝑓𝜃𝒮𝐶𝑡𝑠) map, then 𝑔 ∘ 𝑓: (𝑋, 𝜏1) →
(𝑍, 𝜏3) is a 𝑝𝑓𝑀𝐶𝑡𝑠 (resp. 𝑝𝑓𝛿𝐶𝑡𝑠, 𝑝𝑓𝛿𝒮𝐶𝑡𝑠, 𝑝𝑓𝛿𝒫𝐶𝑡𝑠, 𝑝𝑓𝜃𝐶𝑡𝑠, 𝑝𝑓𝑒𝐶𝑡𝑠 and 𝑝𝑓𝜃𝒮𝐶𝑡𝑠) 

map.  

  Proof. Let 𝐾 be a 𝑝𝑓𝑜𝑠 in 𝑋3. Then, 𝑔𝑃
−1(𝐾) is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋2. Since, ℎ𝑃 is a 

𝑝𝑓𝑀𝐼𝑟𝑟, ℎ𝑃
−1(𝑔𝑃

−1(𝐾)) is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋1. Hence, 𝑔𝑃 ∘ ℎ𝑃 is a 𝑝𝑓𝑀𝐶𝑡𝑠 map. The proof of 

other cases is similar. 

Theorem 4.5   Let a map ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃). Then the following conditions are 

equivalent if 𝑋1 and 𝑋2 are 𝑝𝑓𝑀𝑈1/2 -spaces.  

    1.  ℎ𝑃 is a 𝑝𝑓𝑀𝐼𝑟𝑟 map. 

    2.  ℎ𝑃
−1(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋1, for each 𝑝𝑓𝑀𝑜𝑠(𝐵) in 𝑋2. 

    3.  𝑝𝑓(ℎ𝑃
−1(𝐵)) ⊆ ℎ𝑃

−1(𝑝𝑓𝑐𝑙(𝐵)), for each 𝑝𝑓𝑠 𝐵 of 𝑋2.  

  Proof. (i) → (ii): Let 𝐵 be any 𝑝𝑓𝑀𝑜𝑠 in 𝑋2. Then, 𝐵𝑐 is a 𝑝𝑓𝑀𝑐𝑠 in 𝑋2. Since ℎ𝑃 is 

𝑝𝑓𝑀𝐼𝑟𝑟, ℎ𝑃
−1(𝐵𝑐) is a 𝑝𝑓𝑀𝑐𝑠 in 𝑋1. But ℎ𝑃

−1(𝐵𝑐) = (ℎ𝑃
−1(𝐵))𝑐. Therefore, ℎ𝑃

−1(𝐵) is a 

𝑝𝑓𝑀𝑜𝑠 in 𝑋1. 

(ii) → (iii) : Let 𝐵 be any 𝑝𝑓𝑠 in 𝑋2 and 𝐵 ≤ 𝑝𝑓𝑐𝑙(𝐵). Then, ℎ𝑃
−1(𝐵) ≤ ℎ𝑃

−1(𝑝𝑓𝑐𝑙(𝐵)). 

Since 𝑝𝑓𝑐𝑙(𝐵) is a 𝑝𝑓𝑐𝑠 in 𝑋2, 𝑝𝑓𝑐𝑙(𝐵) is a 𝑝𝑓𝑀𝑐𝑠 in 𝑋2. Therefore, (𝑝𝑓𝑐𝑙(𝐵))𝑐 is a 

𝑝𝑓𝑀𝑜𝑠 in 𝑋2. By hypothesis, ℎ𝑃
−1((𝑝𝑓𝑐𝑙(𝐵))𝑐) is a 𝑝𝑓𝑀𝑜𝑠 in 𝑋1. Since, 

ℎ𝑃
−1((𝑝𝑓𝑐𝑙(𝐵))𝑐) = (ℎ𝑃

−1(𝑝𝑓𝑐𝑙(𝐵)))𝑐 , ℎ𝑃
−1(𝑝𝑓𝑐𝑙(𝐵)) is a 𝑝𝑓𝑀𝑐𝑠 in 𝑋1. Since, 𝑋1 is a 

𝑝𝑓𝑀𝑈1/2 -space, ℎ𝑃
−1(𝑝𝑓𝑐𝑙(𝐵)) is a 𝑝𝑓𝑐𝑠 in 𝑋1. Hence, 𝑝𝑓𝑐𝑙(ℎ𝑃

−1(𝐵)) ⊆
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𝑝𝑓𝑐𝑙(ℎ𝑃
−1(𝑝𝑓𝑐𝑙(𝐵))) = hP

−1(pfcl(B)). That is, pfcl(hP
−1(B)) ⊆ hP

−1(pfcl(B)). 

(iii) → (i) : Let B be any pfMcs in X2. Since X2 is a pfMU1/2-space, B is a pfcs in X2 and 

pfcl(B) = B. Hence, hP
−1(B) = hP

−1(pfMcl(B)) ⊆ pfMcl(hP
−1(B)). But clearly, hP

−1(B) ⊆
pfcl(hP

−1(B)). Therefore, pfcl(hP
−1(B)) = hP

−1(B). This implies, hP
−1(B) is a pfcs and hence, 

it is a pfMcs in X1. Thus, hP is a pfMIrr map. 

Remark 4.1  Theorem 4.5 is true for pfδIrr, pfδ𝒮Irr, pfδ𝒫Irr, pfθIrr, pfeIrr and pfθ𝒮Irr.  

 

5  Application 

Entropy as a measure of fuzziness was first proposed by Zadeh [29]. Later many 

mathematicians defined several entropy measures. In this section, we focus on defining an 

entropy measure for pfs that connects the degree of membership and non-membership. As an 

example, we have applied the proposed entropy measure in the field of seasons. 

Definition 5.1  Let A = {< x, μA(x), νA(x)|x ∈ X} be a pfs in X. The new entropy measure 

for A denoted by εpfs(A), is a function, εpfs: τpfs(X) → [0,1] and is defined as εpfs(A) = 1 −
1

n
∑n

i=1 (αA − γA)2;  forevery`xi ∈ A, where τpfs(X) denote the family of all pfs’s on X.  

Example 5.1  Consider an example of a incentive calculation based on performance of the 

salesman in different seasons. Now the company wants to identify the work efficiency on 

each salesman among each seasons. A company appoints 4 salesman S1, S2, S3 and S4 and 

observes their sales in three seasons: summer, winter and monsoon. The observed data’s 

were represented at pfs as follows. 

Table 1. Sales of each salesman in different seasons. 
   Salesman 1 (S1)   Salesman 2 (S2)   Salesman 3 (S3)   Salesman 4 (S4)  

Summer (S)  < S, S1; 0.45,0.55 >  < S, S2; 0.40,0.68 >  < S, S3; 0.38,0.82 >  < S, S4; 0.37,0.55 >  

Winter (W)  <, S1; 0.40,0.60 >  <, S2; 0.41,0.62 >  <, S3; 0.45,0.75 >   <, S4; 0.38,0.63 >  

Mansoon (M)  <, S1; 0.39,0.70 >  <, S2; 0.39,0.67 >  <, S3; 0.41,0.55 >  <, S4; 0.41,0.65 >  

Clearly, all values in the Table 1 are pfs’s. Now we calculate the εpfs of each value. 

Table 2. Entropy measure of each item through each salesman. 
 Salesman1 (S1)  Salesman 2 (S2)  Salesman 3 (S3)  Salesman 4 (S4)  

Summer (S)   0.99   0.92   0.81   0.97  

Winter (W)   0.96   0.96   0.91   0.94  

Mansoon (M)   0.90   0.92   0.98   0.94  

From Table 2, it is clear that εpfs(M, S1) < εpfs(W, S1) < εpfs(S, S1). 

Similarly εpfs(W, S2) < εpfs(S, S2) < εpfs(W, S2); 

< εpfs(S, S3) εpfs(W, S3) εpfs(M, S3) 

and εpfs(M, S4) < εpfs(W, S4) < εpfs(S, S4). 

Hence Salesman 1 and Salesman 4 work efficiency during summer season compared to the 

other seasons. Hence their incentive can be calculated and provided at the end of summer 

season. 
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Salesman 2 works efficiency during winter season compared to the other seasons. Hence 

their incentive can be calculated and provided at the end of winter season. 

Salesman 3 works efficiency during Mansoon season compared to the other seasons. Hence 

their incentive can be calculated and provided at the end of Mansoon season. 

 

6  Conclusion 

In this paper, using pfMos we have defined pfMCts map and analyzed its properties. After 

that we have compared Pythagorean fuzzy continuity maps to pfM -continuity maps. 

Furthermore, we have extended these maps to pfM -irresolute maps. Also we applied entropy 

measure for decision making problem of calculation of incentive based on the performance 

of salesman during the seasons. It makes an employer to felt satisfied for getting immediate 

appreciation and reward for their hardware. In future, we decide to apply entropy measure 

for decision making in various fields. 
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