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The primary obstacles in addressing the energy consumption forecasting challenge revolve around 

ensuring reliability, stability, efficiency, and accuracy in forecasting methodologies. The current 

forecasting models face difficulties due to the unpredictable nature of energy consumption data 

volatility. There is a need for artificial intelligence models that can anticipate abrupt irregular 

changes and effectively capture long-term dependencies within the data. Within this study, a 

pioneering AI-boosted forecasting model is presented, combining Extreme Gradient Boosting 

(XGBoost) with parallel long short-term memory (PLSTM) neural networks. The integration of 

XGBoost with PLSTM neural networks contributes to the improved performance of the overall 

PLSTM network.  The access the suggested model using the Mean Absolute Percentage Error 

(MAPE). 

 

Keywords: Long Short Term Memory, Energy Consumption, Time Series Data Analysis, 

Forecasting, Extreme Gradient Boosting. 

 

1. Introduction 

Energy consumption forecasting (ECF) stands as a crucial application of artificial intelligence 

(AI) essential for supporting the development of smart grids and smart cities [1]. The 

enhancement of ECF's reliability, efficiency, and accuracy contributes to increased 

transmission efficiency within smart grids, ensures secure energy market trading, and 

minimizes energy wastage [2–4]. Leveraging Internet of Things (IoT) technology introduces 

a pattern recognition process, utilizing sensor data collected from individual households for 

ECF [5,6]. This AI-enhanced data-driven approach to ECF offers valuable insights to 

governments, power plants, and residences, guiding them towards sustainable energy usage 

[7]. 

 

As part of the advanced metering infrastructure (AMI) program integral to smart grid 

development, the focus on ECF for individual household energy consumption data has 

garnered considerable attention. This heightened interest is primarily due to the challenges 
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posed by the highly volatile time series data influenced by human behaviors [8,9]. Traditional 

methods, such as those based on physical models, often struggle to make accurate predictions 

in such dynamic scenarios [10]. Conversely, with the rapid evolution of AI, deep learning 

technologies, including long short-term memory neural networks, have found widespread 

application in addressing the ECF challenges associated with individual households. 

 

A combining Extreme Gradient Boosting (XGBoost) with parallel long short-term memory 

(PLSTM) model is devised in this study for ECF. XGBoost is extracting essential features 

from the raw data. Then these data are preprocessed and subsets of these data are input into a 

Parallel Long Short-Term Memory Neural Network (PLSTM), comprising several LSTM 

neural networks. All LSTM neural networks operate in parallel, generating forecasting results. 

The final ECF outcome is derived by combining the forecasted results from all LSTM neural 

networks. 

In summary, this study introduces a hybrid data-driven ECF model that integrates XGBoost 

with a PLSTM structure. The novelty lies in the design of a parallel neural network 

architecture, and the proposed method's performance has been rigorously verified. The 

primary findings of the present investigation can be summarized as follows: 

1. The current study introduces a neural network structure, termed PLSTM, that 

integrates multiple parallel LSTM neural networks. This PLSTM configuration 

comprises several peer LSTM neural networks designed to operate concurrently, 

enhancing efficiency. Each LSTM is dedicated to training a specific subset of the data 

generated by the XGBoost. This integrated approach allows for accurate predictions 

representing distinct features. 

2. A novel AI-empowered forecasting framework is proposed, which combines 

XGBoost and PLSTM neural networks. XGBoost is extracting essential features from 

the raw data. The XGBoost outputs are then input into a set of Long Short-Term 

Memory (LSTM) neural networks in a parallel fashion. 

 

2. Related works 

Methods for predicting time series data are generally classified into two categories: model-

based and data-driven (AI-based) approaches [13,14]. In [15], it is highlighted that data-driven 

methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) neural networks, are particularly well-suited for energy consumption forecasting 

[16,17]. Data-driven models can be broadly categorized into two types: singular models and 

hybrid models. Singular models encompass decision tree [21], random forest [22], support 

vector regression [23], multilayer perceptron [24], convolutional neural network [25], 

recurrent neural network [26], and long and short-term memory neural network [27].  

 

The author asserts that Support Vector Machine (SVM) and Extreme Gradient Boosting 

(XGBoost) [28] models outperformed the selected empirical models when estimating daily 

global solar radiation (H) in humid subtropical climates, both with complete and incomplete 

temperature and precipitation data. The XGBoost model exhibited comparable prediction 

accuracy to the SVM model but demonstrated greater stability and computational efficiency. 

Specifically, in humid subtropical regions of China, the author strongly recommends the use 
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of the XGBoost model for estimating daily solar radiation (H) based on temperature and 

precipitation data, emphasizing its outstanding performance in terms of accuracy, stability, 

and computational efficiency. 

 

The author developed a model that combined Short-Term Load Forecasting (STLF) models 

[29] using a sliding window-based Principal Component Regression (PCR) approach. The 

model, specifically utilizing PC 1 and a seven-day window size, demonstrated excellent 

prediction performance. The author referred to this model as the Combination of Short-Term 

Load Forecasting Models Using a Stacking Ensemble Approach (COSMOS) model. However, 

it should be noted that the proposed model did not satisfactorily predict building electric 

energy consumption on weekends, and its application was limited to a single building. 

Therefore, additional validation is necessary to assess the broader applicability of this 

forecasting model. 

 

A novel spatial and temporal ensemble electric consumption model [19] incorporates 

clustering analysis to address short-term electric consumption forecasting. This innovative 

approach involves the examination of electric consumption profiles at the apartment level 

through cluster analysis, employing the k-means algorithm. The ensemble forecasting model 

comprises two deep learning models, namely the Long Short-Term Memory Unit (LSTM) and 

Gated Recurrent Unit (GRU). By grouping LSTM and GRU together, an ensemble is formed 

with the aim of enhancing prediction accuracy and minimizing generalization errors. The 

model demonstrates improved prediction accuracy when aggregating consumption at spatial 

scales, such as the building and floor levels. However, it is observed that the forecasting error 

tends to increase when extending the prediction horizon from hourly to weekly scales. Notably, 

the model's limitation is identified in terms of clustering the consumption profiles at the 

apartment level, as this further reduces the forecasting error compared to scenarios without 

clustering. 

 

A model combines the strengths of the eXtreme Gradient Boosting Machine (XGB), Light 

Gradient Boosting Machine (LGBM), and Multi-Layer Perceptron (MLP) [20]. The Stacked 

XGB-LGBM-MLP model operates by generating meta-data from the XGB and LGBM 

models, which is then utilized to compute final predictions using an MLP network. This 

approach is particularly sensitive to two key factors: the forecasting horizon and the size of 

the data. However, it's worth noting that the study identifies a limitation in the performance of 

the Stacked XGB-LGBM-MLP model when forecasting 48 hours ahead. The effectiveness of 

the model experiences a decrease for this specific forecasting horizon. 

 

A model is presented for Short-Term Load Forecasting utilizing XGBoost [11]. This model, 

designed for forecasting electrical load, involves the transformation of daily load data into 

weekly load data. The approach aims to enhance the set of features available for forecasting 

by considering the load of a lag variable. XGBoost is employed for feature selection from the 

converted data and subsequently trains the model for load prediction. The results indicate that 

the XGBoost load forecast generally aligns well with the actual load, yielding accurate 
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predictions most of the time. However, it's worth noting that the accuracy of XGBoost 

diminishes when dealing with larger loads. 

 

In a literature survey, it is generally observed that hybrid models tend to achieve higher 

prediction accuracy compared to singular models. In [28], the author employs a combination 

of Singular Spectrum Analysis (SSA) and least square Support Vector Machine (SVM) for 

Electric Consumption Forecasting (ECF). Yan et al. [29] argue that the Long Short-Term 

Memory (LSTM) neural network outperforms Support Vector Machine (SVM) in capturing 

dependencies among data samples. Wei et al. [30] introduce a hybrid model that combines 

Improved Singular Spectrum Analysis (ISSA) and LSTM for predicting daily natural gas 

consumption. However, the focus of the study is on the model's superiority in different climate 

zones rather than different time spans. It is acknowledged that data decomposition plays a 

crucial role in improving forecasting results, as demonstrated by Sun et al. [31] who 

decomposed economic factors for energy consumption forecasting. 

 

The proposed system introduces a hybrid model that combines XGBoost with multiple LSTM 

neural networks. In the data pre-processing phase, XGBoost is utilized for feature extraction, 

and the original data is partitioned into subsets. For the model training stage, parallel LSTM 

networks are employed, matching the number of subsequences generated after decomposition. 

LSTM neural networks excel in handling non-linear and non-stationary time series data. Given 

the significant fluctuations in the original dataset, LSTM is particularly effective in capturing 

the long-term dependencies inherent in the original Energy Consumption Forecasting (ECF) 

time series. The anticipated outcome is that the final prediction results of this hybrid method 

will surpass those of current state-of-the-art methods in terms of accuracy. 

 

3. Methodology 

This section offers a thorough overview of the hybrid forecasting model that we have put forth. 

Initially, it outlines the pivotal step of utilizing the eXtreme Gradient Boosting Machine 

(XGBoost) algorithm for data processing. Subsequently, the internal structure and workflow 

of the Long Short-Term Memory (LSTM) neural network are presented, providing insights 

into why it is effective and readily available. Finally, we delve into the collaboration between 

XGBoost and Parallel LSTM (PLSTM), presenting the overall strategy in this study.  

 

3.1 eXtreme Gradient Boosting Machine (XGBoost) 

The Extreme Gradient Boosting (XGBoost) algorithm [12] is a novel implementation method 

for Gradient Boosting Machine and in particular K Classification and Regression Trees. The 

algorithm is based on the idea of “boosting”, which combined all the predictions of a set of 

“weak” learners for developing a “strong” learner through additive training strategies. 

XGBoost aims to prevent over-fitting but also optimize the computation resources. This is 

obtained by simplifying the objective functions that allow combining predictive and 

regularization terms, but maintaining an optimal computational speed. Also, parallel 

calculations are automatically executed for the functions in XGBoost during training phase. 

The processes of additive learning in XGBoost are explained below. The first learner is firstly 

fitted to the whole space of input data, and a second model is then fitted to these residuals for 
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tackling the drawbacks of a weak learner. This fitting process is repeated for a few times until 

the stopping criterion is met. The ultimate prediction of the model is obtained by the sum of 

the prediction of each learner.  

 

The eXtreme Gradient Boosting Machine (XGBoost) algorithm is a supervised learning 

algorithm that falls under the category of ensemble learning, specifically gradient boosting 

frameworks. Developed by Tianqi Chen, XGBoost has gained widespread popularity due to 

its efficiency, scalability, and high predictive performance. It is widely used for both 

regression and classification tasks in machine learning. 

 

Here are key components and features of the XGBoost algorithm: 

1. Objective Function: XGBoost minimizes a regularized objective function, which is a 

combination of a loss function that measures the model's prediction error and a regularization 

term that penalizes complex models, helping to prevent overfitting. 

2. Gradient Boosting: XGBoost builds an ensemble of weak learners, typically decision trees, 

sequentially. Each tree corrects the errors of the previous ones by focusing on the residuals 

(the differences between actual and predicted values). 

3. Regularization: XGBoost incorporates L1 (Lasso) and L2 (Ridge) regularization terms into 

the objective function. This helps control the complexity of the model and avoid overfitting. 

4. Tree Pruning: During the boosting process, XGBoost employs a technique called tree 

pruning to control the depth of the trees, preventing them from growing too deep and 

overfitting the training data. 

5. Parallel and Distributed Computing: XGBoost is designed for efficiency and supports 

parallel and distributed computing. This allows it to handle large datasets and expedite the 

training process. 

6. Handling Missing Values: XGBoost has a built-in mechanism for handling missing values, 

reducing the need for extensive preprocessing. 

7. Cross-Validation: The algorithm supports built-in cross-validation, allowing for the 

assessment of model performance during the training process. 

8. Feature Importance: XGBoost provides a feature importance score, which helps users 

understand the contribution of each feature to the model's predictions. 

 

3.2 Long short term memory (LSTM) 

The intricate workings of the Long Short-Term Memory (LSTM) are depicted in Fig. 1[18]:. 

In the current network, the inputs and outputs are denoted as xt and ht, respectively. C’t 

represents the state learned at the current moment. Notably, the LSTM structure comprises 

three gates: the input gate, the output gate, and the forget gate. 

 

The input gate, denoted as xt, governs the extent to which current input data is allowed to 

transfer to the cell state. By regulating the input gate, numerous irrelevant elements from the 

current input are prevented from entering the memory. The forget gate, represented by ft, 

determines the amount of cell state from the previous time that is retained in the current state, 

preserving information from a considerable time ago. The decision to retain or discard the 
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current state is under the control of the output gate, Ot, ultimately shaping the output cell state, 

Ct. 

 

During each processing step, the LSTM repeats the operation wherein the current input and 

the previous cell state are fed into the current state, generating the output for the subsequent 

cell state. The formulas for cell states and gating units are expressed as follows, where W 

denotes the corresponding weight matrix, and b signifies the related bias items. It is essential 

to highlight that σ and tanh serve as activation functions, playing a crucial role in regulating 

the flow of information through the gates. The formulas for these elements are as follows: 

ft =  σ (Wf . [ht−1, xt] + bf   (1) 

it =  σ (Wi . [ht−1, xt] + bi   (2) 

Ct̃ =  tanh (WC . [ht−1, xt] +  bC  (3) 

Ct =  ft . Ct−1 + it . Ct̃   (4) 

ot =  σ (Wo . [ht−1, xt] +  bo  (5) 

ht = ot . tanh (Ct)    (6) 

 

where Ct, Ct-1 and  C̃t represent current cell status value, last time frame cell status value and 

the update for the current cell status value, respectively. The notations ft, it and ot represent 

forget gate, input gate and output gate, respectively. With proper parameter settings, the output 

value ht is calculated based on C̃t and Ct-1 values according to Eqs. (4) and (6). All weights, 

including:Wf , Wi , WC and Wo, are updated based on the difference between the output value 

and the actual value following back-propagation through time (BPTT) algorithm [32]. 

 

 
Fig-1: Detained Structure of LSTM Network 

 

3.3. Hybrid forecasting model 

The detail of the AI model algorithm is presented in Algorithm 1. 
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     Figure 2. The schematic diagram of the proposed method. 

 

Algorithm 1. Proposed Scheme Algorithm for Load Prediction. 

1:  Load daily records data 

2:  Do preprocessing the missing value and normalization of data 

3:  for k←1 to size (features) do 

4:   Calculate feature importance for feature 

5:  end for 

6:  Select features with importance value greater than threshold 

7:  Divide data into training and testing data 

8:  Divide the training set into i subset 

9: Train parallelly each subset of training data on different LSTM model  

10:  Combine the output of different LSTM model 

11:  Predict load using trained model over testing data 

 

The experiments have demonstrated that the hybrid model exhibits superior accuracy and stronger 

generalization ability. The entire process primarily involves three key steps: 
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Step 1: Employ the preprocessing on the actual input data by processing the missing values, data 

normalization and embedding. XGBoost algorithm is used for the extraction of important features 

from the preproceed data. 

 

Step 2: The data obtained from Step 1 are then partitioned into multiple training sets and testing 

sets. These training set serve as the input for the Parallel Long Short-Term Memory (PLSTM) 

neural network. The network is optimized by learning the fitting process between the training 

dataset and the raw data of the five ECF. Combining the outcomes of each set of dataset enables 

the acquisition of final outcomes. After the training phase, the ECF testing dataset is utilized to 

obtain the ultimate result. 

 

Step 3: The final step involves using the optimized hybrid model to predict and obtain results for 

the Energy Consumption Forecasting (ECF) testing dataset. 

 

The schematic diagram of the proposed AI framework is depicted in Fig. 2. The potential 

advancements of the proposed method revolve around two key aspects.  

 

Firstly, the XGBoost  is utilized for feature extraction in the training dataset. Secondly, the 

structure of the parallel Long Short-Term Memory (PLSTM) neural network holds the potential 

to enhance forecasting results when compared to a centralized singular LSTM neural network. 

This improvement is attributed to the parallel training on the extracted features from preprocessed 

data. Moreover, the parallelized structure significantly reduces the training time, offering a more 

efficient and robust learning framework for addressing the Energy Consumption Forecasting 

(ECF) problem. 

 

4. Experimental process and results 

 

4.1. Data description 

In the experiment, we get the data from the kaggle. This Electricity consumption dataset and the 

electric load dataset from 2016, provided by kaggle, were utilized. The experiment involved the 

implementation and testing of the proposed hybrid model. The results of load forecasting using 

this methods are depicted in Fig 3. 

 

For the experiment, the training data encompassed a two-month period, while the test data 

covered one month. To assess the performance of the model, the dataset was divided into 10 

partitions. In the first partition, the training data comprised energy load data collected in January 

and February 2016, while the test data included data collected in March 2016. The subsequent 

partitions followed the same analogy, with each partition representing different training and test 

data periods. 

 

In Figure 3, the red curves represent the forecasting results of the respective models, while the 

blue curves depict the ground truth. The vertical axes indicate the energy load (MWh), and the 

horizontal axes signify the time (hour). The forecasting models received the energy load from the 
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past (24 × 7) hours as input, and the predicted energy load for the next (24 × 3) hours was the 

output of the forecasting model. The correct information is represented by the blue curves, and 

the disparities between the red and blue curves signify the performance differences of the 

corresponding models. 

 

To ensure fairness in comparison, testing data were not used during the training process of the 

models. According to the results presented in Figure 3, the proposed hybrid model demonstrates 

the prediction performance. 

 
Fig 3. The forecasting result of the proposed hybrid model 

 

To assess the forecasting models more accurately, the Mean Absolute Percentage Error (MAPE) 

were employed. The definitions for MAPE are provided by Equations (7) and (8), respectively, 

where yn represents the measured value, ˆ yn is the estimated value, and N denotes the sample 

size. 

 

Table 1. The experimental results in terms of Mean Absolute Percentage Error (MAPE) 

given in percentages. 

 

Test Hybrid Model 

  

#1 10.40804813 

#2 9.970662683 

#3 14.85568499 

#4 12.83487893 

#5 5.479091542 

#6 11.7681534 

#7 15.6574951 

#8 7.583802292 

#9 16.31443679 

#10 8.390061493 

Average 11.32623153 
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7.3 Evaluation Metrices 

To assess the forecasting models more accurately, the Mean Absolute Percentage Error 

(MAPE) were employed. The definitions for MAPE are provided by Equations (7). The MAPE 

may be a live of prediction accuracy of a forecasting methodology for constructing fitted 

statistic values in statistics, specifically in trend estimation.it always expresses accuracy as a 

proportion of the error. as a result of this range may be a percentage, it may be easier to know 

than the opposite statistics.  

MAPE =
100

n
 ∑ |

At− Pt

At
|n

t=1                                        (7) 

where,  

n = number of non-missing data points 

At = Actual observations for tth data 

Pt = Predicted Value for tth data 

 

6. Conclusion 

This paper introduces a hybrid data-driven ECF model that integrates XGBoost with a PLSTM 

structure, designed. The proposed model is validated through experiments using load data from 

the preceding seven days. In the experiment, data from the kaggle  were employed, focusing on 

historical electricity demand from consumers. The experimental results demonstrate that hybrid 

model can predict energy load for the next three days. Also calculate the Mean Absolute 

Percentage Error (MAPE). The proposed method has the potential to reduce monitoring expenses, 

initial costs of hardware components, and long-term maintenance costs in future smart grids. In 

future, we compare the result of this model with the other existing method and use the other 

evaluation metices for assessing the accurate prediction of energy forecasting. 
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