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Background: The overlaid bar speculation has been approved in a few fields, including sports, 

flight, medication, and marine developments. Cantilever radiates, fixed radiates, and basically 

upheld radiates were dissected under different stacking situations. Arrangements were tracked 

down as relocations and stresses for fixed radiates, just upheld radiates, and different layered cross- 

utilize covered composite cantilever radiates exposed to variable, uniform, and sinusoidal burdens. 

Contrasting angle proportions consider fluctuating results concerning relocation, twisting pressure, 

and shear pressure. The constitutive relationship and balance condition are utilized to process the 

shear stresses. The virtual dislodging guideline is utilized to decide the covered composite beams 

exaggerated capability (HYSDT) and relocation field. 

 

Keywords: Stress, Hyperbolic Shear Deformation Theory, Equilibrium Equation. 

 

Introduction 

The composite materials are one of the most generally utilized building materials in common 

and mechanical structures because of its high quality and moderately light weight. The 

composite materials are made of framework and fortification materials. Numerous blends of 

materials named as composite materials, for example, solid, mortar, fiber fortified plastics, 

fiber strengthened metals and comparable fiber impregnated materials. The unidirectional 

fiber-strengthened composites are generally utilized in shaping composite overlays. 
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Unidirectional layers are stacked with various fiber direction to accomplish desired stiffness, 

strength, and thermal characteristics. 

Literature Review 

Boay and Wee [1] presented a shut structure articulation to decide the effective flexural 

modulus of an overlaid composite beam. This effective flexural modulus is applied to the 

bowing, clasping and free vibration reaction of for the most part overlaid composite beams 

with different limit underpins. Pagano [2] presented definite versatility answers for composite 

overlays in tube shaped bowing. A unidirectional overlay and two- and three-layered cross- 

handle covers exposed to sinusoidal load are thought of. The laminated plate theories based 

on the Kirchhoff’s theory have been developed by Reddy [3] and Timoshenko [5]. Khdeir and 

Reddy [4] presented the analysis of symmetric and antisymmetric cross-ply laminated beams 

using classical, first-order, second order and third-order theories. Arya [6] et al. presented a 

zigzag model for laminated composite beams. The theory satisfies the shear stress free 

condition at top and bottom and continuity condition at interface of the layer. Krishna Murty 

[7] detailed a third request beam theory including the transverse shear strain and nontraditional 

(nonlinear) pivotal pressure. In this theory the explanatory transverse shear pressure dispersion 

over the profundity of the beam can be acquired utilizing constitutive relations. Maiti and 

Sinha [8] introduced the limited component investigation of the symmetric and unsymmetric 

thick covered beams dependent on the higher request theory. Li and Hongxing [9] presented 

the specific powerful firmness grid of a uniform covered composite beam dependent on 

trigonometric shear distortion theory. A refined overlaid beam constitutive conditions is 

determined that considers the broadness bearing strains. Swift and Heller [10] studied overlaid 

beams by accepting layerwise consistent shear strains and a nonstop transverse dislodging 

through the thickness. This is a layerwise use of Timoshenko beam theory. The consequences 

of a sine stacked two layered, unsymmetrically stacked graphite epoxy beam with basic 

backings are introduced. Ozutok and Madenci [11] studied contemplated blended limited 

component conditions which depend on a practical are acquired by utilizing Gateaux 

differential for overlaid composite beams and higher request shear disfigurement theory 

including nonlinear circulation of shear worry through thickness of covered beam is 

introduced. Hasim [12] investigate an endeavor has been made here for the isogeometric static 

investigation of the covered composite plane beams by utilizing refined crisscross theory. 

Fereidooni et al. [13] studied the essential type of conditions of movement of composite beams 

exposed to shifting time loads are discretized utilizing a created limited component model. 

Tahani Masoud [14] presented inside the removal field of a layerwise theory, two covered 

beam speculations for beams with general overlay are created. In the main theory, a current 

layerwise covered plate theory is adjusted to overlaid beams. Sayyad et al. [15] studied the 

trigonometric beam theory (TBT) created for the bowing examination of covered composite 

and sandwich beams thinking about the impact of transverse shear theory. Shimpi and Ghugal 

[16] built up another dislodging based layerwise trigonometric shear distortion theory 

containing just two factors. Theory fulfills the shear free condition at top and base surfaces of 

the beam. Shimpi and Ghugal [17] introduced another layerwise trigonometric shear 

deformation theory for the examination of two-layered cross-utilize covered beams is 

introduced. Pawar et al. [18] a novel Normal and Shear Deformation Theory (NSDT) for 

investigation of covered composite and sandwich beams, considering shear disfigurement just 
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as should be expected distortion, is created. Sayyad et al. [19] the refined beam theory (RBT) 

is inspected for the bowing of just upheld isotropic, overlaid composite and sandwich 

beams.Bassiouni et al. [20] presented the hypothetical and trial examination of the dynamic 

conduct for overlaid composite beams. 

 

The Displacement Field for HYSDT 
Based on the before mentioned assumptions, the displacement field of the present 

composite laminated beam theory can be expressed as follows, 
3

2
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Where u is the displacement in the x direction and w is transverse displacement in the y 

direction of a point on the beam in mid plane. The strain-displacement relations between 

strain-displacement corresponding to the displacement field are given by, 
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Navier solution  

Following are the boundary conditions used for simply supported laminated composite 

beam along the edges x = a and x = l, w = 0, Mx = 0, Nx = 0, Px = 0 

Navier’s solution procedure is adopted to compute displacement variables. The following 

is the solution forms for u0(x), w(x) and  x  that satisfies the boundary conditions  

exactly. 
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Where um, wm  and m are the unknown coefficients to be determined. The thermal and 

transverse mechanical loads are expanded in single Fourier sine series as given below. 
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Where m is the positive integer and T0m and qm are the coefficients of Fourier series 

expansions, respectively for thermal and transverse mechanical loads as follows: 

In which T0 and q0 are the intensities of thermal and mechanical load respectively.  
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Solving the above set of algebraic equations, the values of 0mu , mw  and m can be 

obtained. Having obtained the values of  0mu , mw  and m  one can then calculate all the 

thermal displacements and stresses within the beam .Transverse shear stresses are 

obtained by integrating equilibrium equations EE

zx  of theory of elasticity with respect to 

the thickness coordinate, satisfying shear stress free conditions at the top and bottom 

surface of the laminated beam and which ascertains the continuity of transverse shear 

stress at the layer interface. This relation can be expressed as given below, 

1

/2

 +C
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The constant of integration can be obtained from appropriate boundary conditions. It is 

expected that this relation will produce accurate transverse shear stresses. 

Illustrative Examples 

Example : A simply supported beam with sinusoidally distributed load,  

3
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The simply supported beam is having its origin at left support and is simply supported at 

x=0 and x=L. The beam is subjected to sinusoidally distributed load,
 

3
( ) sin

x
q x

L

 
  

 

 Fig. Simply supported beam with sinusoidally distributed load of single layer beam (0
0
). 

Non dimensional transverse displacement  ,  
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 Non dimensional axial displacement , 
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     Non dimensional axial stresses ,  
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Non dimensional transverse shear stresses using equilibrium equation, 
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Non dimensional Transverse shear stresses   using constitutive relationship 
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 1.711 4.661 14.796 3.211 0.593 
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0
0
/90

0
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 3.468 9.491 29.803 0.258 1.206 



Table 2: Non-Dimensional Transverse Deflection w   at (x = 0.5L, z = 0.0), Axial 

Displacement u  at (x = 0.5L, z = h/2), Axial Stress ( x ) at (x = 0.5L, z = h/2), Maximum 

Transverse Shear Stresses (
EE

zx  and 
CR

zx ) at (x = 0:0, z = h/2) for Single Layer, Three  
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Layers and Four Layers of Laminated Simply Supported Beam Subjected to Sinusoidally 

Distributed Load 
3
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0
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Conclusion 

a) It is a displacement based, refined shear disfigurement hypothesis. 

b) The shear deformation in the beam is appropriately represented. 

c) The hypothesis deters the essential of shear rectification factor. 

d) Fluctuation predictable are the governing differential conditions and the associated boundary 

condition 
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