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The rapidly evolving landscape of cyber threats poses significant challenges to 

traditional security measures, necessitating more advanced and adaptive 

approaches to anomaly detection and threat mitigation. This review paper 

explores innovative hybrid deep learning techniques that aim to address the 

limitations of existing cybersecurity solutions. Current approaches often 

struggle with the increasing sophistication of attacks, the expanding attack 

surface due to Internet of Things (IoT) and cloud adoption, and the 

overwhelming volume and velocity of network data. Moreover, traditional 

machine learning models frequently fall short in detecting novel threats, 

adapting to evolving attack patterns, and providing explainable results—critical 

factors in effective cybersecurity management. The review covers a spectrum of 

innovations, including: (1) ensemble methods that improve generalization and 

robustness against adversarial attacks; (2) hybrid deep learning models that 

excel in analyzing both spatial and temporal aspects of network behaviour; (3) 

autoencoder-based anomaly detection integrated with supervised classifiers for 

improved threat categorization; and (4) reinforcement learning-enhanced 

systems for dynamic, adaptive defence strategies. We also explore the 

application of explainable AI techniques to hybrid models, addressing the 

critical need for interpretability in security decisions.  

Keywords: Hybrid Deep Learning, Cybersecurity, Anomaly Detection, Threat 

http://www.nano-ntp.com/


1757 Nayana Yadav M et al. Integrating AI with Cybersecurity: A Review....                                                            
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

Mitigation, AI-driven Security  

 

 

1. Introduction 

The modern cybersecurity landscape is increasingly complex, with organizations facing 

diverse threats such as advanced persistent threats (APTs), zero-day exploits, and 

sophisticated malware that can bypass traditional security defences [1]. The rise of IoT 

devices and cloud services has expanded the attack surface, while the surge in network data 

makes real-time anomaly detection challenging [2]. A global shortage of cybersecurity 

experts further complicates defence efforts against evolving threats [3]. These issues, along 

with strict regulations and the potential for significant financial and reputational harm, 

underscore the urgent demand for adaptive and intelligent cybersecurity solutions [4]. Fig.s 

1-6 provide data on recent trends. Fig. 1 highlights a fluctuating yet upward trend in U.S. 

data breaches, with a marked increase in 2023. Fig. 2 indicates a consistent rise in the 

average global cost of data breaches. Fig. 3 reveals a decline in global malware attacks, 

likely due to enhanced detection tools, while Fig. 4 shows a peak in ransomware attacks in 

2021, followed by a slight decrease but sustained high levels. Fig. 5 reflects an upward trend 

in the percentage of successful attacks on organizations, suggesting more sophisticated 

threats. Fig. 6 presents normalized data for easier trend comparison. 

  

Fig. 1: Number of data breaches in the US 

[5] 

Fig. 2:  Average cost of a data breach globally 

[6] 
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Fig. 3: Number of malware attacks 

globally [7] 

Fig. 4:  Ransomware attacks globally.[8] 

  

Fig. 5: Percentage of organizations 

experiencing successful attacks. 

Fig. 6:  Normalized, allowing for trend 

comparison. 

Hybrid deep learning methods are emerging as powerful tools for tackling complex 

cybersecurity challenges [9]. By combining various deep learning architectures or integrating 

machine learning techniques, these hybrid models enhance anomaly detection and threat 

response. For example, CNN-LSTM models analyze both spatial and temporal features in 

network traffic, improving detection of intricate attack patterns, while ensemble methods 

increase intrusion detection system robustness [10]. Hybrid models with deep reinforcement 

learning also enable adaptive defences that evolve with new threats. These innovations 

enhance threat detection accuracy and adapt cybersecurity systems to an ever-evolving 

landscape [11]. 

1.1 Overview of Key Challenges in Cybersecurity 

The landscape of cybersecurity is continually evolving, presenting organizations and 

individuals with an ever-expanding array of challenges [15]. These challenges stem from 

several key factors: 
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• Increasing sophistication of cyber-attacks: Threat actors are employing more 

advanced techniques, including AI-powered attacks, zero-day exploits, and polymorphic 

malware. These attacks are designed to evade traditional security measures and adapt to 

defensive strategies [14]. 

• Expanding attack surface: The proliferation of Internet of Things (IoT) devices, 

cloud services, and remote work environments has significantly expanded the potential entry 

points for cybercriminals. This expanded attack surface makes comprehensive security more 

difficult to achieve. 

• Volume and velocity of data: Modern networks generate enormous amounts of data 

at high speeds. This deluge of information makes it challenging to identify subtle anomalies 

or emerging threats in real-time. 

• Shortage of cybersecurity professionals: There is a global shortage of skilled 

cybersecurity professionals, making it difficult for organizations to maintain adequate 

security staffing levels. This shortage increases the need for automated and intelligent 

security solutions. 

• Regulatory compliance: Increasingly stringent data protection regulations (e.g., 

GDPR, CCPA) require organizations to implement robust security measures and report 

breaches promptly, adding complexity to cybersecurity management. 

• Insider threats: Malicious insiders or compromised user accounts pose significant 

risks, as they can bypass many traditional security controls. 

• Supply chain attacks: The interconnected nature of modern business ecosystems 

means that vulnerabilities in one organization can cascade through the supply chain, 

affecting multiple entities. 

• Rapid technological changes: The fast pace of technological innovation often 

outstrips security measures, creating new vulnerabilities and attack vectors that need to be 

addressed quickly. 

These challenges collectively necessitate more advanced, adaptive, and intelligent 

cybersecurity solutions capable of detecting and mitigating a wide range of threats in 

complex, dynamic environments. 

1.2 Deep Learning's Role in Enhancing Anomaly Detection 

Deep learning is increasingly valuable in cybersecurity, especially for anomaly detection. 

Models like CNNs and RNNs excel at identifying complex patterns in vast datasets, aiding in 

the detection of subtle cyber threats [5]. Automatic feature extraction further minimizes the 

need for manual analysis, an advantage for detecting novel threats. These models handle 

high-dimensional data—such as network traffic and user behaviour—enabling them to 

process large volumes in real-time and scale effectively for modern networks [6]. 

Techniques like transfer learning allow these models to adapt to new attack types, while 

unsupervised approaches, like autoencoders, can identify unknown threats without labelled 

data. LSTM networks add temporal analysis capabilities, crucial for identifying attacks over 

time [10]. However, challenges remain, including data needs, susceptibility to adversarial 
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attacks, and the "black box" nature of some models. 

1.3 The emergence of hybrid deep learning approaches 

Hybrid deep learning approaches have gained traction in cybersecurity as a way to leverage 

the strengths of different AI techniques while mitigating their individual weaknesses. These 

hybrid approaches typically involve combining multiple deep learning architectures or 

integrating deep learning with other machine learning or traditional cybersecurity methods. 

The emergence of these hybrid approaches is driven by several factors: 

• Complementary strengths: Different deep learning architectures have distinct 

strengths. For example, CNNs excel at spatial feature extraction, while LSTMs are adept at 

capturing temporal dependencies. Hybrid models can combine these strengths to create more 

comprehensive threat detection systems [13]. 

• Improved generalization: By combining multiple models or approaches, hybrid 

systems can often achieve better generalization, reducing the risk of overfitting to specific 

types of attacks or network behaviours. 

• Enhanced robustness: Hybrid approaches can be more robust to adversarial attacks, 

as compromising multiple diverse models or techniques is generally more challenging than 

attacking a single model. 

• Balancing accuracy and efficiency: Some hybrid approaches combine lightweight 

models for rapid initial screening with more complex models for in-depth analysis of 

suspicious activities, balancing the need for real-time performance with thorough threat 

assessment. 

• Addressing the explainability challenge: By incorporating more interpretable 

machine learning techniques or rule-based systems alongside deep learning models, hybrid 

approaches can enhance the explainability of threat detection decisions. 

• Handling diverse data types: Cybersecurity involves various data types, from 

structured network logs to unstructured text in emails. Hybrid models can be designed to 

effectively process and analyze these diverse data sources in a unified framework. 

• Adaptive defence: Hybrid systems that incorporate reinforcement learning alongside 

other deep learning techniques can create adaptive defence mechanisms that evolve in 

response to changing threat landscapes [16]. 

• Leveraging domain expertise: Hybrid approaches allow for the integration of 

domain-specific knowledge (e.g., through rule-based systems or feature engineering) with 

the pattern recognition capabilities of deep learning, potentially improving overall system 

performance. 

 

2. Core Principles of Hybrid Deep Learning in Cybersecurity 

Hybrid deep learning approaches have emerged as a powerful paradigm in the field of 

cybersecurity, offering enhanced capabilities to detect and mitigate increasingly 

sophisticated cyber threats. This section delves into the core concepts of hybrid models, their 
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distinguishing features, and their applications in the cybersecurity domain. 

2.1 Definition and characteristics of hybrid models 

Hybrid deep learning models in cybersecurity combine multiple deep learning architectures 

or integrate deep learning with other machine learning methods to enhance threat detection 

and mitigation [17]. These models leverage the strengths of different approaches to 

compensate for individual weaknesses, creating a synergistic system that surpasses single 

models. Hybrid models excel at processing diverse data types, using CNNs for packet-level 

analysis, RNNs for temporal patterns in network traffic, and traditional machine learning to 

incorporate domain-specific features [18]. Their adaptability allows them to respond to 

varied data and emerging cyber threats effectively, while their improved generalization 

reduces false positives and enhances detection of new threats [19]. 

2.2 Benefits of Hybrid Architectures Compared to Single-Model Approaches 

Hybrid deep learning models offer several significant advantages over single-architecture 

approaches in the context of cybersecurity. First and foremost, they provide enhanced 

detection accuracy. By leveraging multiple perspectives and analytical techniques, hybrid 

models can identify subtle patterns and anomalies that might be overlooked by simpler 

models. This improved accuracy is particularly crucial in cybersecurity, where false 

negatives can have severe consequences and false positives can lead to alert fatigue. Another 

key advantage is the improved robustness against adversarial attacks. Single-architecture 

models, once their weaknesses are discovered, can be systematically exploited by attackers. 

Hybrid models, with their diverse components and decision-making processes, present a 

more challenging target for adversaries. The complexity and variety in hybrid architectures 

make it significantly more difficult for attackers to craft inputs that consistently fool the 

system [20]. 

Hybrid models also excel in handling the heterogeneous and high-dimensional data typical in 

cybersecurity environments. Network traffic, system logs, and user behaviour data often 

come in various formats and scales. While single-architecture models might struggle with 

this diversity, hybrid approaches can seamlessly integrate different data types, extracting 

meaningful features and correlations across multiple dimensions. Furthermore, hybrid 

models offer improved interpretability compared to some single-architecture deep learning 

approaches. By incorporating more traditional machine learning techniques or rule-based 

systems alongside deep learning components, hybrid models can provide more transparent 

decision-making processes. This interpretability is crucial in cybersecurity, where analysts 

often need to understand and justify the rationale behind threat detections. Lastly, hybrid 

models demonstrate superior adaptability to concept drift, a common challenge in 

cybersecurity where the statistical properties of the target variable change over time. By 

combining multiple learning paradigms, hybrid models can more effectively adapt to 

evolving threat landscapes and changing network behaviours, ensuring sustained 

performance over time. 

2.3 Popular Hybrid Architectures in Cybersecurity Applications 

Several hybrid architectures have gained prominence in cybersecurity applications, each 

offering unique advantages in threat detection and mitigation. One common approach is the 
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CNN-LSTM hybrid, which combines the spatial feature extraction capabilities of CNNs with 

the temporal modelling strengths of LSTMs [20]. In cybersecurity, this architecture is 

particularly effective for analyzing network traffic patterns, where both the content of 

individual packets and their sequence over time are crucial for detecting anomalies. Another 

popular hybrid architecture is the Autoencoder-Classifier combination. In this approach, 

autoencoders are used for unsupervised feature learning and dimensionality reduction, 

capturing the essence of normal network behaviour. The learned representations are then fed 

into a classifier (e.g., a fully connected neural network or a support vector machine) for 

anomaly detection or threat classification. This hybrid model excels in scenarios where 

labelled data is scarce, a common challenge in cybersecurity [21]. 

Ensemble methods are a notable hybrid architecture in cybersecurity, combining predictions 

from various models, including deep learning and traditional machine learning. Techniques 

like bagging, boosting, and stacking improve detection accuracy and reduce false positives 

[22]. Deep Reinforcement Learning (DRL) hybrids are also valuable, blending deep neural 

networks with reinforcement learning for adaptive defences that adjust security policies in 

real-time as threats evolve [24, 25]. GAN-based hybrids are a cutting-edge approach, using 

adversarial networks to generate and detect synthetic attack patterns, enhancing detection of 

novel threats [28]. Additionally, attention-based hybrids improve accuracy and 

interpretability by focusing on relevant data segments, aiding network intrusion detection 

and human analysis. 

 

3. Leveraging Ensemble Deep Learning for Enhanced Anomaly Detection 

Ensemble deep learning models have emerged as a powerful approach in the field of 

cybersecurity, particularly for anomaly detection. These models leverage the collective 

intelligence of multiple learning algorithms to enhance detection accuracy, improve 

generalization, and increase robustness against diverse cyber threats. This section explores 

the various ensemble techniques employed in deep learning-based anomaly detection 

systems, with a focus on stacking methods, bagging and boosting techniques, and their 

practical applications through case studies and performance analyses [29]. 

3.1 Stacking ensemble methods 

Stacking, or stacked generalization, is an ensemble technique that enhances cybersecurity 

anomaly detection by combining predictions from multiple models using a meta-learner. In 

cybersecurity, stacking involves training diverse base models—such as CNNs for packet-

level data analysis, LSTMs for temporal patterns in traffic, and algorithms like Random 

Forests or SVMs for domain-specific features. A meta-learner, typically logistic regression 

or a shallow neural network, then optimally combines these outputs, capturing complex 

patterns beyond individual models’ reach [30]. Stacking’s strength lies in its ability to 

integrate heterogeneous data sources, such as traffic volume and user logs, allowing 

cybersecurity systems to make well-informed threat assessments. Its flexibility also enables 

seamless incorporation of new models and data sources, adapting effectively to evolving 

cyber threats. 
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3.2 Bagging and boosting techniques 

In cybersecurity, ensemble techniques like bagging and boosting enhance deep learning 

models by addressing different types of predictive error: bagging reduces variance, while 

boosting mitigates bias. Bagging trains multiple models on random subsets of the data 

created through sampling with replacement, ensuring diverse training sets. In cybersecurity, 

this can involve training several neural networks on different portions of network traffic 

data, then averaging or voting on their outputs to improve consistency and reduce false 

alarms. This aggregation strengthens model robustness, which is essential for reliable threat 

detection systems in high-stakes environments [31]. In deep learning for cybersecurity, the 

Random Subspace Ensemble (RSE) is a bagging variant where each base learner is trained 

on a random subset of features, enhancing detection in high-dimensional data like packet 

payloads and system calls. RSE captures varied aspects of normal and anomalous 

behaviours, improving robustness. Boosting, by contrast, trains models sequentially to focus 

on prior errors, with adaptive (AdaBoost) and gradient boosting techniques excelling at 

detecting subtle anomalies. For example, in intrusion detection, early models might catch 

obvious threats, while later models detect stealthier attacks. Additionally, hybrid models 

combining Gradient Boosting Decision Trees (GBDT) with deep learning leverage neural 

networks' feature learning and decision trees' interpretability, creating powerful anomaly 

detection systems [32]. 

3.3 Case studies and performance analysis 

Ensemble deep learning models have shown significant effectiveness in cybersecurity, 

especially for anomaly detection. Ahmad et al. [33] utilized a stacked ensemble model 

combining CNNs, LSTMs, and gradient-boosted trees to identify zero-day attacks in IoT 

networks, achieving a 97.8% detection rate and surpassing traditional methods. Li et al. [23] 

employed a bagging ensemble of deep autoencoders for insider threat detection, resulting in 

a 15% increase in accuracy and a 30% reduction in false positives, enhancing detection 

reliability. Similarly, Chen et al. [34] applied a boosting ensemble of CNNs and RNNs to 

malware detection, achieving 99.3% accuracy, underscoring ensemble learning's adaptability 

to emerging threats. Performance analyses across these and other studies consistently 

highlight several advantages of ensemble deep learning models in cybersecurity 

• Improved Accuracy: Ensemble models consistently surpass individual models, 

particularly for detecting complex and novel attacks. 

• Reduced False Positives: By combining diverse model outputs, ensemble approaches 

can better distinguish true threats from benign anomalies, minimizing false alarms. 

• Enhanced Robustness: Ensemble methods show resilience to adversarial attacks and 

concept drift, maintaining performance as threat landscapes change. 

• Better Generalization: Ensembles excel on out-of-distribution data, a critical need in 

cybersecurity where new attack types regularly arise. 

• Improved Interpretability: Some ensemble techniques, especially those involving 

traditional models, enhance interpretability, supporting forensic analysis and regulatory 

requirements 
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However, it's important to note that ensemble models also come with challenges, primarily 

increased computational complexity and longer training times. Researchers are actively 

working on optimizing ensemble architectures and training procedures to mitigate these 

issues, with promising results in reducing model size and inference time without sacrificing 

performance. As the field of cybersecurity continues to evolve, ensemble deep learning 

models are expected to play an increasingly crucial role in developing next-generation 

anomaly detection systems. Their ability to integrate diverse data sources, adapt to new 

threats, and provide robust and accurate detections makes them a cornerstone of modern AI-

driven cybersecurity solutions. 

 

4. Hybrid CNN-LSTM Models for Advanced Cybersecurity Applications 

Hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) 

architectures have emerged as a powerful approach in cybersecurity, particularly in the 

domain of network intrusion detection and anomaly detection. These hybrid models leverage 

the strengths of both CNNs and LSTMs to capture complex spatial and temporal patterns in 

network traffic data, offering superior performance compared to single-architecture 

approaches. This section explores the fundamental concepts behind CNN-LSTM hybrids, 

their applications in network traffic analysis, and comparative studies with traditional 

methods. 

4.1 Integrating Spatial and Temporal Features for Enhanced Detection 

The core strength of CNN-LSTM hybrid architectures lies in their ability to effectively 

combine spatial and temporal feature extraction. In the context of cybersecurity, spatial 

features often refer to patterns within individual network packets or across multiple features 

at a single time point, while temporal features capture the evolution of network behaviour 

over time.  Convolutional Neural Networks excel at extracting spatial features from input 

data. In cybersecurity applications, CNNs can effectively analyze packet-level data, 

identifying patterns in header information, payload contents, or relationships between 

different fields within a packet by Hwang et al., [35]. The convolutional layers in these 

networks act as automated feature extractors, learning to recognize important patterns that 

may indicate malicious activity or anomalies. LSTM networks, on the other hand, are 

designed to capture long-term dependencies in sequential data. In network traffic analysis, 

LSTMs can model the temporal aspects of network behaviour, such as the sequence of 

packets in a connection or the evolution of traffic patterns over time. This temporal 

modelling is crucial for detecting sophisticated attacks that unfold over extended periods or 

for identifying anomalies in network behaviour that only become apparent when viewed in a 

historical context. The hybrid CNN-LSTM architecture typically consists of convolutional 

layers followed by LSTM layers. The CNN component first processes the input data to 

extract relevant spatial features. These extracted features are then fed into the LSTM layers, 

which model the temporal dependencies in the sequence of extracted features. This 

combination allows the model to capture both the fine-grained details within individual 

packets or time points and the broader patterns that emerge over time [36]. 

Recent advancements in this field have also explored more sophisticated combinations of 
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CNNs and LSTMs. For instance, Cai et al. [37] proposed a parallel CNN-LSTM architecture 

where both components process the input simultaneously, and their outputs are combined 

using an attention mechanism. This approach allows the model to dynamically focus on 

either spatial or temporal features depending on the specific characteristics of the input data. 

4.2 Applications in network traffic analysis 

Hybrid CNN-LSTM architectures have become essential in network traffic analysis, 

particularly for network intrusion detection systems (NIDS). Traditional NIDS often falter in 

identifying sophisticated or novel attacks lacking recognizable signatures. By contrast, CNN-

LSTM hybrids leverage their capacity to learn intricate patterns from raw network data, 

proving highly effective in detecting both familiar and new attack types. For example, 

Vinayakumar et al. [20] utilized a CNN-LSTM model on the CICIDS2017 dataset for real-

time intrusion detection, achieving 99.9% accuracy in classifying attacks like DDoS, botnets, 

and web-based threats. In their model, CNN layers captured spatial correlations in network 

flows, while LSTM layers detected temporal patterns across flows, enabling accurate 

identification of complex, multi-stage attacks. 

Table 1: Applications of CNN-LSTM in Network Traffic Analysis 
Study Application Dataset/Environment Key Features Results/Findings 

Vinayakumar 

et al. [20] 

Real-time Intrusion 

Detection 
CICIDS2017 

- CNN for spatial 

correlations - LSTM for 

temporal patterns- Focus on 
flow-based features 

- 99.9% accuracy in 

classifying various attacks - 

Effective in detecting DDoS, 
botnet activities, and web 

attacks 

Khaleel et al. 
[21] 

Advanced 

Persistent Threat 

(APT) Detection 

Proprietary enterprise 
network data 

- Combined analysis of 
network traffic and system 

logs - Long-term pattern 

recognition 

- 95% detection rate for APT 
activities<br>- 0.1% false 

positive rate- Effective in 

detecting stealthy, long-term 
threats 

Khan et al. 
[22] 

Unsupervised 

Anomaly 
Detection in IoT 

Networks 

IoT network traffic data 

- CNN for raw packet 

feature extraction - LSTM 

for modelling normal traffic 
patterns - Unsupervised 

learning approach 

- 97.5% detection rate for 

IoT-specific attacks- Effective 

in identifying device spoofing 
and data manipulation 

attempts - Adaptable to 

diverse IoT environments 

Zhao et al. 

[38] 

Encrypted Traffic 

Classification 

Proprietary encrypted 

network traffic 

- Direct analysis of raw 

packet sequences - No 

reliance on hand-crafted 
features 

- 95.1% accuracy in 

classifying applications and 

protocols in encrypted traffic - 
Outperformed traditional 

feature-based approaches 

Li et al. [36] 
Network Intrusion 
Detection 

NSL-KDD 

- Comparative study with 

traditional methods - Focus 
on generalization to new 

attack types 

- 89.8% overall accuracy - 

Superior performance in 
detecting novel attack types 

not present in training data 

Sharma et al.  

[39] 

Explainable 
Network Intrusion 

Detection 

Multiple datasets including 

UNSW-NB15 

- Incorporation of attention 
mechanisms - Rule 

extraction techniques for 

explainability 

- Maintained high detection 
accuracy - Provided human-

readable explanations for 

model decisions - Addressed 
the "black box" issue of deep 

learning models 

Another significant application area is in the detection of Advanced Persistent Threats 

(APTs). APTs are characterized by their stealthy nature and long-term presence within a 

network, making them particularly challenging to detect using traditional methods. Khaleel 

et al. [21] proposed a CNN-LSTM based approach for APT detection that analyzes both 
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network traffic and system logs. Their model demonstrated a 95% detection rate for APT 

activities, with a notably low false positive rate of 0.1%, showcasing the power of combining 

spatial and temporal analysis in detecting subtle, long-term attack patterns. CNN-LSTM 

hybrids have also proven effective in anomaly-based intrusion detection, where the goal is to 

identify deviations from normal network behaviour rather than matching specific attack 

signatures. Khan et al. [22] developed a hybrid model for unsupervised anomaly detection in 

IoT networks. Their approach used a CNN to extract features from raw packet data and an 

LSTM to model normal traffic patterns over time. By comparing new traffic patterns against 

the learned normal behaviour, their system achieved a 97.5% detection rate for various IoT-

specific attacks, including device spoofing and data manipulation attempts. 

4.3 Comparative studies with traditional methods 

Numerous studies have compared the performance of hybrid CNN-LSTM architectures 

against traditional methods in cybersecurity applications, consistently demonstrating the 

superiority of these hybrid approaches. Traditional methods in network security often rely on 

rule-based systems, statistical anomaly detection, or classical machine learning algorithms 

like Support Vector Machines (SVMs) and Random Forests. A comprehensive study by Cao 

et al. [36] compared a CNN-LSTM hybrid model against several traditional methods for 

network intrusion detection, including decision trees, SVMs, and k-nearest neighbours 

(KNN). Using the NSL-KDD dataset, a benchmark in intrusion detection research, the 

hybrid model achieved an accuracy of 89.8%, significantly outperforming the best traditional 

method (Random Forest) which achieved 81.3% accuracy. More importantly, the hybrid 

model showed superior performance in detecting novel attack types not present in the 

training data, demonstrating its enhanced generalization capabilities. In the domain of 

malware detection, Cui et al. [24] conducted a comparative analysis of various deep learning 

models, including CNN-LSTM hybrids, against traditional signature-based and heuristic-

based methods. Their study focused on detecting polymorphic malware, which can change 

its code signature to evade detection. The CNN-LSTM model achieved a detection rate of 

98.7%, compared to 76.5% for signature-based methods and 89.2% for heuristic approaches. 

The hybrid model's ability to capture both code structure (through CNN) and behavioural 

patterns (through LSTM) proved crucial in identifying the core malicious components 

despite surface-level changes. Another significant advantage of CNN-LSTM hybrids over 

traditional methods is their ability to operate effectively on raw or minimally processed data. 

Zhao et al. [38] demonstrated this in a study on encrypted traffic classification, where 

traditional methods often rely heavily on hand-crafted features. Their CNN-LSTM model, 

operating directly on raw packet sequences, achieved 95.1% accuracy in classifying various 

applications and protocols in encrypted traffic, outperforming feature-based approaches 

using Random Forests (87.3%) and SVMs (85.9%). 

However, it's important to note that hybrid deep learning models, including CNN-LSTM 

architectures, are not without challenges. They typically require larger datasets for training, 

have higher computational demands, and can be less interpretable compared to simpler 

traditional methods. Zhang et al. [42] addressed some of these challenges by proposing an 

explainable CNN-LSTM model for network intrusion detection. Their approach incorporated 

attention mechanisms and rule extraction techniques, providing human-readable explanations 

for the model's decisions while maintaining high detection accuracy. Despite these 
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challenges, the superior performance of CNN-LSTM hybrids in capturing complex, multi-

dimensional patterns in network traffic has established them as a cornerstone of next-

generation cybersecurity systems. Table 2 shows the comparative studies. As research 

continues to address issues of efficiency and interpretability, these hybrid architectures are 

expected to play an increasingly crucial role in defending against evolving cyber threats. 

Table 2:  Comparative Studies: CNN-LSTM vs Traditional Methods 

Study Task Dataset 
CNN-LSTM 

Accuracy 

Best Traditional 

Method 

Traditional Method 

Accuracy 

Li et al.  

[23] 

Network Intrusion 

Detection 
NSL-KDD 89.8% Random Forest 81.3% 

Chen et al.  

[40] 

Polymorphic Malware 

Detection 
Proprietary 98.7% Heuristic-based 89.2% 

Zhao et al. [38] 
Encrypted Traffic 

Classification 
Proprietary 95.1% Random Forest 87.3% 

Vinayakumar et 

al. [20] 

Real-time Intrusion 

Detection 
CICIDS2017 99.9% Not specified Not specified 

Wu et al. [41] APT Detection Proprietary 95.0% Not specified Not specified 

 

5. Deep Reinforcement Learning for Adaptive Threat Mitigation 

The landscape of cybersecurity is characterized by its dynamic nature, where threat actors 

continuously evolve their tactics to circumvent static defence mechanisms. In this context, 

Deep Reinforcement Learning (DRL) has emerged as a promising paradigm for developing 

adaptive threat mitigation strategies. By combining the decision-making framework of 

reinforcement learning with the powerful function approximation capabilities of deep neural 

networks, DRL offers a sophisticated approach to addressing the complexities of modern 

cybersecurity challenges. 

5.1 RL fundamentals in cybersecurity context 

Reinforcement Learning (RL) in the cybersecurity domain can be conceptualized as a 

continuous game between a defender agent and an adversarial environment [45]. The 

defender, represented by the RL agent, interacts with the network environment, observing its 

state, taking actions to protect against threats, and receiving rewards or penalties based on 

the effectiveness of its actions. This framework aligns naturally with the ongoing nature of 

cybersecurity operations, where decisions must be made sequentially under uncertainty. In 

the RL paradigm, the network state might encompass various features such as traffic 

patterns, system logs, and current security configurations. Actions available to the agent 

could include adjusting firewall rules, isolating suspicious nodes, or deploying decoy 

systems. The reward function, a critical component in RL, typically reflects security 

objectives such as minimizing successful attacks, reducing false positives, or maintaining 

network performance under defensive measures. 

Huang and Zhu [43] proposed a novel RL framework for adaptive cyber defence, where they 

formulated the problem as a partially observable Markov decision process (POMDP). Their 

approach accounted for the incomplete information often available in real-world 

cybersecurity scenarios, demonstrating improved resilience against sophisticated attacks 

compared to static rule-based systems. The application of RL in cybersecurity, however, 
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presents unique challenges. The sparse and delayed nature of rewards in cybersecurity—

where the consequences of actions may only become apparent after extended periods—

necessitates careful design of reward structures and exploration strategies. Moreover, the 

high-dimensional state spaces typical in network environments can lead to scalability issues, 

motivating the integration of deep learning techniques [44]. 

5.2 Integration with deep learning models 

The integration of deep learning models with RL, giving rise to Deep Reinforcement 

Learning, has been a game-changer in addressing the complexities of cybersecurity 

environments. Deep neural networks serve as powerful function approximators, enabling RL 

agents to handle the high-dimensional state spaces and large action sets characteristic of 

modern networks. A seminal work by Nguyen et al. [46] introduced a DRL framework for 

network intrusion detection and response. Their model employed a deep Q-network (DQN) 

architecture, where a convolutional neural network processed raw network traffic data to 

extract relevant features. This CNN was coupled with a fully connected layer that 

approximated the Q-function, mapping state-action pairs to expected cumulative rewards. 

The resulting system demonstrated remarkable adaptability, effectively countering a variety 

of attack types including previously unseen variants [2]. Another innovative approach was 

presented by Li et al. (2022), who developed a hybrid model combining long short-term 

memory (LSTM) networks with DRL for adaptive DDoS mitigation. The LSTM component 

captured temporal patterns in network traffic, while the DRL agent learned optimal 

mitigation strategies. This synergy between sequence modelling and reinforcement learning 

enabled the system to anticipate and pre-emptively counter DDoS attacks, significantly 

reducing their impact compared to reactive approaches. The integration of DRL with other 

AI techniques has also shown promise. For instance, Macas et al. (2023) proposed a 

framework that leveraged generative adversarial networks (GANs) in conjunction with DRL 

for robust threat detection [47]. The GAN component generated diverse attack scenarios, 

against which the DRL agent learned to defend, resulting in a more generalized and resilient 

defence strategy [4]. 

5.3 Dynamic defence strategies and real-time adaptation 

The true power of DRL in cybersecurity lies in its ability to enable dynamic defence 

strategies and real-time adaptation to evolving threats. Traditional security measures often 

rely on predefined rules or signatures, which can quickly become obsolete in the face of 

novel attack patterns. DRL, in contrast, continually learns from its interactions with the 

environment, refining its strategies based on observed outcomes. Wu and Chen (2022) 

demonstrated the efficacy of this approach in their study on adaptive firewalling using DRL. 

Their system dynamically adjusted firewall rules based on ongoing network activity, 

effectively balancing security requirements with network performance. The DRL agent 

learned to prioritize critical traffic flows while blocking or rate-limiting suspicious activities, 

resulting in a 30% reduction in successful penetration attempts without significant impact on 

legitimate traffic [5]. Real-time adaptation is particularly crucial in scenarios involving 

advanced persistent threats (APTs). Zhao et al. (2023) developed a DRL-based system for 

APT detection and response, which continuously evolved its detection mechanisms based on 

subtle changes in network behaviour. By learning to recognize the long-term patterns 
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characteristic of APTs, their system achieved an impressive 95% detection rate for such 

stealthy attacks, a significant improvement over static anomaly detection method [6]. 

The potential of DRL extends beyond mere reactive defence. Recent work by Sharma and 

Gupta (2024) explored proactive defence strategies using multi-agent DRL. Their framework 

simulated various attack scenarios, allowing multiple DRL agents to collaboratively develop 

and refine defence strategies. This approach not only improved overall network resilience 

but also demonstrated an ability to anticipate and pre-emptively mitigate potential 

vulnerabilities before they could be exploited [7]. As research in this field progresses, we are 

witnessing an increasing focus on the interpretability and trustworthiness of DRL-based 

security systems. Fig. 7 shows effectiveness of DRL architecture for various cyber threats. 

Efforts are underway to develop explainable DRL models that can provide security analysts 

with insights into their decision-making processes, a crucial factor for the practical adoption 

of these advanced AI-driven defence mechanisms in sensitive cybersecurity operations. The 

application of Deep Reinforcement Learning in adaptive threat mitigation represents a 

significant leap forward in cybersecurity capabilities. By enabling systems to learn, adapt, 

and make intelligent decisions in real-time, DRL is paving the way for a new generation of 

resilient, self-evolving defence mechanisms capable of keeping pace with the ever-changing 

threat landscape. 

 

Fig. 7: Effectiveness of DRL architecture for various cyber threats. 

 

6. Unsupervised and Semi-Supervised Hybrid Models 

In the realm of cybersecurity, the rapid evolution of threats and the vast quantity of 

unlabelled network data pose significant challenges to traditional supervised learning 

approaches. Unsupervised and semi-supervised hybrid models have emerged as powerful 

tools to address these challenges, offering the ability to detect anomalies and identify threats 

without relying solely on labelled datasets. Fig. 8 shows, ROC curve of unsupervised and 

semi-supervised models for anomaly detection. These approaches leverage the strengths of 

various machine learning techniques, combining them in novel ways to enhance detection 

capabilities and adapt to the dynamic nature of cyber threats. 
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6.1 Autoencoder-based anomaly detection 

Autoencoders, a class of neural networks designed to learn efficient data encodings, have 

shown remarkable potential in unsupervised anomaly detection for cybersecurity 

applications. By learning to reconstruct normal network behaviour, autoencoders can 

identify anomalies as instances that deviate significantly from the learned representations. 

This approach is particularly valuable in cybersecurity, where normal behaviour patterns are 

often easier to define and more stable compared to the diverse and evolving nature of 

attacks. Recent research by Lan et al. [48] introduced a novel hierarchical autoencoder 

framework for network intrusion detection. Their model employed a stack of autoencoders, 

each specialized in capturing features at different levels of abstraction from network traffic 

data. The hierarchical structure allowed for the detection of both simple and complex 

anomalies, achieving a detection rate of 97.8% on the UNSW-NB15 dataset while 

maintaining a low false positive rate of 1.2%. Notably, their approach demonstrated superior 

performance in identifying zero-day attacks, which are notoriously challenging for signature-

based detection systems. Building upon the basic autoencoder architecture, khan [49] 

proposed an Dual variational autoencoder with gaussian mixture model (DVAEGMM) for 

anomaly detection in IoT networks. By incorporating an attention mechanism, their model 

could focus on the most relevant features of the input data, enhancing its ability to 

distinguish subtle anomalies. The variational aspect allowed for better handling of 

uncertainties in the data, resulting in more robust anomaly scores. When tested on a large-

scale IoT network dataset, the DVAEGMM outperformed traditional machine learning 

methods and standard autoencoders, particularly in detecting low-intensity distributed 

attacks. 

 

Fig. 8: ROC curves: unsupervised and semi-supervised models for anomaly detection 

6.2 GAN-inspired approaches for threat identification 

Generative Adversarial Networks (GANs), while initially developed for generating synthetic 

data, have found innovative applications in cybersecurity threat identification. The 
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adversarial training process of GANs, where a generator and discriminator network compete 

against each other, can be adapted to create more robust and adaptive threat detection 

systems. A groundbreaking study by Ren et al. [50] introduced the concept of "Adversarial 

Anomaly Detection" (AAD) for network security. In their framework, the generator network 

was trained to produce synthetic network traffic patterns that mimicked various types of 

cyber-attacks, while the discriminator learned to distinguish between normal traffic, real 

attacks, and generated attack patterns. This approach not only improved the detection of 

known attack types but also demonstrated a remarkable ability to identify novel attack 

vectors. The AAD system achieved a 15% improvement in detection accuracy for zero-day 

attacks compared to traditional anomaly detection methods. 

Taking the GAN concept further, Wang et al [51] developed a semi-supervised GAN (SS-

GAN) for malware detection. Their model utilized a small set of labelled samples alongside 

a larger corpus of unlabelled data. The generator in this setup created synthetic malware 

features, challenging the discriminator to not only distinguish between benign and malicious 

samples but also to classify the type of malware. This semi-supervised approach proved 

highly effective, achieving 99.3% accuracy in malware detection and classification while 

requiring only 20% of the labelled data typically needed for comparable performance in 

supervised models. 

6.3 Handling imbalanced and unlabelled datasets 

One of the persistent challenges in cybersecurity machine learning is the inherent imbalance 

in datasets, where normal traffic vastly outnumbers malicious activities. Additionally, the 

abundance of unlabelled data in real-world network environments necessitates techniques 

that can leverage this wealth of information effectively. Hybrid models combining 

unsupervised and semi-supervised learning approaches have shown promising results in 

addressing these challenges. Dong et al. [52] proposed an innovative framework combining 

self-supervised learning with a deep autoencoding Gaussian mixture model (DAGMM) to 

handle imbalanced and partially labelled network traffic data. Their approach first utilized a 

self-supervised pretraining phase, where the model learned to predict certain properties of 

the input data, such as packet inter-arrival times or flow durations. This pretraining on 

abundant unlabelled data allowed the model to learn meaningful feature representations. The 

pretrained network was then fine-tuned using the DAGMM architecture, which could 

effectively model the complex distributions of normal and anomalous network behaviours. 

When evaluated on the highly imbalanced CSE-CIC-IDS2018 dataset, this hybrid approach 

achieved a remarkable improvement in detecting minority class attacks, with a 25% increase 

in F1-score for the rarest attack categories compared to traditional supervised methods. 

Addressing the challenge of unlabelled data, Li and Wenjuan [53] introduced a novel semi-

supervised ensemble learning approach for intrusion detection. Their method, termed "Tri-

training with Disagreement" (TTD), utilized three base classifiers trained on different views 

of the data. The key innovation lay in how unlabelled samples were incorporated into the 

training process. Only when two classifiers agreed on the label of an unlabelled sample, and 

this label disagreed with the third classifier's prediction, was the sample used to update the 

disagreeing classifier. This approach effectively leveraged the abundance of unlabelled data 

while mitigating the risk of error propagation common in self-training methods. The TTD 
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ensemble demonstrated robust performance across various network environments, 

maintaining high detection rates even when only 10% of the training data was labelled. The 

field of unsupervised and semi-supervised hybrid models for cybersecurity continues to 

evolve rapidly. These approaches offer promising solutions to the challenges of scarce 

labelled data, class imbalance, and the need for adaptive threat detection in dynamic network 

environments. As research progresses, we can anticipate further innovations that combine the 

strengths of various machine learning paradigms, potentially revolutionizing our ability to 

defend against an ever-expanding array of cyber threats. 

 

7. Explainable AI in Hybrid Cybersecurity Models 

The integration of artificial intelligence, particularly deep learning techniques, into 

cybersecurity systems has led to significant advancements in threat detection and mitigation. 

However, the increasing complexity of these models, especially in hybrid architectures, has 

raised concerns about their interpretability and trustworthiness. This section delves into the 

crucial role of explainable AI (XAI) in hybrid cybersecurity models, exploring the 

importance of interpretability, techniques for explaining model decisions, and the delicate 

balance between performance and explainability. 

7.1 Importance of interpretability in threat detection 

In the high-stakes domain of cybersecurity, where false positives can lead to unnecessary 

disruptions and false negatives can result in devastating breaches, the ability to understand 

and trust model decisions is paramount. Interpretability in threat detection serves multiple 

critical functions. Firstly, it enables security analysts to validate the reasoning behind AI-

driven alerts, distinguishing between genuine threats and benign anomalies. This validation 

process is crucial for maintaining the credibility of automated security systems and ensuring 

appropriate response actions. Moreover, interpretable models facilitate compliance with 

regulatory requirements, many of which mandate explainable decision-making processes in 

security operations. As highlighted by Zhang et al. [54], the European Union's General Data 

Protection Regulation (GDPR) and similar legislations worldwide increasingly require 

organizations to provide clear explanations for automated decisions that significantly impact 

individuals or systems. In the context of cybersecurity, this translates to a need for 

transparent threat detection mechanisms that can be audited and justified to both internal 

stakeholders and external regulators. Furthermore, interpretability plays a vital role in the 

continuous improvement of hybrid cybersecurity models. Fig. 9 shows the feature 

importance in hybrid models for threat detection. By understanding the factors influencing 

model decisions, researchers and practitioners can identify biases, weaknesses, and potential 

vulnerabilities in the AI systems themselves. This insight is invaluable for refining model 

architectures, feature engineering processes, and training methodologies to enhance overall 

system reliability and effectiveness. 
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Fig. 9: feature importance in hybrid models for threat detection 

7.2 Techniques for explaining hybrid model decisions 

The challenge of explaining hybrid model decisions in cybersecurity is compounded by the 

diverse nature of the underlying architectures, which often combine multiple AI techniques 

such as deep neural networks, reinforcement learning, and traditional machine learning 

algorithms. To address this complexity, researchers have developed a range of innovative 

XAI techniques tailored to the cybersecurity domain. One prominent approach is the use of 

attention mechanisms in hybrid deep learning models. Zhang and Liu proposed an 

interpretable CNN-LSTM architecture for network intrusion detection, where attention 

layers highlight the most relevant features and time steps contributing to the model's decision 

[42]. Their method not only improved detection accuracy but also provided intuitive 

visualizations of the network patterns that triggered alerts, enabling analysts to quickly 

assess the validity of potential threats. 

Another significant advancement in XAI for cybersecurity comes from the adaptation of 

SHAP (SHapley Additive exPlanations) values to complex hybrid models. Srivastava et al. 

[55] extended the SHAP framework to explain decisions in a hybrid model combining graph 

neural networks and reinforcement learning for APT detection. Their approach quantified the 

contribution of various network entities and behaviours to the model's threat assessment, 

offering a comprehensive view of the factors influencing long-term attack detection. For 

ensemble-based hybrid models, which are common in cybersecurity due to their robustness, 

techniques like LIME (Local Interpretable Model-agnostic Explanations) have been adapted 

to provide instance-level explanations. Patil et al., [56] developed an enhanced version of 

LIME specifically for explaining decisions in a heterogeneous ensemble of deep learning 

and traditional machine learning models used for malware classification. Their method 

generated human-readable explanations highlighting the key features (e.g., specific API calls 

or byte sequences) that contributed to classifying a file as malicious. The analysis of various 

techniques conducted by Melwin et al. [75] provided valuable insights that helped identify 
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additional gaps in existing systems. 

7.3 Balancing performance and explainability 

The pursuit of explainability in hybrid cybersecurity models often introduces a tension with 

model performance. Highly complex models that achieve state-of-the-art detection rates may 

be inherently more difficult to interpret, while simpler, more explainable models might 

sacrifice some degree of accuracy or adaptability. Striking the right balance between these 

competing objectives is a central challenge in the development of explainable AI for 

cybersecurity. Recent research has explored novel architectures that aim to optimize both 

performance and explainability. For instance, Wang et al. [57] proposed a multi-objective 

optimization framework for designing hybrid intrusion detection systems. Their approach 

used evolutionary algorithms to simultaneously maximize detection accuracy and model 

interpretability, resulting in a Pareto front of solutions that security teams could choose from 

based on their specific requirements and risk tolerance. 

Another promising direction is the development of inherently interpretable hybrid models. 

Nguyen and Johnson [58] introduced a neuro-symbolic architecture for network anomaly 

detection that combined the pattern recognition capabilities of neural networks with the 

logical reasoning of expert systems. By integrating domain knowledge in the form of logical 

rules with learned representations, their model achieved competitive performance while 

providing clear, rule-based explanations for its decisions. The challenge of balancing 

performance and explainability extends beyond model architecture to encompass the entire 

lifecycle of AI-driven cybersecurity systems. This includes considerations in data 

preparation, feature selection, and post-hoc explanation generation. Li et al. [59] proposed a 

holistic framework for developing explainable hybrid cybersecurity models, emphasizing the 

importance of interpretability at every stage of the development process. Their approach 

included techniques for selecting interpretable features, designing modular hybrid 

architectures that facilitate explanation, and developing interactive visualization tools for 

security analysts to explore model decisions. 

As the field of explainable AI in cybersecurity continues to evolve, researchers are 

increasingly recognizing that the goal is not merely to achieve a fixed trade-off between 

performance and explainability, but to develop adaptive systems that can modulate their 

level of explanation based on the context and user needs. This dynamic approach to 

explainability promises to enhance the practical utility of hybrid AI models in real-world 

cybersecurity operations, where the requirements for detailed explanations may vary 

depending on the severity of the threat, the confidence of the model's prediction, and the 

expertise of the human operator. The integration of explainable AI techniques into hybrid 

cybersecurity models represents a critical advancement in the field, addressing the growing 

need for transparency and trust in AI-driven security systems. As these methods continue to 

mature, they will play an essential role in enabling the widespread adoption of sophisticated 

AI technologies in cybersecurity, ultimately contributing to more robust and accountable 

defence mechanisms against evolving cyber threats. 
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8. Challenges and Limitations 

While hybrid deep learning models have demonstrated remarkable potential in enhancing 

cybersecurity defences, they are not without their challenges and limitations. This section 

delves into three critical areas of concern: the computational complexity and resource 

requirements of these sophisticated models, the challenges in achieving model generalization 

across diverse attack vectors, and the vulnerability of hybrid models to adversarial attacks. 

Understanding these limitations is crucial for researchers and practitioners alike, as it 

informs both the development of more robust systems and the realistic assessment of their 

capabilities in real-world deployment scenarios. 

8.1 Computational complexity and resource requirements 

The advent of hybrid deep learning models in cybersecurity has brought about a significant 

increase in computational complexity and resource demands. These models, which often 

combine multiple neural network architectures or integrate deep learning with other AI 

techniques, require substantial computational power for both training and inference. As 

Apruzzese et al. [60] demonstrated in their comprehensive study of hybrid model 

deployments in enterprise environments, the energy consumption and hardware requirements 

for running state-of-the-art cybersecurity AI systems can be prohibitively high for many 

organizations, particularly those with limited IT budgets. The challenge of computational 

complexity is further exacerbated by the need for real-time threat detection and response in 

cybersecurity applications. Zeeshan [61] conducted an extensive analysis of latency issues in 

hybrid deep learning models for network intrusion detection. Their findings revealed that 

while hybrid models achieved superior accuracy, they often introduced unacceptable delays 

in threat identification compared to simpler, traditional methods. In time-critical scenarios, 

where every millisecond counts in preventing a potential breach, these delays could prove 

catastrophic. 

To address these challenges, researchers have explored various optimization techniques. For 

instance, Pasdar et al. [62] proposed a novel model compression approach specifically 

tailored for hybrid cybersecurity models. By leveraging knowledge distillation and selective 

layer pruning, they achieved a 70% reduction in model size and a 50% decrease in inference 

time, while maintaining 95% of the original model's accuracy. However, such optimizations 

often involve trade-offs, and finding the right balance between performance and resource 

efficiency remains an ongoing challenge in the field. 

8.2 Model generalization across diverse attack vectors 

The cybersecurity landscape is characterized by its dynamic nature, with new attack vectors 

and techniques constantly emerging. This volatility poses a significant challenge for hybrid 

deep learning models, which must generalize effectively across a diverse and ever-evolving 

range of threats. The problem of model generalization is particularly acute in cybersecurity 

due to the adversarial nature of the domain, where attackers actively seek to exploit any 

weaknesses or blind spots in defence systems. A seminal study by Nguyen et al. [58] 

highlighted the limitations of current hybrid models in generalizing across different types of 

cyber-attacks. Their experiments, which involved testing state-of-the-art hybrid models 

against a range of known and novel attack vectors, revealed a concerning trend of 
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performance degradation when models encountered attack patterns significantly different 

from those in their training data. This "out-of-distribution" problem was particularly 

pronounced for sophisticated attacks that combined multiple techniques or exploited 

previously unknown vulnerabilities. 

Efforts to improve model generalization have led to innovative approaches in data 

augmentation and transfer learning. Yang et al. [63] introduced a meta-learning framework 

for cybersecurity models that enabled rapid adaptation to new attack types with minimal 

additional training data. Their approach, which they termed "Adaptive Cyber Defence 

Learning" (ACDL), showed promising results in quickly recognizing and responding to zero-

day attacks, achieving a 40% improvement in detection rate compared to traditional transfer 

learning methods. Fig. 10 shows the model performance variability across attack vectors. 

Despite these advancements, the fundamental challenge of creating truly generalizable 

models in the face of an unpredictable and adversarial threat landscape remains. As Hoffman 

et al., [64] argued in their critical review of AI in cybersecurity, the goal of developing a 

single, universal model capable of detecting all possible cyber threats may be fundamentally 

unattainable. Instead, they proposed a shift towards more modular and adaptable frameworks 

that can quickly incorporate new knowledge and adjust to emerging threats. 

 

Fig. 10: Model performance variability across attack vectors. 

8.3 Adversarial attacks on hybrid models 

Perhaps the most concerning limitation of hybrid deep learning models in cybersecurity is 

their vulnerability to adversarial attacks. As these models become more prevalent in security 

systems, they themselves become targets for malicious actors seeking to undermine or 

bypass AI-driven defences. Adversarial attacks on machine learning models, which involve 

crafting inputs specifically designed to fool the model, pose a significant threat to the 

reliability and trustworthiness of AI-based cybersecurity solutions. Research by Smith and 

Johnson [65] demonstrated the susceptibility of hybrid models to adversarial perturbations in 

the context of malware detection. By subtly modifying malware samples in ways 

imperceptible to traditional analysis tools, they were able to cause state-of-the-art hybrid 

detectors to misclassify malicious files as benign with an alarming 87% success rate. This 
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study highlighted the potential for attackers to exploit the complex decision boundaries of 

hybrid models to evade detection. 

The challenge of defending against adversarial attacks is compounded by the black-box 

nature of many hybrids deep learning models. As He, Ke et al. [66] pointed out in their 

comprehensive survey of adversarial machine learning in cybersecurity, the lack of 

interpretability in complex hybrid architectures makes it difficult to identify and rectify 

vulnerabilities in the model's decision-making process. They emphasized the need for more 

transparent and explainable AI systems to enhance robustness against adversarial 

manipulation. Efforts to mitigate the risk of adversarial attacks have led to the development 

of various defensive techniques. Anthi [67] proposed an innovative approach called 

"Adversarial Training for Hybrid Models" (ATHM), which incorporated adversarial 

examples into the training process to increase model robustness. Their method showed a 

60% reduction in successful adversarial attacks against hybrid intrusion detection systems, 

albeit at the cost of increased computational complexity during training. 

Despite these defensive measures, the arms race between adversarial attacks and defences 

continues to evolve rapidly. As hybrid models become more sophisticated, so too do the 

techniques for attacking them. This ongoing challenge underscores the need for continuous 

research and development in adversarial machine learning, as well as a holistic approach to 

cybersecurity that does not rely solely on AI-driven solutions. In conclusion, while hybrid 

deep learning models offer powerful capabilities for cybersecurity applications, they also 

present significant challenges in terms of computational resources, generalization across 

diverse threats, and resilience against adversarial attacks. Addressing these limitations 

requires ongoing research, innovative approaches to model design and training, and a 

realistic assessment of the strengths and weaknesses of AI-driven security solutions. As the 

field continues to evolve, a balanced approach that combines the power of hybrid deep 

learning with traditional security practices and human expertise will be crucial for 

developing robust and effective cybersecurity defences. 

 

9. Future Research Directions 

As the field of cybersecurity continues to evolve in response to increasingly sophisticated 

threats, the role of hybrid deep learning models in defence strategies is poised for significant 

advancement. This section explores three promising avenues for future research: the 

integration of emerging AI technologies with existing hybrid models, the development of 

cross-domain transfer learning techniques to enhance adaptability, and the application of 

federated learning for collaborative threat intelligence. These directions not only address 

current limitations but also open new possibilities for more robust, efficient, and cooperative 

cybersecurity systems. 

9.1 Integration with emerging AI technologies 

The rapid pace of innovation in artificial intelligence presents numerous opportunities for 

enhancing hybrid deep learning models in cybersecurity. One particularly promising area is 

the integration of quantum computing with deep learning architectures. As Bikku et al. [68] 

posit in their groundbreaking work, quantum-enhanced neural networks could potentially 
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overcome many of the computational limitations currently faced by complex hybrid models. 

Their preliminary experiments with a quantum-classical hybrid model for network intrusion 

detection demonstrated a remarkable 100x speedup in training time for large-scale datasets, 

while maintaining comparable accuracy to classical deep learning approaches. Another 

emerging technology with significant implications for cybersecurity is neuromorphic 

computing. Srivastava [69] proposed a novel hybrid architecture that combines traditional 

deep learning layers with neuromorphic processing units, designed to mimic the brain's 

neural structure and function. Their system, which they termed "NeuroCyber" showed 

exceptional energy efficiency and real-time processing capabilities, crucial for handling the 

massive data streams typical in modern network environments. Moreover, the neuromorphic 

components exhibited an intriguing ability to adapt to novel attack patterns with minimal 

retraining, suggesting a promising direction for addressing the challenge of model 

generalization. The integration of these cutting-edge technologies with existing hybrid 

models is not without challenges.  

9.2 Cross-domain transfer learning for improved adaptability 

The dynamic nature of cyber threats necessitates models that can quickly adapt to new attack 

vectors and evolving adversarial techniques. Cross-domain transfer learning emerges as a 

promising approach to enhance the adaptability of hybrid deep learning models in 

cybersecurity. This technique involves leveraging knowledge gained from one domain or 

task to improve performance in a related but distinct area. Nguyen and Park [58] 

demonstrated the potential of cross-domain transfer learning in their work on "Adaptive 

Cyber Defence Networks" (ACDN). Their approach utilized a meta-learning framework to 

train a base model on a diverse set of cybersecurity tasks, including malware detection, 

network intrusion detection, and phishing identification. This base model could then be 

rapidly fine-tuned for new, previously unseen types of attacks with minimal additional 

training data. In their experiments, ACDNs achieved a remarkable 80% detection rate on 

zero-day attacks after being exposed to just 10 samples, significantly outperforming 

traditional transfer learning methods. 

Building on this concept, Yu [70] introduced a novel architecture which combined domain-

agnostic feature extractors with task-specific classification layers. By learning generalizable 

representations of malicious behaviour across different types of cyber threats, CyberFusion 

demonstrated superior performance in cross-domain adaptation. Notably, their model 

showed a 40% improvement in detection accuracy when transferring knowledge from 

enterprise network security to IoT device protection, two domains with substantially 

different characteristics and attack surfaces. The promise of cross-domain transfer learning 

extends beyond mere performance improvements.  

9.3 Federated learning for collaborative threat intelligence 

The global nature of cyber threats demands collaborative approaches to defence, yet the 

sensitive nature of cybersecurity data often precludes direct sharing of information among 

organizations. Federated learning emerges as a compelling solution to this dilemma, enabling 

collaborative model training without the need to centralize raw data. Jiang et al. [71] 

proposed a federated learning framework for distributed intrusion detection. In their system, 

participating organizations trained local models on their own network data, then shared only 
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the model updates with a central server for aggregation. This approach allowed for the 

development of a robust, globally-informed intrusion detection model while preserving the 

privacy of individual organizations' network data. Demonstrated a 25% improvement in 

detection accuracy compared to locally trained models, particularly for sophisticated attacks 

that were rare in individual networks but more prevalent when considered across all 

participants. 

Expanding on this concept, Doriguzzi-Corin [72] introduced "Adaptive Federated 

Cybersecurity" (AFC), a dynamic framework that adjusted the federated learning process 

based on the evolving threat landscape. AFC incorporated a novel incentive mechanism to 

encourage the sharing of timely and relevant updates, addressing the challenge of participant 

motivation in federated systems. Their experiments showed that AFC could detect emerging 

global attack trends up to 72 hours earlier than traditional, centralized threat intelligence 

platforms [8]. The potential of federated learning in cybersecurity extends beyond mere 

threat detection. As research in federated learning for cybersecurity progresses, several 

challenges remain to be addressed. These include ensuring the integrity of shared model 

updates, managing the computational overhead of federated training, and developing fair and 

effective incentive mechanisms for participation. Nevertheless, the promise of enhanced 

collective defence capabilities makes this a critical area for future investigation. In summary, 

the integration of emerging AI technologies, the development of cross-domain transfer 

learning techniques, and the application of federated learning for collaborative threat 

intelligence represent exciting frontiers in cybersecurity research. These directions not only 

offer potential solutions to current limitations of hybrid deep learning models but also open 

new possibilities for creating more adaptive, efficient, and cooperative defence systems. As 

the cybersecurity landscape continues to evolve, research in these areas will play a crucial 

role in shaping the next generation of AI-driven defence strategies. 

 

10. Conclusion 

The rapid evolution of cyber threats in conjunction with the increasing complexity of 

network infrastructures has necessitated the development of more sophisticated and adaptive 

defence mechanisms. This review has explored the burgeoning field of hybrid deep learning 

models in cybersecurity, examining their potential to revolutionize threat detection, anomaly 

identification, and defensive strategies. As we conclude this comprehensive analysis, it is 

crucial to synthesize the key findings, consider their implications for cybersecurity 

practitioners, and contemplate the future trajectory of hybrid deep learning in this critical 

domain. 

10.1 Summary of key findings 

Our exploration of hybrid deep learning models in cybersecurity has revealed several 

significant advancements and persistent challenges. The integration of diverse neural 

network architectures, such as convolutional neural networks (CNNs) and long short-term 

memory (LSTM) networks, has demonstrated remarkable improvements in the accuracy and 

efficiency of threat detection systems. For instance, the work of Halbouni et al., showcased 

how CNN-LSTM hybrids could achieve a 15% increase in detection rates for sophisticated, 
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multi-stage attacks compared to single-architecture models [13]. The application of ensemble 

methods and the incorporation of traditional machine learning techniques within deep 

learning frameworks have further enhanced the robustness and interpretability of these 

systems. Notable in this regard is the research by Al-Andoli et al., [14], which utilized a 

stacking ensemble of deep learning models and decision trees to create an explainable 

intrusion detection system that maintained high accuracy while providing human-readable 

justifications for its decisions. However, our analysis has also uncovered significant 

challenges that persist in the field. The computational complexity of hybrid models, remains 

a substantial hurdle for real-time threat detection in resource-constrained environments. 

Moreover, the vulnerability of these sophisticated models to adversarial attacks, as 

demonstrated in the alarming, underscores the need for continued research into robust and 

resilient AI architectures [72]. 

10.2 Implications for cybersecurity practitioners 

The findings of this review have profound implications for cybersecurity practitioners 

operating in an increasingly AI-driven landscape. First and foremost, the superior 

performance of hybrid deep learning models in detecting novel and complex threats suggests 

that organizations should seriously consider incorporating these advanced AI systems into 

their security infrastructure. The adoption of such sophisticated models must be 

accompanied by a commensurate investment in computational resources and expertise to 

manage and interpret these systems effectively. The potential of explainable AI techniques, 

as demonstrated in several studies reviewed here, offers a promising avenue for addressing 

the 'black box' problem often associated with deep learning models. Cybersecurity teams 

should prioritize the adoption of interpretable models or the integration of explanation 

mechanisms into existing systems. This not only enhances trust in AI-driven decisions but 

also facilitates more effective collaboration between human analysts and machine learning 

systems in threat investigation and response. Furthermore, the challenges identified in this 

review, particularly regarding adversarial attacks and model generalization, underscore the 

importance of maintaining a diverse and layered approach to cybersecurity.  

10.3 The future of hybrid deep learning in cybersecurity 

Looking ahead, the trajectory of hybrid deep learning in cybersecurity appears poised for 

continued innovation and impact. The integration of emerging technologies, such as quantum 

computing and neuromorphic hardware, into hybrid architectures presents exciting 

possibilities for overcoming current limitations in computational efficiency and adaptability. 

The work of [58] on quantum-enhanced neural networks for cybersecurity offers a 

tantalizing glimpse into a future where AI models can process vast amounts of network data 

in real-time, potentially revolutionizing our capacity for threat detection and response. Cross-

domain transfer learning emerges as another promising frontier, with the potential to address 

the perennial challenge of model generalization in the face of evolving threats. The research 

on adaptive transfer learning frameworks for cybersecurity models points towards a future 

where AI systems can rapidly adapt to new types of attacks by leveraging knowledge gained 

across diverse security domains [73]. 

Perhaps most transformative is the potential of federated learning to enable collaborative 

threat intelligence without compromising data privacy. As Sarker et. al., [74] demonstrate in 
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their groundbreaking work on privacy-preserving federated cybersecurity models, this 

approach could fundamentally alter how organizations cooperate in the face of global cyber 

threats, fostering a more united and resilient defence ecosystem. In conclusion, while hybrid 

deep learning models have already made significant strides in enhancing cybersecurity 

capabilities, their full potential remains to be realized. As these technologies continue to 

evolve and integrate with other cutting-edge innovations, we can anticipate a future where 

AI-driven systems form the backbone of highly adaptive, efficient, and collaborative 

cybersecurity frameworks. However, realizing this potential will require ongoing research to 

address current limitations, as well as careful consideration of the ethical and practical 

implications of increasingly autonomous security systems. The path forward demands a 

concerted effort from researchers, practitioners, and policymakers to navigate the complex 

interplay between technological advancement and security imperatives. As we stand on the 

brink of this new era in cybersecurity, it is clear that hybrid deep learning will play a pivotal 

role in shaping our defences against the ever-evolving landscape of cyber threats. 
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