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1. Introduction

Considering the imprecision in decision-making, Zadeh [29] introduced the idea of fuzzy set
which has a membership function, p that assigns to each element of the universe of
discourse, a number from the unit interval [0,1] to indicate the degree of belongingness to
the set under consideration. The notion of fuzzy sets generalizes classical sets theory by
allowing intermediate situations between the whole and nothing. In a fuzzy set, a
membership function is defined to describe the degree of membership of an element to a
class. The membership value ranges from 0 to 1, where 0 shows that the element does not
belong to a class, 1 means belongs, and other values indicate the degree of membership to a
class. For fuzzy sets, the membership function replaced the characteristic function in crisp
sets. The concept of fuzzy set theory seems to be inconclusive because of the exclusion of
nonmembership function and the disregard for the possibility of hesitation margin.
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Atanassov critically studied these shortcomings and proposed a concept called intuitionistic
fuzzy sets (IFSs) [1, 2, 4, 5]. The construct (that is, IFS’s) incorporates both membership
function, p and nonmembership function, v with hesitation margin, m (that is, neither
membership nor non-membership functions), such that p+v<1 and p+v+m=1
Atanassov [3] introduced intuitionistic fuzzy sets of second type (IFSST) with the property
that the sum of the square of the membership and non-membership degrees is less than or
equal to one. This concept generalizes IFS’s in a way. The notion of IFS’s provides a flexible
framework to elaborate uncertainty and vagueness. The idea of IFS seems to be resourceful
in modelling many real-life situations like medical diagnosis [7, 8, 12, 23, 24], career
determination [10], selection process [11], and multi-criteria decision-making [15, 16, 17],
among others.

There are situations where p + v > 1 unlike the cases capture in IFS’s. This limitation in IFS
naturally led to a construct, called Pythagorean fuzzy sets (pfs’s). Pythagorean fuzzy set
(pfs) proposed in [26, 27, 28] is a new tool to deal with vagueness considering the
membership grade, u and non-membership grade, v satisfying the conditions p+v <1 or
uw+v > 1, and also, it follows that p? + v? + n2 = 1, where m is the Pythagorean fuzzy set
index. In fact, the origin of Pythagorean fuzzy sets emanated from IFSST earlier studied in
the literature. As a generalized set, PFS has close relationship with IFS. The construct of
PFS’s can be used to characterize uncertain information more sufficiently and accurately
than IFS. Garg [14] presented an improved score function for the ranking order of interval-
valued Pythagorean fuzzy sets (IVPFSs). Based on it, a Pythagorean fuzzy technique for
order of preference by similarity to ideal solution (TOPSIS) method by taking the preferences
of the experts in the form of interval-valued Pythagorean fuzzy decision matrices was
discussed. Other explorations of the theory of PFS’s can be found in [6, 9, 13, 18, 19, 21,
22].

Entropy can be viewed as a gauge of the degree of uncertainty present in a set, regardless of
how fuzzy, intuitionistic, ambiguous, etc. the set may be. Since the pfs in this case can also
handle uncertain data, it follows naturally that we are also interested in determining the
entropy of an pfs. In 1965, Zadeh [29] made the firs reference to entropy as a fuzziness
metric. More recently, De Luca-Termini [8] axiomatized the entropy that is not probabilistic.

The remainder of this paper is organized as follows. In section 2, some basic definitions of
fs’s, IFS’s and pfs’s are briefly reviewed. In section 3, We develop the concept of some
Pythagorean fuzzy continuous and irresolute maps in Pythagorean fuzzy topological space
and also specialized some of their basic properties with examples. Finally, we presented an
entropy measure for pfs’s and one real- world scenarios where this entropy measure can be
used are mentioned in section 4. The paper is concluded in section 5.

2 Preliminaries
We recall some basic notions of fuzzy sets, IFS’s and pfs’s .

Definition 2.1 [29] Let X be a nonempty set. A fuzzy set A in X is characterized by a
membership function p,: X — [0,1]. That is:
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1, if xeX
ua(x) =40, if x¢X
(0,1) ifxispartlyin X.

Alternatively, a fuzzy set A in X is an object having the form A = {< x, pa(x) > |x € X} or
A= {(“AT(X)> |x € X}, where the function p, (x): X — [0,1] defines the degree of membership
of the element, x € X.

The closer the membership value p,(x) to 1, the more x belongs to A, where the grades 1
and 0 represent full membership and full nonmembership. Fuzzy set is a collection of objects
with graded membership, that is, having degree of membership. Fuzzy set is an extension of
the classical notion of set. In classical set theory, the membership of elements in a set is
assessed in a binary terms according to a bivalent condition; an element either belongs or
does not belong to the set. Classical bivalent sets are in fuzzy set theory called crisp sets.
Fuzzy sets are generalized classical sets, since the indicator function of classical sets is
special cases of the membership functions of fuzzy sets, if the latter only take values 0 or 1.
Fuzzy sets theory permits the gradual assessment of the membership of element in a set; this
is described with the aid of a membership function valued in the real unit interval [0,1].

Let us consider two examples:

(i) all employees of XYZ who are over 1.8m in height; (ii) all employees of XYZ who are tall.
The first example is a classical set with a universe (all XYZ employees) and a membership
rule that divides the universe into members (those over 1.8m) and honmembers. The second
example is a fuzzy set, because some employees are definitely in the set and some are
definitely not in the set, but some are borderline.

This distinction between the ins, the outs, and the borderline is made more exact by the
membership function, . If we return to our second example and let A represent the fuzzy set
of all tall employees and x represent a member of the universe X (i.e. all employees), then
ta (x) would be pa(x) = 1 if x is definitely tall or p,(x) = 0 if x is definitely not tall or 0 <
1a(x) < 1 for borderline cases.

Definition 2.2 [1, 2, 4, 5] Let a nonempty set X be fixed. An IFS A in X is an object having
the form: A = {< x, s (x),va(X) > [x EX}Or A = {<M> Ix € X}, where the functions

Ha(x): X = [0,1] and v, (x): X — [0,1] define the degree of membership and the degree of
nonmembership, respectively, of the element x € X to A, which is a subset of X, and for
every x € X: 0 < pa(x) +va(x) < 1. For each A in X: ma(x) = 1 — pa(x) —va(x) is the
intuitionistic fuzzy set index or hesitation margin of x in X. The hesitation margin mu (x) is
the degree of nondeterminacy of x € X to the set A and m,(x) € [0,1]. The hesitation margin
is the function that expresses lack of knowledge of whether x € X or x & X. Thus: pa(x) +
va(X) + ma(x) = 1.

Example 2.1 Let X={xy,z} be a fixed universe of discourse and A=
{<0'6’0'1>,<0'8’0'1>,<0'5;0'3>}, be the intuitionistic fuzzy set in X. The hesitation margins of the

X y
elements x,y,z to A are as follows: ma (x) = 0.3, M4 (y) = 0.1 and s (z) = 0.2.
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Definition 2.3 [26, 27, 28] Let X be a universal set. Then, a Pythagorean fuzzy set A, which
is a set of ordered pairs over X, is defined by the following: A = {< X, pa(x),va(X)|x € X} or

A= {(W) |x € X}, where the functions p, (x): X = [0,1] and v (x): X = [0,1] define

the degree of membership and the degree of nhonmembership, respectively, of the element
x € X to A, which is a subset of X, and for every x € X, 0 < (ua(X))? + (va(x))? < 1.
Supposing (pa(x))? + (va(x))? < 1, then there is a degree of indeterminacy of x € X to A

defined by ma(x) = /1 —[(a(X))2 + (va(x))?] and ma(x) € [0,1]. In what follows,
(Ma(X))? + (va(x)? + (ma(x))? = 1. Otherwise, ma(x) =0 whenever (ua(x))? +
(va(x))? = 1. We denote the set of all PFS’s over X by pfs(X).

Definition 2.4 [28] Let A and B be pfs’s of the forms A = {< a,A,(a), na(a) > |a € X} and
B = {< a,Ag(a), ug(a) > |a € X}. Then

1. Ac Bifandonly if A5 (a) < Ag(a) and ps(a) = pg(a) forall a € X.
2. A=Bifandonlyif A< BandB c A.

A ={<a,ps(@),As(a) > |a € X].

ANB={< a7 @) Arg(a),na(d) vV ug(a) > |a € X}
AUB={<aA(a) VAg(a),nua(@) Apg(a) > |a € X}.
¢d={<aPpX>laeX}tandX ={<a,X ¢ > |a€EX}.
7.X=¢and d = X.

Definition 2.5 [20] An Pythagorean fuzzy topology by subsets of a non-empty set X is a
family t of pfs’s satisfying the following axioms.

1. ¢,XeET
2. G; NG, € tforevery G4, G, € Tand

o o~ w

3. U Gjer for any arbitrary family {G;|i € j} S t. The pair (X,t) is called an
Pythagorean fuzzy topological space (pfts in short) and any pfs G in T is called an
Pythagorean fuzzy open set (pfos in short) in X. The complement A of an Pythagorean fuzzy
open set A in an pfts(X, t) is called an Pythagorean fuzzy closed set (pfcs in short).

Definition 2.6 [20] Let (X, t) be an pfts and A = {< a,A5(a), pa(@) > |a € X} be an pfs in
X. Then the interior and the closure of A are denoted by pfint(A) and pfcl(A) and are defined
as follows: pfcl(A) =n {K|K isan pfcs and A € K} and pfint(A) =U
{G|G isan pfos and G S A}. Also, it can be established that pfcl(A) is an pfcs and pfint(A) is
an pfos, A is an pfcs if and only if pfcl(A) = A and A is an pfos if and only if pfint(A) = A.
We say that A is pf-dense if pfcl(A) = X.

Lemma 2.1 [25] For any Pythagorean fuzzy set A in (X,t), we have X — pfint(A) =
pfcl(X — A) and X — pfcl(A) = pfint(X — A).

Definition 2.7 [25] Let (X,7) be an pfts and A be an pfs. Then A is said to be an
Pythagorean fuzzy (i) regular open set (pfros in short) if A = pfint(pfcl(A)). (ii) regular
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closed set (pfrcs in short) if A = pfcl(pfint(A)). By Lemma 2.1, it follows that A is an
pfros iff Aisan pfres.

3 Pythagorean fuzzy M-continuous maps

Definition 3.1 Let (X1,Ip) (or X;) be an pfts and A = {< a, 14(a), us(a) > |a € X} be
an pfs in X;. Then the §-interior and the &-closure of A are denoted by pfdint(A) and
pfécl(A) and are defined as follows. pfécl(A) =n{K|K is an pfrcs and A S K},
(pfoint(A) =V {G|G isan pfrosand G < A}.

Definition 3.2 Let (X;,Ip) be anpftsand A = {< a,14(a), us(a) > |a € X1} be an pfs in
X,. Aset Aissaid to be pf

1. &-open set (briefly, pfdos) if A = pfdint(A),

2. &-pre open set (briefly, pf6Pos) if A € pfint(pfdcl(A)).

3. &-semi open set (briefly, pféSos) if A € pfcl(pfdint(A4)).

4. e open set (briefly, pfeos ) if A € pfcl(pfdint(A)) U pfint(pfdcl(A)).

5. & (resp. &-pre, 6-semi and e) dense if pfdocl(A) (resp. pféPcl(A),pféScl(A) and
pfecl(4)) = X;.

The complement of an pféos (resp. pféPos,pfdSos and pfeos) is called an pfé (resp.
pfoP,pfSS and pfe) closed set (briefly, pfécs (resp. pfdPcs,pfdScs and pfecs in X;.

The family of all pfdos (resp. pfécs,pféPos,pféPcs,pféSos,pfdScs,pfeos and
pfecs) of X, is denoted by pf60S(X,), (resp.
pf6CS(X1), pfEPOS(X1), pfEPCS(X1), pfESOS(X1), pf6SCS(X1),  pfe0S(X;) and
pfeCS(X1)).
Definition 3.3 Let (X,7) be an pfts and A = {< a,A4(a), us(a) > |a € X;} be an pfs in
X;. Then the pfd-pre (resp. pfé-semi and pf§f)-interior and the pf&-pre (resp. pf§-semi
and pfe)-closure of A are denoted by pféPint(A) (resp. pféSint(A) and pfeint(A)) and
the pfecl(A) (resp. pféScl(A) and pfecl(A) and are defined as follows:
pfoPint(A) (resp. pféSint(A) and pfeint(A) =U {G|G in a pféPos (resp. pféSos and
pfeos)
and G € A} and pfSPcl(A) (resp. pfScl(A) and pfecl(A)) =n {K|K is an pféPcs (resp.
pféScs,pfecs) and A € K}.
Definition 3.4 Let (X;,Ip) beanpftsand A = {< a, 14(a), ua(a) > |a € X;} beanpfsin
X;.Aset Aissaid to be pf

1. B-interior of A (briefly, pf@int(A)) is defined by pf@int(A) = U {pfint(B):B <
A& B isapfcsinX;}.

2. 6-open set (briefly, pfOos) if A = pfOint(A).
3. 8 -semi open set (briefly, pf0Sos) if A € pfcl(pfOint(4)).
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4. M-open set (briefly, pfMos) if A € pfcl(pfOint(A)) U pfint(pfdcl(A)).

The complement of a pfMos (resp. pfBos & pf@Sos) is called an pfM (resp. pf6 & pfoS)
closed set (briefly, pfMcs (resp. pfOcs & pf6Scs)) in X;.

The family of all pf6os (resp. pffcs,pfOSos,pfScs,pfMos and pfMcs) of X; is
denoted by pf00S(X,), (resp. pfOCS(X,),pf0S0S(X1),pfOSCS(X,),pfMOS(X;) and

PfMCS(X1)).

Definition 3.5 Let (X;,Ip) be anpftsand A = {< a,14(a), us(a) > |a € X1} be an pfs in
X;. Then the pf

1. M-interior (resp. pf@-interior and pf6-semi interior) of A (briefly, pfMint(A) (resp.
pfOint(A), pfOSint(A)) is defined by pfMint(A) (resp. pfOint(A) and pfOSint(A)) =U
{B:B < Aand B isapfMos (resp. pfOos,pf0Sos)}in X;.

2. M-closure (resp. 8-closure and 6-semi closure) of A (briefly, pfMcl(A) (resp.
pfOcl(A)& pfOScl(A)) is defined by pfMcl(A) (resp. pfOcl(A) and pfoScl(A)) =n
{B:Ac Band AisapfMcs (resp. pfOcs,pf0Scs)}in X;.

Definition 3.6 Let (X1,Ip) and (X, ¥p) be any two pfts’s. A mapping hp: (Xq,[p) =
(X,,¥p) is said to be a Pythagorean fuzzy (resp. &, 6P, &S, e, 6, 8S and M )-continuous
(briefly, pfCts (resp. pféCts, pféPCts, pféSCts, pfeCts, pfOCts, pfOSCts and
pfMCts)) if the inverse image of every pfos in (X,,¥p) is a pfos (resp. pfdos, pféPos,
pféSos, pfeos, pfOos, pfOSos and pfMos) in (Xq,Ip).

Proposition 3.1 Let (X1,Ip) & (X,,¥p) be a pfts’s. Let hp: (X1,Ip) = (X3, ¥p) be a
mapping. Then the following statements are hold for pfts, but not conversely.

Every pf@CtsisapfCts.
Every pfOCtsisapfOSCts.
Every pfOSCtsisapfMCts.
Every pféCts isapfdSCts.
Every pféCts isapfoPCts.
Every pféSCtsisapfeCts.
Every pféPCts isapfMCts.
Every pfMCts isapfeCts.

9. Every pfdCtsisapfCts.

Proof. [(i)]

1. Let B be apfos in (X5, Wp). Since hp is pfOCts, hp1(B) is pf6os in (X1, Ip). Since
every pffos isapfos, hp1(B) isapfos in (X;,Ip). Hence, hp isapfCts.

2. Let B be apfos in (X,,Wp). Since hp is pfOCts, hp1(B) is pfbos in (X1, Ip). Since
every pf@os isapf6Sos, hp1(B) isapfos in (Xq,Ip). Hence, hp isapfOSCts.

© N o g bk~ w D
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3. Let B be a pfos in (X, ¥p). Since hp is pfOSCts, hp1(B) is pfOSos in (X, Ip).
Since every pf6Sos isapfMos, hp1(B) isapfMos in (X;,Ip). Hence, hp isa pfMCts.

4. Let B be apfos in (X, ¥p). Since hp is pfSCts, hpt(B) is pfSos in (Xq,Ip). Since
every pféos is a pféSos, hp1(B) isapfdSos in (Xq,Ip). Hence, hp is apfSSCts.

5. Let B be a pfos in (X, ¥p). Since hp is pfSCts, hpt(B) is pfSos in (Xq,Ip). Since
every pféos isapféPos, hpt(B) isapf&Pos in (Xq,1p). Hence, hp isapfSPCts.

6. Let B be a pfos in (X,,¥p). Since hp is pf6SCts, hp1(B) is pféSos in (Xq,1p).
Since every pf8Sos is apfeos, hp1(B) isapfeos in (X;,Ip). Hence, hp isapfeCts.

7. Let B be a pfos in (X,,Wp). Since hp is pféPCts, hp1(B) is pféPos in (X, 1p).
Since every pf8Pos isapfMos, hp1(B) isapfMos in (X1,Ip). Hence, hp isapfMCts.

8. Let B be apfosin (X5, Wp). Since hp is pfMCts, hp1(B) is pfMos in (X;,Ip). Since
every pfMos isapfeos, hp1(B) isapfeos in (X;,Ip). Hence, hp isapfeCts.

9. Let B be a pfos in (X,, ¥p). Since hp is pfSCts, hpt(B) is pfSos in (Xq,p). Since
every pféos isapfos, hp1(B) isapfos in (X, Ip). Hence, hp is a pfCts.

Remark 3.1 We obtain the following diagram from the results are discussed above.

pfOCts —— pfCts

pfoSCts pfoCts

/
¥

I)frﬁ P("f.\'

J
pfMCts pfOSCts

¥

))‘f.' C'ts

Note: A — B denotes A implies B, but not conversely.

Example 3.1 LetX; = X, = {xq,x,}and pfs’s A;,A,,A; & A, in X; are defined as,

A; = {< x1,0.20,0.80 >, < x,,0.40,0.60 >}

A, ={<x,0.10,0.90 >, < x,,0.30,0.70 >}

Az ={<x,0.90,0.10 >, < x,,0.70,0.30 >}

A, = {< x1,0.20,0.80 >, < x,,0.30,0.70 >}
Then, we have Ip =W¥p ={0y,1x,4,,4,5,435,4,}. Let hp: (X1, Ip) = (X5, ¥p) be an
Nanotechnology Perceptions Vol. 20 No. S14 (2024)



More on Maps and its Application in.... B. Vijayalakshmi et al. 1608

identity mapping. Then, hp is pfCts but not pf6Cts, because the set A; is pfos in X, but
hp1(A;) = A; isnotpfBos in X;.

Example 3.2 Let X; = X, = {xy,x,} and pfs’s A1, A4,,A3,4, In X; & B; in X, are defined
as,

Ay = {< x1,0.20,0.80 >, < x5,0.40,0.60 >}
A, = {< x,,0.10,0.90 >, < x,0.30,0.70 >}
As = {< x1,0.90,0.10 >, < x,,0.70,0.30 >}
A, = {< x,,0.20,0.80 >, < x5,0.30,0.70 >}
B, = {< x,,0.80,0.20 >, < x,,0.60,0.40 >}

Then, we have Ip = {0y, 1x,A1,45,43,A,} and ¥p = {0y, 1x,B,}. Let hp: (Xq,Ip) =
(X,,%p) be an identity mapping. Then, hp is pfOSCts (resp. pf8SCts) but not pfoCts
(resp. pfdCts), because the set B; is pfos in X, but hp1(B;) = B; is not pffos (resp.
pfdos)in X;.

Example 3.3 Let X; = X, = {xy,x,}and pfs’s A1, A,,A3, A4 in X; & B; in X, are defined
as,

A, = By = {< x,,0.20,0.80 >, < x,,0.40,0.60 >}
A, = {< x1,0.10,0.90 >, < x,,0.30,0.70 >}
As = {< x1,0.90,0.10 >, < x,,0.70,0.30 >}
A, = {< x1,0.20,0.80 >, < x,,0.30,0.70 >}

Then, we have FP = {Ox, 1x,A1,A2,A3,A4} and l{’p = {Ox, 1x, Bl} Let h’P: (X].'FP) -
(X5, ¥p) be an identity mapping. Then, hp is pfMCts but not pf6SCts, because the set By
is pfos in X, but hp1(B;) = B, isnot pf6Sos in X;.

Example 3.4 Let X; = X, = {xq,x,} and pfs’s A1, A,,A3, A4 in X; & By in X, are defined
as,

A, = {< x;,0.20,0.80 >, < x,,0.40,0.60 >}
A, = {< x,,0.10,0.90 >, < x,,0.30,0.70 >}
As = {< x,,0.90,0.10 >, < x,0.70,0.30 >}
A, = {< x,,0.20,0.80 >, < x,0.30,0.70 >}
B, = {< x;,0.40,0.20 >, < x,,0.40,0.40 >}

Then, we have Fp = {Ox, 1x,A1,A2,A3,A4} and WP = {Ox, lx, Bl} Let hp: (Xl,rp) 4
(X5, ¥p) be an identity mapping. Then, hp is pfeCts but not pf MCts, because the set B; is
pfos in X, but h1(B;) = By isnot pfMos in X;.

Example 3.5 Let X; = X, = {xq,x,} and pfs’s A1, 4,,A3,4, in X; & B; in X, are defined
as,
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A; = {< x1,0.20,0.80 >, < x,,0.40,0.60 >}

A, = {< x1,0.10,0.90 >, < x,,0.30,0.70 >}

A; = {< x1,0.90,0.10 >, < x,,0.70,0.30 >}

By = A, = {< x4,0.20,0.80 >, < x,,0.30,0.70 >}
Then, we have Ip = {0y, 1x,A1,45, 45,44} and ¥p = {0y, 1x,B,}. Let hp: (Xy,Ip) =
(X,, ¥p) be an identity mapping. Then, hp is pfCts (resp. pfeCts and pfSPCts ) but not

pf&Cts (resp. pf8SCts and pfSCts), because the set B, is pfos in X, but hp1(B;) = B; is
not pfdos (resp. pfdSos and pfdos) in X;.

Example 3.6 Let X; = X, = {xy,x,}and pfs’s A;,A,,A3, A, in X; & B; in X, are defined
as,

Ay = {< x,,0.20,0.80 >, < x,,0.40,0.60 >}
A, = {< x,,0.10,0.90 >, < x5,0.30,0.70 >}
As = {< x1,0.90,0.10 >, < x,,0.70,0.30 >}
A, = {< x1,0.20,0.80 >, < x,,0.30,0.70 >}
B, = {< x,,0.80,0.20 >, < x5, 0.60,0.30 >}

Then, we have FP = {Ox, 1x,A1,A2,A3,A4} and l{’p = {Ox, 1x, Bl} Let h’P: (X].'FP) -
(X,, ¥p) be an identity mapping. Then, hp is pfMCts but not pf6PCts, because the set By
is pfos in X, but hp1(B;) = B, is not pf§Pos in X;.
Theorem 3.1 A map hp: (X1,Ip) = (X,, ¥p) is pfMCts (resp. pfCts, pféCts, pfdSCts,
pfOéPCts, pfOCts, pfeCts and pfOSCts ) iff the inverse image of each pfcs in (X, Wp) is
pfMcs (resp. pfcs, pfdcs, pfdScs, pféPcs, pfOcs, pfecs and pfOScs ) in (X4, Ip).
Proof. Let B be a pfcs in (X,, ¥p). This implies B€ is pfos in (X,, ¥p). Since hp is
pfMCts, hp1(B€) is pfMos in (X;,Ip). Since, hp1(B) = hp*(B)¢, hp1(B) is a pfMcs in
(X1, 1p).
Conversely, let B be a pfcs in (X,,¥p). Then, B€ is a pfos in (X,,¥p). By hypothesis
hp1(B€) is pfMos in (X;,Ip). Since, hp1(BS) = (hp1(B))¢, (hp1(B))¢ is a pfMos in
(X1, Ip). Therefore, hp1(B) is a pfMos in (X;,Ip). Hence, hp is pfMCts. The proof of
other cases are similar.
Definition 3.7 A pfts (Xy,1p) is said to be a Pythagorean fuzzy MU, ,, (resp. pf6SU; ,,
pf6PUy 2, fOUy2, pfeUy, and pfOSU, , )-space, if every pfMos (resp. pfdSos,
pféPos, pfbos, pfeos and pf6Sos ) in X; isapfos in X;.

Theorem 3.2 Let hp: (X1,1p) = (X3, ¥Wp) be a pfMCts (resp. pfdSCts, pfSPCts, pfOCts,
pfeCts and pfOSCts ), then hp is a pfCts if Xy is a pfMU; ;) (resp. pféSUy,,

pféPUy 2, pfOU, 2, pfely, and pfOSU, s, )-Space.

Nanotechnology Perceptions Vol. 20 No. S14 (2024)



More on Maps and its Application in.... B. Vijayalakshmi et al. 1610

Proof. Let B be a Pfos in X,. Then, hp1(B) is a pfMos in X;, by hypothesis. Since X, is a
pfMU, ,)-space, hp1(B) is a pfos in X;. Hence, hp is a pfMCts. The proof of other cases
are similar.

Theorem 3.3 Let hp: (Xq,1p) = (X2, ¥p) be a pfMCts map and gp: (X2, ¥p) = (X3, Pp)
be apfCts, then gp o hp: (X1,Ip) = (X3, Pp) iSapfMCts.

Proof. Let K be a pfos in X5. Then, g51(K) is a pfos in X,, by hypothesis. Since hp is a
pfMCts map, hp1(gpt(K)) is a pfMos in X,. Hence gp o fp is a pfMCts map. The proof
of other cases are similar.

Theorem 3.4 Let hp: (X1,Ip) = (X3, ¥p) be a pfMCts map. Then, the following
conditions are hold.

1. hp(pfMcl(A)) < pfcl(hp(A)), forall pfcs(A) in X;.
2. pfMcl(hp'(B)) < hpt(pfcl(B)), forall pfcs(B) in X,.
Proof. [(i)]

1. Since pfMcl(f(A)) is apfMcs in X, and hp is pfMCts, then hx1(pfMcl(hp(A))) is
pfMcs in X. Now, since A< hpl(pfcl(hp(A))),pfMcl(A) < hp(pfMcl(hp(A))).
Therefore, hp(pfMcl(A)) < pfcl(hp(A)) < pfcl(hp(4)).

2. By replacing A with B in (i), we obtain hp(pfMcl(hp1(B))) < pfcl(hp(hpt(B))) <
pfcl(B). Hence, pfMcl(hz'(B)) < hz'(pfcl(B)).

Theorem 3.5 For hp is pfMCts iff hp(pfint(B)) < pfMint(hp(B)), for all pfcs B in
X,.

Proof. Let hp be pfMCts and B € X,. pfint(B) is pfos in X, and hence, hz1(pfint(B))
is pfMos in X,. Therefore, pfMint(hp'(pfMint(B))) = hpl(pfint(B)). Also,

pfint(B) < B implies that hpl(pfint(B)) < hp1(B). Therefore,
pfMint(hpt(pfint(B))) < pfMint(hp'(B)). That is, hpl(pfint(B)) <
pfMint(hp*(B)).

Conversely, let hp1(pfint(B)) < pfMint(hp'(B)), for all subset B of X,. If B is pfos in
X,, then pfint(B) = B. By assumption, hpl(pfint(B)) < pfMint(hp*(B)). Thus,
h>1(B) < pfMint(hz1(B)). But pfMint(h51(B)) < hz1(B). Therefore,
pfMint(hz1(B)) = hp1(B). That is, hp1(B) is pfMos in X;, for all pfos(B) in X,.
Therefore, hp ispfMCts on X;.

Remark 3.2 Theorems 3.3, 3.4 and 3.5 are true for pf§Cts, pfdSCts, pféPCts, pfOCts,
pfeCts and pfOSCts.

4 Pythagorean fuzzy M -irresolute maps in pfts

In this section, we introduce pfMIrr (resp. pflrr, pfélrr, pféSirr, pféPIrr, pfOlrr,
pfelrr and pf@SIrr) maps and study some of its characterizations.
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Definition 4.1 A map hp: (X4,1p) = (X3, ¥p) is called a Pythagorean fuzzy M (resp. pf,
pfé, pféS, pfoP, pfl, pfe and pfoS) -irresolute (briefly, pflrr, pfMIrr (resp. pfélrr,
pf8SIrr, pfSPIrr, pfOlrr, pfelrr and pfOSIrr)) map if hp1(B) is a pfMos (resp.
pfSos, pféos, pféSos, pféPos, pfbos, pfeos and pfOSos) in (X,,Ip) for every pfMos
(resp. pfSos, pfdos, pféSos, pfdPos, pfbos, pfeos and pfOSos) B of (X5, ¥p).

Theorem 4.1 Let hp: (Xq,Ip) = (X5, ¥Wp) be a pflrr (resp. pfMIrr, pfdlrr, pféSirr,
pféPIrr, pfllrr, pfelrr and pfOSIrr), then hp is a pfSCts (resp. pfMCts, pfCts,
pféSCts, pfSPCts, pfCts, pfeCts and pfOSCts ) map. But not conversely.

Proof. (i) Let hp be a pfIrr map. Let B be any pfos in X,. Since every pfos isapfSos, B
isa pfSos in X,. By hypothesis h51(B) is a pfSos in X;. Hence, hp is a pfSCts map.

(ii) Let hp be a pfMIrr map. Let B be any pfos in X,. Since every pfos isapfMos, B is a
pfMos in X,. By hypothesis hz1(B) isa pfMos in X;. Hence, hp isapfMCts map.

(iii) Let hp be a pfSIrr map. Let B be any pfédos in X,. Since every pfdos isapfos, B isa
pfos in X,. By hypothesis h51(B) is a pfos in X;. Hence, hp is a pfCts map.

(iv) Let hp be a pfdSIrr map. Let B be any pfdos in X,. Since every pféos isapfos, B is
apfos in X,. By hypothesis hp1(B) is a pféSos in X;. Hence, hp isapfS8SCts map.

(v) Let hp be a pféPIrr map. Let B be any pféos in X,. Since every pfdos isapfos, B is
apfos in X,. By hypothesis hy1(B) is a pf§Pos in X;. Hence, hp is a pfSPCts map.

(vi) Let hp be apfOIrr map. Let B be any pffos in X,. Since every pffos isapfos, B isa
pfos in X,. By hypothesis hz1(B) is apffos in X;. Hence, hp is apf6OCts map.

(vii) Let hp be a pfelrr map. Let B be any pfos in X,. Since every pfos isapfeos, B is a
pfeos in X,. By hypothesis hp1(B) isapfeos in X,. Hence, hp is a pfeCts map.

(viii) Let hp be a pfOSIrr map. Let B be any pf6os in X,. Since every pf6os isapfos, B
isapfos in X,. By hypothesis h51(B) is a pf6Sos in X;. Hence, hp is a pf6SCts map.

Example 4.1 Let X = {x1,x,} =Y = {y;,y,} and pfs’s A1, A4,,A3, 44,45 & Ag in X and
B; &B, inY are defined as,

A; = {< x,,0.00020,0.00080 >, < x,,0.00040,0.00060 >}
A, = {< x,,0.00010,0.00090 >, < x,,0.00030,0.00070 >}
A3 = {< x,,0.00090,0.00010 >, < x,,0.00070,0.00030 >}
A, = {< x,,0.00020,0.00080 >, < x,,0.00030,0.00070 >}
B, = {< y;,0.00090,0.00010 >, < y,,0.00070,0.00030 >}
B, = {< v,,0.00040,0.00020 >, < y,,0.00040,0.00040 >}.

Here, 71 = {Ox, 1x, A1, A2, A3, A4}, T2 = {Oy, 1y, By}, 73 = {Oy, 1y, A2}, T4 = {Oy, 1y, A4}
and T5 = {Oy, 1y,A2,A3}.

(i) Let f;: (X, t1) = (Y,7,) be an identity mapping. Then, f; is pfMCts but not pfMIrr,
because the set B, is a pfMos in Y but f~1(B,) is not pfMos in X. (ii) Let f,: (X, 1) —
Nanotechnology Perceptions Vol. 20 No. S14 (2024)
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(Y, t3) be an identity mapping. Then, f, is pfSCts but not pfIrr, because the set A, is a
pfSos in Y but f571(A4,) is not pfSos in X. (iii) Let f3:(X,t,) = (Y,74) be an identity
mapping. Then, f3 is pfCts (resp. pf8SCts) but not pfélrr (resp. pf6Sirr), because the
set A, isapféos (resp. pf8Sos) inY but f51(A,) is not pfSos (resp. pf8Sos) in X.

Theorem 4.2 Let hp: (X1,1p) = (X2, ¥p) be a pfMIrr (resp. pfSlrr, pféSirr, pfSPIrr,
pfOlrr, pfelrr and pf6SIrr), then hp is a pfCts map if Xy is a pfMU, s, (resp. pf6Uy 2,

pfé8Uy 2, 0f 6PUy 2, 0fOUy )2, pfeUy . and pfOSU, /, )-space.

Proof. Let B be a pfos in X,. Then, B is a pfMos in X,. Therefore hy1(B) is a pfMos in
X1, by hypothesis. Since X; is a pfMU, ,, -space, hp1(B) is a pfos in X;. Hence, hp is a
pfCts map. The proof of other cases is similar.

Theorem 4.3 Let hp: (X1,1p) = (X2, ¥Wp) and gp: (X5, ¥p) = (X3,Pp) be a pfMIrr (resp.
pfélrr, pféSirr, pfSPIrr, pfOIrr, pfelrr and pfOSIrr) maps, then gp o hp: (X1,Ip) =
(X3, ®p) is a pfMIrr (resp. pfdlrr, pféSirr, pféPIrr, pfOIlrr, pfelrr and pfoSirr)
map.

Proof. Let K be a pfMos in X5. Then, gr(K) is a pfMos in X,. Since hp is a pfMIrr
map, hp1(gp1(K)) is a pfMos in X;. Hence gp o fp is a pfMIrr map. The proof of other
cases is similar.

Theorem 4.4 Let hp: (X1,1p) = (X2, ¥Wp) be a pfMIrr (resp. pfSlrr, pféSirr, pféPIrr,
pfOIrr, pfelrr and pfOSIrr) map and gp:(X,,¥Wp) = (X35, ®p) be a pfMCts (resp.
pfoCts, pfoSCts, pfOPCts, pfOCts, pfeCts and pfOASCts) map, then go f: (X, 1) =
(Z,7t3) is a pfMCts (resp. pfoCts, pfdSCts, pfSPCts, pfOCts, pfeCts and pfOSCts)
map.

Proof. Let K be a pfos in X5. Then, gp*(K) is a pfMos in X,. Since, hp is a
pfMIrr,hpt(gpt(K)) is a pfMos in X;. Hence, gp o hp is a pfMCts map. The proof of
other cases is similar.

Theorem 45  Let a map hp: (X, Ip) = (X2, ¥Wp). Then the following conditions are
equivalent if X; and X, are pf MU, ;, -spaces.

1. hpisapfMIrr map.
2. hp(B) isapfMos in X,, for each pfMos(B) in X,.
3. pf(hpt(B)) € hp(pfcl(B)), for each pfs B of X,.

Proof. (i) — (ii): Let B be any pfMos in X,. Then, B® is a pfMcs in X,. Since hp is
pfMIrr, hp1(B®) is a pfMcs in X;. But hp1(B¢) = (hp1(B))°. Therefore, hz1(B) is a
pfMos in X;.

(i) — (iii) : Let B be any pfs in X, and B < pfcl(B). Then, hp1(B) < hpl(pfcl(B)).
Since pfcl(B) is a pfcs in X,, pfcl(B) is a pfMcs in X,. Therefore, (pfcl(B))€ is a
pfMos in X,. By hypothesis, hpl((pfcl(B))) is a pfMos in X;. Since,
hpt((pfcl(B))S) = (hpt(pfcl(B)))S, hpt(pfcl(B)) is a pfMcs in X;. Since, X; is a
pfMU,;,, -space, hp'(pfcl(B)) is a pfcs in X;. Hence, pfcl(hp’(B)) S
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pfcl(hyp* (pfcl(B))) = hp' (pfel(B)). That is, pfel(hp*(B)) < hp' (pfel(B)).

(iif) - (i) : Let B be any pfMcs in X,. Since X, is a pfMU, /,-space, B is a pfcs in X, and
pfcl(B) = B. Hence, hp(B) = hp!(pfMcl(B)) S pfMcl(hp1(B)). But clearly, hp*(B) €
pfcl(hp(B)). Therefore, pfcl(hp®(B)) = hp(B). This implies, hp(B) is a pfcs and hence,
itis a pfMcs in X;. Thus, hp is a pfMIrr map.

Remark 4.1 Theorem 4.5 is true for pfdlrr, pfoSIrr, pf6PIrr, pfolrr, pfelrr and pfoSIrr.

5 Application

Entropy as a measure of fuzziness was first proposed by Zadeh [29]. Later many
mathematicians defined several entropy measures. In this section, we focus on defining an
entropy measure for pfs that connects the degree of membership and non-membership. As an
example, we have applied the proposed entropy measure in the field of seasons.

Definition 5.1 Let A = {< x, ua(X),va(x)|x € X} be a pfs in X. The new entropy measure
for A denoted by €5 (A), is a function, €p¢s: Tprs (X) — [0,1] and is defined as ey (A) = 1 —
%Z{Ll (aa — va)?; forevery'x; € A, where Tprs (X) denote the family of all pfs’s on X.

Example 5.1 Consider an example of a incentive calculation based on performance of the
salesman in different seasons. Now the company wants to identify the work efficiency on
each salesman among each seasons. A company appoints 4 salesman S;,S,,S; and S, and
observes their sales in three seasons: summer, winter and monsoon. The observed data’s
were represented at pfs as follows.

Table 1. Sales of each salesman in different seasons.

Salesman 1 (S;)

Salesman 2 (S,)

Salesman 3 (S;)

Salesman 4 (S,)

Summer (S)

< S,S,;0.45,0.55 >

<S§,S,;0.40,0.68 >

<S,S;;0.38,0.82 >

< S,S,;0.37,0.55 >

Winter (W)

<,S;,0.40,0.60 >

<,S,;0.41,0.62 >

<,S5;0.45,0.75 >

<,S,;0.38,0.63 >

Mansoon (M)

<,54,0.39,0.70 >

<,S,;0.39,0.67 >

<,S5;0.41,0.55 >

<,S,;0.41,0.65 >

Clearly, all values in the Table 1 are pfs’s. Now we calculate the €, of each value.

Table 2. Entropy measure of each item through each salesman.

Salesmanl (S,)[Salesman 2 (S,)|Salesman 3 (S;)|Salesman 4 (S,)
Summer (S) |0.99 0.92 0.81 0.97
\Winter (W) |0.96 0.96 0.91 0.94
Mansoon (M)[0.90 0.92 0.98 0.94

From Table 2, it is clear that £,¢,(M, S1) < €p5(W, S1) < €p£5(S, S1)-

Similarly e,¢(W, S3) < £p¢5(S, S2) < gp1s(W, S3);

< spfs (S: 53) Spfs (W, 53) Spfs (M: 53)
and €pfs (M: 54) < €pfs (W: 54) < €pfs (S, 54)-

Hence Salesman 1 and Salesman 4 work efficiency during summer season compared to the
other seasons. Hence their incentive can be calculated and provided at the end of summer

season.
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Salesman 2 works efficiency during winter season compared to the other seasons. Hence
their incentive can be calculated and provided at the end of winter season.

Salesman 3 works efficiency during Mansoon season compared to the other seasons. Hence
their incentive can be calculated and provided at the end of Mansoon season.

6 Conclusion

In this paper, using pfMos we have defined pfMCts map and analyzed its properties. After
that we have compared Pythagorean fuzzy continuity maps to pfM -continuity maps.
Furthermore, we have extended these maps to pfM -irresolute maps. Also we applied entropy
measure for decision making problem of calculation of incentive based on the performance
of salesman during the seasons. It makes an employer to felt satisfied for getting immediate
appreciation and reward for their hardware. In future, we decide to apply entropy measure
for decision making in various fields.
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