Nanotechnology Perceptions
ISSN 1660-6795
WwWWw.nano-ntp.com

Enhancing X-Ray Image Classification: A
Rank-Based Two-Stage Semi-Supervised
Deep Learning Model

Pawan Kumar Mall!, P K Singh?

1.2 Computer Science and Engineering Department, Madan Mohan Malaviya University
of Technology Gorakhpur, India
Email: pawankumar.mall@gmail.com®, Topksingh@gmail.com?
Corresponding Author: Pawan Kumar Mall (pawankumar.mall@gmail.com)

Deep neural networks (DNN) effectiveness is contingent upon access to quality-labelled training
datasets since label mistakes (label noise) in training datasets may significantly impair the accuracy
of models trained on clean test data. The primary impediments to developing and using DNN
models in the healthcare sector include the lack of sufficient label data. Labeling data by a domain
expert is a costly and time-consuming task. To overcome this limitation, the proposed Two-Stage
Rank-based Semi-supervised deep learning (TSR-SDL) for Shoulder X-Ray Classification uses the
small labelled dataset to generate a labelled dataset from unable dataset to obtain performance
equivalent to approaches trained on the enormous dataset. The motivation behind the suggested
model TSR-SDL approach is analogous to how physicians deal with unknown or suspicious
patients in everyday life. Practitioners handle these questionable circumstances with the support of
professional colleagues. Before initiating treatment, some patients consult with a range of skilled
doctors. Patients are treated according to the most suitable professional diagnosis (vote count). In
this article we have proposed a new ensemble learning technique called "Rank based Ensemble
Selection with machine learning models" (TSR-SDL) approach. In this technique, multiple
machine learning models are trained on a labeled dataset, and their accuracy is ranked. A dynamic
ensemble voting approach is then used to tag samples for each base model in the ensemble. The
combination of these tags is used to generate a final tag for an unlabeled dataset. Our suggested
TSR-SDL model has attained the best accuracy and specificity, sensitivity, precision, Matthew’s
correlation coefficient, false discovery rate, false positive rate, f1 score, negative predictive value,
and false negative rate negative 92.776%, 97.376%, 86.932%, 96.192%, 85.644%, 3.808%,
2.624%, 91.072%, 90.85%, and 13.068% for unseen dataset respectively. This approach has the
potential to improve the performance of ensemble models by leveraging the strengths of multiple
base models and selecting the most informative samples for each model. This study results in an
improved Semi-supervised deep learning model that is more effective and precise.
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1. Introduction

Semi-supervised deep learning (SSDL) has been highlighted as a potential new study track in
the area of computer vision in the present era. SSDL was coined in the 1970s[1],[2] ,[3]. This
method is applied to generate labelled training data from an available significant number of
unlabeled data. Data labelling is a process of annotating or tagging data with relevant
information that helps machine learning algorithms to learn from the data. The process
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involves manually adding labels or tags to the data by subject matter experts, who have
expertise in the domain. Data labelling can be a time-consuming and expensive process,
especially for large datasets. Subject matter experts may need to spend a significant amount of
time analyzing the data and adding the relevant tags. Additionally, the cost of hiring subject
matter experts can be high, as they typically have specialized knowledge and skills. However,
accurate data labelling is essential for building high-quality machine learning models. The
guality of the data labels directly impacts the performance of machine learning algorithms.
Therefore, while data labelling can be a time-consuming and expensive process, it is a
necessary investment for organizations that want to build effective machine learning models.
SSDL techniques are better applicable to real-world problems where huge amounts of data are
readily accessible. At the same time, labelled instances are often difficult to tag, expensive to
collect, and time-consuming to process. SSDL is excellent at developing well-known
classifiers that compensate for the shortage of tag data. In general, SSDL models are trained
on large amounts of unlabelled data using unsupervised learning techniques, such as context
tag or class label. The resulting pre-trained model can then be fine-tuned on a smaller amount
of labelled data for specific tasks, such as image classification or object detection. When fine-
tuning the pre-trained model for a specific task, the model is typically trained on a dataset that
includes examples from all of the classes that it needs to recognize.

One well-known study that uses SSDL to reduce the need for annotated data is the work by
Doersch et al. (2015), titled "Unsupervised Visual Representation Learning by Context
Prediction"”. In this study, the authors propose a self-supervised learning method for training
deep neural networks on large amounts of unlabeled data. The method involves training a
neural network to predict the spatial arrangement of patches within an image. This is done by
randomly selecting two patches from an image and training the network to predict the relative
spatial relationship between the two patches, such as whether one patch is above or below the
other. The network is trained on a large dataset of unlabeled images, allowing it to learn to
extract useful visual features from the images without requiring manual annotations. The pre-
trained network can then be fine-tuned on a smaller amount of labeled data for specific tasks,
such as object recognition or scene classification. This approach has been shown to be effective
in reducing the need for annotated data, while still achieving high accuracy on a range of image
classification tasks. One application of this approach is in the development of deep learning
models for medical image analysis. Medical image datasets are often small and expensive to
annotate, making it challenging to train accurate deep learning models. However, by pre-
training a neural network using SSDL on large amounts of unlabeled medical images, it is
possible to reduce the need for annotated data and improve the accuracy of models for tasks
such as tumor detection or disease classification. The SSDL models provides the pathway for
well trained and strong classification models. However, using this method, incorrectly
classified data might reduce the performance of the classification models. This may outcome
in a considerable reduction in the performance of classification models. The SSDL models
help to solve the requirement for labelled data in the pursuit of a more data-efficient deep
learning strategy. Although Pseudo-Labeling is a native method, it gives us a great chance to
comprehend SSDL's models to tag unlabeled dataset problems and lays the groundwork for
improving the performance of the models. Fig 1 illustrates the SSDL framework.
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Fig. 1 lllustrating semi-supervised deep learning

In this article, we propose a novel Two-Stage Rank-based Semi-supervised deep learning
Model (TSR-SDL). The proposed (TSR-SDL) model is designed to enhance the performance
of SSDL models. The deep learning models involved in research are trained on the benchmark
MURA-SH dataset [4] collection of shoulder bone X-ray images. We established an
unlabelled dataset including 1279 shoulder X-rays collected from the Department of
Radiology State Government hospitals. All of these images are annotated by experienced
Orthopedic surgeons. In the research, 598 unlabelled images are employed to generate a
pseudo label, and 681 images are labelled to evaluate our model. The research studies show
that the TSR-SDL model achieves adequate classification results and outperforms the
traditional models by a significant margin. The paper is organized as follows. In the second
section, the most appropriate related works are discussed. The standard deep learning models
and benchmark dataset used for the proposed TSR-SDL model are described in the third
section. The proposed work is discussed in the fourth section, simulation, and results of the
proposed model are shown in the fifth section; and finally, we draw some conclusions and
discuss the potential scope in the last section.
The higlight of this research work are listed below:

e \We propose a method for Semi-supervised deep learning Model for Shoulder X-Ray
Classification.

e The local data set collected from HATA CHC.
The key component of our proposed model is to determine the rank of the benchmark
DNN, retrain the models using both label and pseudo dataset, and an unseen HATA-SH
dataset is used to verify the performance of the purposed model.
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o The proposed model achieved accuracy, Specificity, sensitivity, precision, Matthew’s
correlation coefficient, false discovery rate, false positive rate, fl score, negative
predictive value, and false negative rate achieved 92.776%, 97.376%, 86.932%, 96.192%,
85.644%, 3.808%, 2.624%, 91.072%, 90.85%, 13.068% respectively.

e We can conclude that the model trained with (MURA) dataset from Stanford university
was not enough to predict the local dataset. This proposed semi-supervised learning
approach solve the issue of unlabelled dataset and also improves the performance of the
model.

2. Related Work

There are numerous interesting and vital strategies for semi-supervised learning. This field is
well-established and encompasses a diverse range of techniques, including Self-Training,
Consistency Regularization, and Hybrid Methods.

Semi-supervised learning is a type of machine learning where a model is trained on both
labelled and unlabelled data. The goal is to leverage the large amount of unlabelled data to
improve the model's performance on the labelled data. The two major modules of "Student"
and "Teacher" in semi-supervised learning can be described as follows:

Student Module: The Student Module in semi-supervised learning refers to the learning
algorithm that uses both labelled and unlabelled data to improve its performance. The student
algorithm is responsible for iteratively updating its parameters based on the labelled and
unlabelled data it receives. In semi-supervised learning, the student algorithm typically
consists of two components:

Supervised Component: The supervised component is responsible for training the model
using the labelled data. This component is similar to the one used in supervised learning and
is responsible for updating the parameters of the model using the labelled data.

Unsupervised Component: The unsupervised component is responsible for leveraging the
unlabelled data to improve the model's performance. This component typically involves
clustering or generative models to extract features from the unlabelled data and use them to
improve the model's performance on the labelled data.

Teacher Module:

The Teacher Module in semi-supervised learning refers to the component that provides
guidance to the student algorithm. The teacher algorithm is responsible for selecting the most
informative examples from the unlabelled data to provide to the student algorithm. In semi-
supervised learning, the teacher algorithm typically consists of two components:

Label Propagation: The label propagation component is responsible for propagating the
labels from the labelled data to the unlabelled data. This component uses the similarities
between the labelled and unlabelled data to infer the labels of the unlabelled data points.
This is done by leveraging the similarities between the labelled and unlabelled data points.
There are different techniques that can be used for label propagation, including graph-based
methods, such as Laplacian regularization and random walk, and diffusion-based methods,
such as label spreading and label propagation.

Active Learning: The active learning component is responsible for selecting the most
informative examples from the unlabelled data to provide to the student algorithm. This
component uses uncertainty sampling or other heuristics to select the examples that are most
likely to improve the model's performance on the labelled data. The goal is to maximize the
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information gained from each new labelled example while minimizing the number of
labelled examples needed. There are different strategies that can be used for active learning,
including uncertainty sampling, query-by-committee, and density-based sampling.

SSDL (Self-Supervised Deep Learning) is a technique that uses unsupervised learning to
train deep learning models on large amounts of unlabeled data, which can reduce the need for
annotated data. When combined with traditional deep learning algorithms, SSDL can help to
improve the accuracy of models trained on limited labeled data. Traditional deep learning
algorithms rely on a large amount of labeled data to train models for classification or object
detection tasks. However, labeling large amounts of data can be time-consuming and
expensive. SSDL overcomes this challenge by using unsupervised learning techniques to pre-
train a model on unlabeled data. The pre-trained model can then be fine-tuned on a smaller
amount of labeled data to improve its accuracy for a specific task. One approach for combining
SSDL with deep learning algorithms is called "semi-supervised learning". In this approach,
the pre-trained model is fine-tuned using a small amount of labeled data for a specific task,
while leveraging the knowledge learned from the large amount of unlabeled data. This can
significantly reduce the need for annotated data, while still achieving high accuracy on the task
at hand. Another approach is called "transfer learning". In this approach, a pre-trained SSDL
model is used as a starting point for training a model on a new task. The pre-trained model is
first fine-tuned on a large amount of labeled data for a similar task, such as image classification
or object detection. The fine-tuned model can then be further trained on a smaller amount of
labeled data for the specific task of interest. This approach can also reduce the need for
annotated data, while still achieving high accuracy on the target task.

The Self-Training paradigm is based on the notion of making model predictions on an
unlabelled image. The model employs both pseudo-labels and ground truth labels
simultaneously. The SSDL Pseudo-label [5] approach is a simple and efficient solution known
as "Pseudo-label" that was introduced in the year 2013. In [6], authors have introduced "Noisy
Student," a semi-supervised approach also known as Knowledge Distillation. The essential
concept is to train two distinct modules termed “Student” and “Teacher." In this approach, the
labelled images are employed to train the teacher module, while the unlabelled images are
inferred using pseudo-labels. The aggregated unlabelled and labelled dataset is used to train
student modules. After a student module has been trained, it takes over as the new teacher
model and repeats the same process three times. The student model incorporates noise such as
stochastic depth and dropout.

The core concept behind consistency regularization is that the SSDL model tags an
unlabelled dataset should stay consistent even if noise (Gaussian noise and image
augmentation) is introduced. The model should produce consistent results for given input and
its realistically perturbed versions. We humans are highly resistant to little changes. For
example, introducing modest amounts of noise (e.g., altering pixel values) to an image is
unnoticeable to us. A deep learning model should be resistant to such disturbances. This is
often accomplished by reducing the difference between the original input prediction and the
perturbed version of that input [7] [8] [9] [10] [11]. The ® model [12] uses the network
outcomes as consistency. The main concept is to generate two random augmentations of the
given input images for both unlabelled and labelled data [13], [14]. The dropout method is
introduced to tag the class label of both augmented images. The consistency loss is calculated
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as a square difference of two predictions. The overall loss is calculated as the weighted sum
of two-loss components. The two main modules of the mean teacher [15] approach are
"Student"” and "Teacher." The student module is a standard framework with dropout, while the
teacher module is a duplicate of the student module. The only difference is weights assign an
exponential moving average according to the weights of the student module. Both the labelled
and unlabelled images are generated into two random augmented versions. The student module
is used to tag class label distribution for the first augmented image and the teacher module is
used to tag the class label distribution for the second image [16], [17], [18]. The consistency
loss is measured by taking the square difference between two predictions. The cross-entropy
loss is calculated on labelled images. The final loss is computed by summing the weighted
sum of the two-loss components. Virtual Adversarial Training [19] model core idea is to
generate adversarial transformation two image view of input labelled and unlabelled images.
The same SSDL model is utilized to tag class label distributions for both images view. The
consistency loss is evaluated using the KL-divergence method for both the view predictions.
The cross-entropy loss is calculated on labelled images. The total loss is computed by summing
the weighted sum of the two losses.

The Hybrid Process is a problem-solving methodology that combines the strengths of both
deductive and inductive reasoning to arrive at a solution. The central concept underpinning the
Hybrid Process is the idea that both types of reasoning are necessary to achieve a
comprehensive understanding of a problem and develop a viable solution. Deductive reasoning
starts with a general principle or theory and applies it to specific situations to arrive at a
conclusion. It is a top-down approach that relies on logical reasoning and known facts to arrive
at a specific answer. Deductive reasoning is useful when the problem is well-defined and there
is a clear set of rules or principles to follow. Inductive reasoning, on the other hand, starts with
specific observations or data and uses them to form a general theory or hypothesis. It is a
bottom-up approach that relies on empirical evidence to arrive at a conclusion. Inductive
reasoning is useful when the problem is complex and requires a deep understanding of the data
to arrive at a solution. The Hybrid Process combines these two types of reasoning to create a
more robust problem-solving methodology. It starts with deductive reasoning to establish a
general understanding of the problem, identify key variables, and formulate a hypothesis. It
then uses inductive reasoning to collect and analyze data, refine the hypothesis, and arrive at
a solution. The Hybrid Process emphasizes the iterative nature of problem-solving, with each
cycle of deductive and inductive reasoning refining the hypothesis and bringing the solution
closer to reality. It also acknowledges the importance of creativity and intuition in the problem-
solving process, allowing for a more flexible and adaptive approach to finding a solution [21],
[22], [23], [24]..

In [25], the author have introduce a crow swarm optimization approach for COVID-19
diagnosis, this paper suggests an integrated method for choosing the best deep learning model.
Utilizing a fitness function created for assessing the performance of the deep learning models,
the crow swarm optimization method is used to identify the ideal set of coefficients. Using
chest X-ray pictures from a dataset that contains the most COVID-19 images, in [26] this
research assesses the effectiveness of deep learning models for COVID-19 diagnosis. In [27],
It has been demonstrated that the suggested approach for early detection and categorization of
COVID-19 utilizing image processing of X-ray pictures is practical in that it offers an end-to-
end framework without the requirement for manual feature extraction and manual selection
procedures. In [28], The most impactful features from the segmented photos that can aid in the
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identification of COVID-19 were extracted using the Visual Geometry Group Network,
convolutional deep belief network, and high-resolution network. In [29], author have introduce
a novel multi-agent deep reinforcement learning (DRL)-based mask extraction approach to
reduce long-term manual mask extraction and improve medical picture segmentation
frameworks. To address mask extraction concerns, a DRL-based technique is presented.

3. Materials and Models

3.1. X-ray Dataset:

In terms of the differences between X-rays and MRI scans for getting arm pictures, there are
several key factors to consider:

e Radiation exposure: X-rays involve exposure to ionizing radiation, which can be
harmful if a person is exposed to too much radiation over time. MRI scans, in
contrast, do not use ionizing radiation and are considered safe for most people.

e Image detail: X-rays provide detailed images of bones and other hard tissues,
while MRI scans provide detailed images of soft tissues. Depending on the
suspected condition, one or the other may be more appropriate.

e Time: X-rays are generally quicker and easier to perform than MRI scans, which
can take up to an hour or more to complete.

o Cost: X-rays are generally less expensive than MRI scans, although the cost can
vary depending on the type of X-ray or MRI being performed and the location
where it is done.

In summary, while both X-rays and MRI scans can be used to diagnose medical
conditions affecting the arm, they differ in terms of the type of information they provide,
the amount of radiation exposure involved, the time and cost required, and other factors.
The choice of which imaging technique to use will depend on the specific condition being
investigated and the preferences of the healthcare provider and patient. The
musculoskeletal radiograph dataset is one of the largest collections of bone X-rays. The
dataset contains a total of 58817 images from 21456 radiographic case studies, along with
reports from January 2014 through December 2017 in 4 years at a children's hospital. The
average age of the patients was 7.2 years, and 57 percent of them were male. The (MURA)
musculoskeletal radiograph has contained a total of 40561 X-ray data. The dataset is
collection of 44.36 % abnormal and 55.63% normal X-rays. This is the most popular X-
ray dataset published by [4]. We have considered only the shoulder study from the MURA
dataset, and the new dataset is renamed MURA-SH for our experiment. The MURA-SH
dataset is prearranged into two groups train set and test set. The HATA-SH dataset
consists of X-rays images of shoulder bones. The dataset contains 1279 images from
different radiographic case studies and reports from January 2018 through December
2020 in 2 years at State Government hospital, Hata, Kushinagar, Uttar Pradesh. The
MURA-SH X-ray and HATA-SH dataset details are listed in Table 1.
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Table 1 — The MURA-SH and HATA-SH details

Dataset Train Set Test Set

MURA-SH 8942(Normal 194(Normal
Abnormal) Abnormal)

HATA-SH 598 0

(unlabelled)

HATA-SH 0 681(Normal-

(unseen) 381, Abnormal-

300)
Complete Dataset Size involved in
Experiment:10415

3.2. Deep learning standard Models

Adjusting the design of a neural network architecture based on the layers assist enhance the
network's overall performance. Using bulk normalization and ReLU activation functions
before convolution layers, for example, can provide various advantages. Bulk normalization
is a technique for normalizing layer inputs so that the mean activation is near to zero and the
standard deviation is close to one. This helps to prevent internal covariate shift and increase
network stability. The inputs to the convolution layers are adjusted by applying bulk
normalization before convolution layers, which can assist enhance the network's convergence
rate and overall performance. Overall, utilizing bulk normalization and the ReLU activation
function before convolution layers can assist to increase the network's stability and
convergence rate, as well as extract more complicated features from the input. The significant
technical aspects of standard DNN are briefly described below:

3.2.1. MobileNet:

MobileNet is a more effective and lightweight framework [30]. MobileNet is a popular neural
network architecture for mobile and embedded devices that is designed to be lightweight and
efficient, while still achieving high accuracy on image classification tasks. One of the key
design principles of MobileNet is the use of depth-wise separable convolutions, which allows
for a significant reduction in the number of parameters and computations required compared
to traditional convolutions. Depth-wise separable convolutions break down a convolutional
layer into two separate operations: depth-wise convolutions and point-wise convolutions.
Depth-wise convolutions apply a separate filter to each channel of the input, while point-wise
convolutions combine the outputs of the depth-wise convolutions using a 1x1 convolution.
This approach drastically reduces the number of parameters and computations required for a
convolutional layer, making it much more efficient. In MobileNet, Depth-wise separable
convolutions are used throughout the network architecture, including in the bottleneck layers
that form the core of the network. A bottleneck layer consists of a depth-wise convolution
followed by a point-wise convolution, with the point-wise convolution being used to increase
the number of output channels. The use of depth-wise separable convolutions allows
MobileNet to achieve a high level of accuracy on image classification tasks while using
significantly fewer parameters and computations than traditional convolutional neural
networks. This makes it well-suited for use in mobile and embedded devices, where
computational resources are limited. The block layout of MobileNet is depicted in Fig 2.
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Fig. 2 —Illustrating block layout of MobileNet

3.2.2. Pre-Act ResNet:

The pre-activation Resnet model [31] is a variation of the Resnet model. The changes in
architecture are based on layers, e.g., batch norm and relu before convolution. The batch
normalization at each layer to reduce the internal covariate shift greatly improves the learning
efficiency of the networks. The key benefit of employing the ReLU function over other
activation functions is that it does not stimulate all neurons at once. Earlier, in the Resnet
version, when the layers increase from 101 layers to 1202 layers, the error rate has increased
from 6.43 percent to 7.93 percent. The block layout of the Pre-Act Resnet is depicted in Fig 3.

Fig. 3 —Illustrating block layout of Pre-Act ResNet

3.2.3. ResNet18:

The ResNet-18[32] is a residual deep learning model that is 18 layers deep. ResNet18 is a type
of convolutional neural network (CNN) that is widely used in computer vision tasks such as
image classification, object detection, and segmentation. One of the key features of ResNet18
is the use of skip connections or skip links, which help to alleviate the problem of vanishing
gradients during training. Skip connections are essentially shortcuts that bypass one or more
layers in a neural network. In ResNet18, the skip connections are added between adjacent
residual blocks. A residual block is a basic building block of ResNet, which consists of a series
of convolutional layers and nonlinear activation functions. The skip connection in ResNet18
allows the model to learn residual mappings, which are the differences between the input and
output of a residual block. This is done by adding the input of a residual block to its output,
which effectively creates a shortcut between the input and output. The skip connections in
ResNet18 help to overcome the problem of vanishing gradients, which is a common issue in
deep neural networks. When training deep neural networks, the gradients can become very
small as they propagate through the network, which can slow down or even prevent learning.
By adding skip connections, ResNet18 allows the gradients to bypass some of the layers,
which helps to prevent them from vanishing. The block layout of ResNet-18 is depicted in Fig
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Fig. 4 —lllustrating block layout of ResNet-18

3.2.4. VGG-16:

VGG-16 [33] 16-layer deep model was the most successful architecture in ImageNet
competition (ILSVRC challenge) 2014. According to the research findings, network depth is
a critical component for increased performance. The block layout of VGG-16 is depicted in
Fig 5.
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Fig. 5 —Illustrating block layout of VGG-16

3.2.5. VGG-19:

The VGG19 model [34] is a variation of the VGG model is consists19 layers. The ImageNet
competition (ILSVRC challenge) 2014 consists of 1,000 different classes, the train, validation,
and test dataset 1.2 million images,50 thousand images, and 150 thousand images,
respectively. The model has learned extensive classification characteristics for a broad variety
of data [35]. In VGG model "16" and "19" represent the number of weight layers in the
network. VGG19 only has three more conv3 layers. The block layout of VGG-19 is depicted
in Fig 6 [44][45].
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Fig. 6 —Illustrating block layout of VGG-19

4. Proposed Work

The diagnosis is generated with expensive equipment in the medical domain, and labels are
derived from a time-consuming process of multiple health experts. In a variety of methods,
semi-supervised deep learning models can compensate for a lack of labelled training data.
Traditional supervised deep learning requires a huge quantity of labelled data to train the
model to spot patterns and make predictions. Yet, getting labelled data can be costly or time-
consuming in many real-world circumstances. This is where semi-supervised learning may
help. During training, semi-supervised learning blends labelled and unlabeled data. The model
can better generalize and predict on new, unknown data by exploiting the knowledge included
within both the labelled and unlabeled data. In the context of compensating for a shortage of
tag data, a semi-supervised deep learning model can learn certain broad patterns or features
using the limited quantity of labelled data available, and then utilize the huge amount of
unlabeled data to deepen its knowledge of these patterns. This improves the model's ability to
recognize and categories data points that have not been explicitly labelled. Overall, semi-
supervised deep learning models can be an effective technique for compensating for a lack of
tag data, as well as for improving the accuracy and efficiency of machine learning algorithms
in a range of applications.

The proposed model has six major phases: Image pre-processing, rank determination,
model generation, generating pseudo dataset, retraining DNN, and evaluation. The key
component of our proposed model is to determine the rank of the benchmark DNN, retrain the
models using both label and pseudo dataset, and an unseen HATA-SH dataset is used to verify
the performance of the purposed model. Fig 7 illustrates the workflow of the proposed model.

The central idea behind generating two random augmentations of raw pictures for both
unlabeled and labeled data is to improve the performance of machine learning models in image
recognition tasks. Augmentation refers to the process of modifying the original images in some
way to create new images that still contain the same essential information. By generating
multiple random augmentations of the raw pictures, the model is exposed to a wider range of
variations in the data, which can help it learn more robust and generalizable features [46].

For unlabeled data, generating random augmentations can be used as a form of pre-processing
to increase the size of the dataset and reduce the risk of overfitting. By creating multiple
variations of each image, the model is forced to learn to recognize the underlying patterns that
are common across all the variations, rather than relying on specific details of any one image.

For labeled data, generating random augmentations can be used as a form of data augmentation
to improve the accuracy of the model. By training the model on multiple variations of each
labeled image, the model is exposed to a wider range of variations in the data, which can help
it learn more robust and generalizable features. This can lead to improved performance on
new, unseen data.
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Fig. 7 — illustrating the workflow of the proposed model

4.1. Research environment

The experiment performed in the virtual environment. The virtual machine is loaded with
Ubuntu operating system (OS), eight virtual CPUs and 14GB RAM. The proposed framework
is implemented using Python 3.0.

4.2. Image Pre-processing

The pre-processing phase improves the significant information of the input image—the train
and test data dataset. The SSDL model is trained using training data and then evaluated on
other testing data to determine how well it performs. This phase transformation of all input
datasets involved in the experiment. In this phase, all datasets are resized to 64x64-pixel
images. The Normalized technique provides an edge on both label and unable datasets. This
technique helps out to reduce distortion and noise. The function of Gaussian noise is to
introduce random perturbations in the pixel values of an image. This can be used as a form of
data augmentation to improve the robustness of machine learning models to variations and
distortions in the input data. When applied to an image, Gaussian noise adds random variations
to the pixel values, which can simulate effects such as image blurring, pixelation, and noise
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that can occur due to camera or sensor limitations, compression artifacts, or other factors. In
the context of consistency regularization for semi-supervised learning (SSDL), Gaussian noise
is used to perturb the input images in an unlabelled dataset during training. The aim is to
encourage the model to learn features that are robust to small variations and distortions in the
input data. By adding noise to the input images and enforcing consistency between the
predictions of the model on the original and perturbed images, the model can learn to
generalize better to new and unseen data [47].

4.3. Rank Determination

The training and validation of the DNN (MobileNet, Pre-Act Resnet18, ResNet18, VGG16,
VGG19) have been implemented from scratch. The training, validation, and testing are
performed on the X-ray image (MURA-SH 64x64) dataset. This phase will support us figure
out the rank from the different DNN. The essential phase of this work is to determine the ranks
of deep learning models. In this section, elaborate on our methodology in further detail.
Although there are various techniques for ranking, each has its own merits and demerits. The
main demerit of pointwise, listwise, and pairwise ranking techniques is that they necessitate a
significant amount of effort from domain experts to establish precise ranks. Our proposed
ranking technique focuses on parameters such as training accuracy, test accuracy, and training
time elapsed of different DNN. The ranking of the model is determined using a threshold-
based ranking algorithm 1 [48].

Algorithm 1: Procedure for the threshold-based ranking among the standard deep
learning models:
INPUT: Train_acc , Test.acc , Elsp_train_time , RankTrain_acc , RankTest acc ,
RankElsp_train_time, N
OUTPUT: RanKk[ |
Initialization;
Train_acc = Train accuracy,
Test_acc= Test accuracy,
Elsp_train_time = Training time elapsed,
RankTrain_acc = Rank Train accuracy,
RankTest_acc = Rank Test accuracy
Rankgsp, Traintime = Rank Training time elapsed
N = number of deep learning model
Rank|[ ]= Rank assign to deep learning model
a=YN, Traing./N /* Compute train threshold*/
. B=3N, Testp/N /* Compute test threshold*/
.Y = YN Elsprraintime/N  /* Compute elapsed threshold*/
. Fori=1to N do /* Compute rank for N deep learning model*/
13. If Elsprraintime < Y /* Compare Elasp train time with threshold*/
14. Rank[i] = Rankgjsp Traintime[i] /* Assign elapsed train time rank to model rank*/
15. If Testace > B /* Compare test accuracy with test threshold */
16. Rank[i] = Rankgest acc[i] /* Assign test rank to model rank*/
17. If Trainge. > a /* Compare train accuracy with train threshold*/

CoNoogrwONOE

=
o

=
N =
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18. Rank[i] = RanKryain accli] /* Assign train rank to model rank™*/

19. Else

20. Rank[i] = Rankgisp Traintime[i] /* Assign elapsed train time rank to model rank™/
21. End For

Note: In case of a tie between ranking priority is

Rank gisp Traintime,Rank Traingcc,Rank Test ¢,

4.4, Model Generation:
The motivations behind the research work (TSR-SDL) that you mentioned are:

1. Understanding how doctors tackle unseen or suspected cases in real life: The aim
of this motivation is to study how doctors approach cases that are not clear-cut or
have not been encountered before. This can help in improving the diagnostic
process and identifying potential gaps in medical knowledge.

2. Lack of sufficient labeled data: This motivation is related to the challenges of
obtaining labeled data, which is essential for training machine learning models.
The high cost and time required for labeling data can limit the size and diversity
of available datasets, which can affect the performance of machine learning
models.

3. Proving the importance of local dataset before using pre-trained models: This
motivation highlights the importance of using locally collected data to fine-tune
pre-trained models for specific tasks. This can improve the accuracy and
generalization of machine learning models in real-world scenarios.

The research work (TSR-SDL) involves experimenting with five standard deep learning
models (MobileNet, Pre-Act Resnetl8, ResNetl8, VGG16, VGG19) to address these
motivations. By studying how doctors approach unseen cases and exploring the use of locally
collected data, this research aims to improve the accuracy and efficiency of machine learning
models in medical diagnosis [42].

The model generation phase is vital part of our proposed work.

The proposed semi-supervised model (TSR-SDL) is depicted in Fig 8. The suggested model
is generated using algorithm 2. In the first stage of the algorithm, three fusion classifiers are
generated according to the top three ranks. Fusion classifier set contains one of the top three
ranks, left out the other two, and contains all other ranked standard deep learning models. The
second step of the algorithm is to produce pseudo labels for all three sub-models. In the second
stage, we club all three fusion classifiers and generate a master fusion classifier (MFC) model.
The next step of the algorithm is to produce pseudo labels from the proposed model [48][49].

Algorithm 2: Procedure for the model TSR-SDL model generation:
INPUT:Ud, N, M_Rank [], M

OUTPUT: Pdpm

Initialization;

1. Ud = Unlabled dataset,

2. N = Number of Standard Deep learning model,
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M_Rank[]=Array of Standard Deep learning models sorted according to ascending order,
M = Size of unlable dataset,

fusion_classifier_Rank =Deep learning models

MFC=Master fusion classifier

Pd_MFC = Pseudo_dataset

GENERATE_PSEUDO_LABEL () method to generate pseudo label

. Fork=1to 3 do /* Compute Pseudo dataset for three models*/

Fusion_classifier Rank[k] ={M_Rank[k], M_Rank [4], ...... M_Rank[N]}
[*Generate Three sub model according to top three Rank */

Pd_Fusion_classifier«— GENERATE_PSEUDO_ LABEL(Ud,
Fusion_classifier_Rank[Kk])

. End for
. MFC [] = {Fusion_classifier_Rank [1], Fusion_classifier_Rank [2],

Fusion_classifier_Rank [3]}

. Pd_ MFC «— GENERATE_PSEUDO_LABEL (Ud, MFC []}
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Fig. 8 — Proposed Two-Stage Rank-based Semi-supervised deep learning Model model

4.5. Generate Pseudo Dataset:
The objective of this phase is to generate a pseudo dataset for the unlabeled HATA-SH dataset.
The pseudo datasets are generated based on the vote count, with the highest vote count label
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is considered pseudo labels for different standard models and proposed models. Step by step,
algorithm 3 is followed to generate the pseudo dataset [50].

Algorithm 3: Procedure for Pseudo label generation for unlabeled dataset:
INPUT: Ud, N, M_Rank [], M

OUTPUT: Pdpm

Initialization;

1. Ud = Unlabled dataset,

2. N = Number of Standard Deep learning model,

3. M_Rank[]=Array of Standard Deep learning models sorted according to

ascending order,

4. M = Size of unlable dataset,

5. Fusion_classifier_Rank =Set of deep learning models

6. Pdpm = Pseudo dataset,

GENERATE_PSEUDO_LABEL (Ud, Fusion_classifier_Rank [])

7. M size « Ud

8. for k=1to M_size do /* Predict pseudo label for Unlabelled dataset
ud*/

9. For i=1to N do

10. PANJK][i] = Fusion_classifier_Rank []  /*Predict the Pseudo label

according to trained
standard deep learning model */

11. If PAN[K][i] is Class1 /* Compare test accuracy with test threshold
*/

12. Vote cl=Vote cl+l

13. Else

14, Vote c2=Vote cl+1

1. End for

15. IF Vote_c1> Vote c2 /* Compare test accuracy with test threshold */

16. Pd[K][i] = Class1 /* Assign test rank to model rank*/

17. ELSE IF Vote_cl=Vote c2

18. Pd[Kk][i] = Top Rank Class  /* Assign elapsed train time rank to model
rank™/

19. ELSE

20. Pd[K][i] = Class2

21. End for

4.6. Retrain the models using both label and pseudo dataset:

In this phase, the standard deep learning models are retrained with the combined
MURA-SH, and pseudo dataset generated by each model and (TSR-SDL) proposed model.

4.7. Validation of proposed model on Unseen HATA-SH dataset:
In the last phase of the experiment, an unseen dataset HATA-SH is used to assess and validate
the performance of the (TSR-SDL) proposed model.

5. Simulation, evaluation, and validation
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The proposed model is categorized into six different phases Image pre-processing, rank
determination, model generation, generating pseudo dataset, retraining deep learning models,
and evaluation. Python version 3.0 is used to implement the proposed model. The evaluation
and validation are explained in detail in the upcoming subsections.

Model Evaluations: The performance of our model is evaluated using the confusion matrix
tool. A confusion matrix is a table that is used to evaluate the performance of a classification
model by comparing the predicted class labels to the true class labels. The confusion matrix is
a powerful tool for evaluating the performance of a binary classification model, which predicts
one of two possible outcomes. It is a table that summarizes the performance of a model by
comparing its predictions to the true values of the target variable. The efficacy of the confusion
matrix lies in its ability to provide a detailed and comprehensive evaluation of the model's
performance. The metrics in the confusion matrix can be used to calculate a variety of other
performance measures, including accuracy, precision, recall, F1 score, and ROC curve. These
measures can help you identify the strengths and weaknesses of your model and make
improvements as needed.

The benefits of using the confusion matrix include:

e Easy to interpret: The confusion matrix provides a simple and intuitive
representation of the performance of a binary classification model.

e Provides detailed information: The confusion matrix allows you to see the number
of true positives, true negatives, false positives, and false negatives, which can be
useful for identifying specific areas of improvement for your model.

o Useful for comparing models: The confusion matrix can be used to compare the
performance of multiple models, allowing you to identify the best-performing
model for a given problem.

o Useful for adjusting thresholds: The confusion matrix can be used to adjust the
threshold for the model's predictions, which can improve its performance on
specific metrics.

The matrix contains information about the true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) predictions made by the model.

Here are the parameters of a confusion matrix:

e True Positive (TP): This is the number of instances that were correctly
predicted as positive by the model.

e True Negative (TN): This is the number of instances that were correctly
predicted as negative by the model.
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e False Positive (FP): This is the number of instances that were predicted as
positive by the model, but were actually negative in reality.

e False Negative (FN): This is the number of instances that were predicted as
negative by the model, but were actually positive in reality.

These parameters can be used to calculate various performance metrics for the classification
model, such as accuracy, specificity, sensitivity (Recall), precision, matthews correlation
coefficient (MCC), false discovery rate (FDR), false positive rate (FPR), f1 score, negative
predictive value (NPV), and false negative rate (FNR).

Accuracy = (TP +TN) /(TP + TN + FP + FN) (1)
Precision=TP/ (TP + FP) (2
Recall = TP/ (TP + FN) 3)
Specificity = TN/ (TN + FP) (@)
F1-score =2 * (Precision * Recall) / (Precision + Recall) (5)

MCC = (TP * TN - FP * FN) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))
(6)

NPV = TN/ (TN + FN) @)
FPR =FP / (FP + TN) ®)
FDR=FP/(FP + TP) 9)
FNR=FN/(FN + TP) (10)

5.1. Experiment result for Rank determination:

Our proposed model has been implemented in Python version 3.0, and it provides an
opportunity to increase the accuracy of SSDL models. On a standard medical image dataset,
we performed a set of experiments to investigate and evaluate the effectiveness of our suggested
approach.

The impact of label errors on model performance depends on the severity and frequency of
the errors. In some cases, the model may be able to compensate for a small amount of label
noise, but in other cases, the errors can have a significant impact on the model's accuracy and
generalization ability. One common effect of label errors is that they can lead to overfitting.
Overfitting occurs when a model is too complex and learns the noise in the training data instead
of the underlying patterns. In the case of label noise, the model may learn to predict the incorrect
labels in the training data, resulting in poor performance on new, unseen data. Label errors can
also cause underfitting, where the model is not complex enough to capture the underlying
patterns in the data. In this case, the model may be too simple to account for the variations in
the data caused by the label errors, leading to poor performance on both the training and test
data.

The standard models (MobileNet, Pre-Act Resnet18, ResNet18, VGG16, VGG19) are trained

and evaluated from scratch. The training accuracy of MobileNet, Pre-Act Resnet18, ResNet18,
VGG16, and VGG19 standard models are depicted in Fig 9.
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Fig. 9 — Train Accuracy of standard deep learning models

Table 2 contains the best train accuracy, test accuracy, and training time for the standard deep
learning models trained for 20 epochs. These parameters are used to evaluate the rank based on
algorithm 1. The rank of standard deep learning models is depicted in table 2.

Table 2 Detail performance and rank of standard deep learning models

Best Train Best Test Training Time for 20 Ran
Models

Accuracy Accuracy Epoch k
MobileNet 59.65 64.43 41 Minutes 52 Seconds | 1
flrgACtReSNe 70.78 7113 127 Minutes 51 Seconds | 5
ResNet18 71.29 72.68 121 Minutes 39 Seconds | 4
VGG16 72.88 71.64 70 Minutes 5 Seconds 2
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VGG19 72.76 72.16 81 Minutes 9 Seconds 3

Threshold
value 69.47 70.40 88 minutes 31 second -
(Average)

Test Accuracy of standard deep learning models The top 1 accuracy achieved 59.65%,
70.78%, 71.88%, 72.88%, 72.76%, respectively. The test accuracy of MobileNet, Pre-Act
Resnet18, ResNetl8, VGG16, VGG19 standard models is depicted in Fig 10. The top 1
accuracy achieved 64.43 %, 71.13%, 72.68%,71.64%, 72.16% respectively.
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Fig. 10 — Test Accuracy of standard deep learning models

5.2. Retrain the models using both label and pseudo dataset:

In this phase, the standard deep learning models are retrained with the combined MURA-SH
and pseudo dataset generated by each standard deep learning model and our proposed model.
In the next phase, these trained models will be validated on the HATA-SH unseen dataset.

5.3. Validation of proposed model on Unseen HATA-SH dataset:

In the last phase of the experiment, an unseen dataset HATA-SH is used to assess and validate
the performance of the proposed model. The validation process is carried out in several parts
to assess the performance. In the first part, we assess the performance of the standard deep
learning models on the HATA-SH unseen dataset when no semi supervised learning technique
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was implemented. The result is depicted in table 3. The average measure for standard deep
learning models such as accuracy, Specificity, sensitivity, precision, matthews correlation
coefficient, false discovery rate, false positive rate, f1 score, negative predictive value, and
false negative rate achieved 27.784%, 7.874%, 53.068%, 30.626%, -44.932, 69.374%,
92.126%, 38.732%, 16.936%, and 46.932% respectively.

Table 3 The Evaluation measure for Standard deep learning models without any semi-
supervised approach

Measure Mobile | PreActResN | ResNetl | VGG | VGG | Averag
Net et18 8 16 19 e

Accuracy 36.27 19.97 27.17 21.59 | 33.92 | 27.784

Specificity 11.29 10.5 14.17 0.79 2.62 7.874

Sensitivity 68 32 43.67 48 73.67 | 53.068

Positive 37.64 21.97 28.6 27.59 | 37.33 | 30.626

Predictive Value

(Precision)

Matthews -25.51 -59.53 -44.6 -60.1 | -34.92 | -44.932

Correlation

Coefficient

False Discovery 62.36 78.03 71.4 72.41 | 62.67 | 69.374

Rate

False Positive 88.71 89.5 85.83 99.21 | 97.38 | 92.126

Rate

F1 Score 48.46 26.05 34.56 35.04 | 49.55 | 38.732

Negative 30.94 16.39 24.22 1.89 11.24 | 16.936

Predictive Value

False Negative 32 68 56.33 52 26.33 | 46.932

Rate

In the second part, we assess the performance of the standard deep learning model on the
HATA-SH unseen dataset when a pseudo dataset is generated through MobileNet. The result
is depicted in table 4. The average measure for standard deep learning models such as
accuracy, Specificity, sensitivity, precision, matthews correlation coefficient, false discovery
rate, false positive rate, f1 score, negative predictive value, and false negative rate achieved
75.264%, 93.964%, 51.026, 86.534, 51.146%, 13.466%, 6.036%, 62.946%, 72.13%, and
48.974% respectively.

Table 4 The Evaluation measure for Standard deep learning models, pseudo dataset generated
through MobileNet
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Measure MobileN | PreActResNe | ResNet | VGG1 | VGG1 | Avera
et t18 18 6 9 ge

Accuracy 64.61 74.45 68.58 79.15 | 89.53 | 75.264

Specificity 83.73 95.8 97.64 96.85 | 95.8 93.964

Sensitivity 40.33 47.33 31.67 56.67 | 79.13 | 51.026

Positive Predictive | 66.12 89.87 91.35 93.41 |91.92 | 86.534

Value (Precision)

Matthews 26.95 50.73 40.44 60.04 | 77.57 | 51.146

Correlation

Coefficient

False Discovery 33.88 10.13 8.65 6.59 8.08 13.466

Rate

False Positive Rate | 16.27 4.2 2.36 3.15 4.2 6.036

F1 Score 50.1 62.01 47.03 70.54 | 85.05 | 62.946

Negative Predictive | 64.06 69.79 64.47 73.95 |88.38 | 72.13

Value

False Negative Rate | 59.67 52.67 68.33 43.33 | 20.87 | 48.974

In the third part, we assess the performance of the standard deep learning model on the HATA-
SH unseen dataset when a pseudo dataset is generated through PreActResNet18. The result is
depicted in table 5. The average measure for standard deep learning models such as accuracy,
Specificity, sensitivity, precision, matthews correlation coefficient, false discovery rate, false
positive rate, f1 score, negative predictive value, and false negative rate achieved 90.134%,
95.538%, 83.268%, 93.476%, 80.188%, 6.524%, 4.462%, 87.946%, 88.136%, 16.732%

respectively.

Table 5 The Evaluation measure for Standard deep learning models, pseudo dataset generated
through PreActResNet18

Measure MobileN | PreActResNe | ResNet | VGGl | VGG1 | Avera
et t18 18 6 9 ge

Accuracy 81.94 92.66 88.11 94.27 |93.69 |90.134
Specificity 91.34 96.33 97.11 96.85 | 96.06 | 95.538
Sensitivity 70 88 76.67 91 90.67 | 83.268
Positive Predictive | 86.42 94.96 95.44 95.79 | 94.77 | 93.476
Value (Precision)

Matthews 63.56 85.17 76.6 88.41 | 87.2 80.188
Correlation
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Coefficient

False Discovery 13.58 5.04 4.56 4.21 5.23 6.524
Rate

False Positive Rate | 8.66 3.67 2.89 3.15 3.94 4.462
F1 Score 77.35 91.35 85.03 93.33 | 92.67 | 87.946
Negative Predictive | 79.45 91.07 84.09 93.18 | 92.89 | 88.136
Value

False Negative Rate | 30 12 23.33 9 9.33 16.732

In the fourth part, we assess the performance of the standard deep learning model on the
HATA-SH unseen dataset when a pseudo dataset is generated through ResNet18. The result
is depicted in table 6. The average measure for standard deep learning models such as
accuracy, Specificity, sensitivity, precision, matthews correlation coefficient, false discovery
rate, false positive rate, f1 score, negative predictive value, and false negative rate achieved
89.368%, 88.662%, 90.268%, 86.288%, 78.622%, 13.712%, 11.338%, 88.228%, 92.03%,
9.732% respectively.

Table 6 The Evaluation measure for Standard deep learning models, pseudo dataset generated
through ResNet18

Measure MobileN | PreActResNet | ResNet | VGG1 | VGGL1 | Avera
et 18 18 6 9 ge

Accuracy 79.88 92.22 92.95 92.07 | 89.72 | 89.368

Specificity 79.79 90.29 93.18 91.34 | 88.71 | 88.662

Sensitivity 80 94.67 92.67 93 91 90.268

Positive Predictive | 75.71 88.47 91.45 89.42 | 86.39 | 86.288

Value (Precision)

Matthews 59.51 84.49 85.73 84.03 | 79.35 | 78.622

Correlation

Coefficient

False Discovery 24.29 11.53 8.55 1058 | 13.61 | 13.712

Rate

False Positive Rate | 20.21 9.71 6.82 8.66 11.29 | 11.338

F1 Score 77.8 91.47 92.05 91.18 | 88.64 | 88.228

Negative 83.52 95.56 94.16 9431 |92.6 92.03

Predictive Value

False Negative 20 5.33 7.33 7 9 9.732

Rate
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In the fifth part, we assess the performance of the standard deep learning model on the HATA-
SH unseen dataset when a pseudo dataset is generated through VGG16. The result is depicted
in table 7. The average measure for standard deep learning models such as accuracy,
Specificity, sensitivity, precision, matthews correlation coefficient, false discovery rate, false
positive rate, f1 score, negative predictive value, and false negative rate achieved 90.602%,
96.85%, 82.668%, 95.282%, 81.254%, 4.718%, 3.15%, 88.472%, 87.764%, 17.332%
respectively.

Table 7 The Evaluation measure for Standard deep learning models, pseudo dataset generated
through VGG16

Measure MobileN | PreActResNet | ResNet | VGG1 | VGG1 | Avera
et 18 18 6 9 ge

Accuracy 83.85 93.39 91.19 91.78 | 92.8 90.602

Specificity 93.7 97.9 97.64 98.16 | 96.85 | 96.85

Sensitivity 71.33 87.67 83 83.67 | 87.67 | 82.668

Positive Predictive | 89.92 97.05 96.51 97.29 | 95.64 | 95.282

Value (Precision)

Matthews 67.71 86.79 82.52 83.74 | 85,51 | 81.254

Correlation

Coefficient

False Discovery 10.08 2.95 3.49 2.71 4.36 4.718

Rate

False Positive Rate | 6.3 2.1 2.36 1.84 3.15 3.15

F1 Score 79.55 92.12 89.25 89.96 | 91.48 | 88.472

Negative Predictive | 80.59 90.98 87.94 88.42 |90.89 | 87.764

Value

False Negative 28.67 12.33 17 16.33 | 12.33 | 17.332

Rate

In the sixth part, we assess the performance of the standard deep learning model on the HATA-
SH unseen dataset when a pseudo dataset is generated through VGG19. The result is depicted
in table 8; the average measure for standard deep learning models such as accuracy,
Specificity, sensitivity, precision, matthews correlation coefficient, false discovery rate, false
positive rate, f1 score, negative predictive value, and false negative rate achieved 69.308%,
97.742%, 33.198%, 89.522%, 40.81%, 10.478%, 2.258%, 47.456%, and 65.28%, 66.802%
respectively.

Table 8 The Evaluation measure for Standard deep learning models, pseudo dataset generated
through VGG19
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Measure
Accuracy
Specificity

Sensitivity

Positive Predictive

MobileN PreActResNet ResNet

Value (Precision)

Matthews

Correlation
Coefficient
False Discovery

Rate

False Positive Rate

F1 Score

Negative Predictive

Value

False Negative

Rate

et 18
59.32 67.69
97.11 97.11
11.33 30.33
75.56 89.22
16.88 38.18
24.44 10.78
2.89 2.89
19.71 45.27
58.18 63.9
88.67 69.67

18
68.72

96.85
33
89.19

40.12

10.81

3.15
48.18
64.74

67

VGGl
6
75.48

98.69
46
96.5

54.47

3.5

131
62.3
69.89

54

VGG1
9
75.33

98.95
45.33
97.14

54.4

2.86

1.05
61.82
69.69

54.67

Avera
ge

69.308
97.742
33.198

89.522

40.81

10.478

2.258
47.456
65.28

66.802

In the seventh part, we assess the performance of the standard deep learning model on the
HATA-SH unseen dataset when a pseudo dataset is generated through our proposed model.
The result is depicted in table 9. The average measure for standard deep learning models such
as accuracy, Specificity, sensitivity, precision, matthews correlation coefficient, false
discovery rate, false positive rate, f1 score, negative predictive value, and false negative rate
achieved 92.776%, 97.376%, 86.932%, 96.192%, 85.644%, 3.808%, 2.624%, 91.072%,
90.85%, 13.068% respectively. In table 9 we have compare our result with state of art and
improve the accuracy by 1 percentage.

Table 9 The Evaluation measure for Standard deep learning models, pseudo dataset generated
through our proposed model

Measure MobileN | PreActResNet | ResNet | VGG1 | VGG1 | Propose | state
et 18 18 6 9 d of

Model | art

(averag | [41]

€)

Accuracy | 83.7 93.83 95.89 94.57 | 95.89 | 92.776 91.8
3

Specificity | 96.59 96.85 98.69 96.85 | 97.9 97.376 | 85.2
6
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Sensitivity | 67.33 90 92.33 91.67 |93.33 |86.932 |97.0
0

Positive 93.95 95.74 98.23 95.82 | 97.22 |96.192 | 89.3

Predictive 5

Value

(Precision)

Matthews | 68.27 87.54 91.74 88.99 |91.68 | 85.644 |83.6

Correlatio 4

n

Coefficient

False 6.05 4.26 1.77 4.18 2.78 3.808 10.6

Discovery 4

Rate

False 341 3.15 1.31 3.15 2.1 2.624 14.7

Positive 3

Rate

F1 Score 78.45 92.78 95.19 93.7 95.24 |91.072 | 93.0
1

Negative 78.97 92.48 94.24 93.65 | 94.91 | 90.85 95.6

Predictive 9

Value

False 32.67 10 7.67 8.33 6.67 13.068 | 2.99

Negative

Rate

In Fig 11, we show some representative samples together with our proposed model correct and
incorrect predictions for the shoulder bone fracture classification on the unseen HATA-SH
dataset. We can see that our model classification performance still has space for improvement.
We used the basic deep learning models as the mainstay in this work rather than more
sophisticated model designs since we are interested in exploring how to efficiently use
unlabelled data and assist the medical domain.
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Fig. 11 — A typical example of a correct and incorrect prediction and actual label through the
proposed model.

It has been observed that our proposed model has outperformed other models. Several
performance evaluation measures are considered, such as accuracy, specificity, sensitivity,
precision, matthews correlation coefficient, false discovery rate, false positive rate, f1 score,
negative predictive value, and false negative rate. 92.776%, 97.376%, 86.932%, 96.192%,
85.644%, 3.808%, 2.624%, 91.072%, 90.85%, and 13.068% respectively for unseen dataset.
Overall, our proposed models exhibited high performance without the semi-supervised
approach being the weakest approach compared to others.

The proposed model achieves an increase by 234%, 1137%, 64%, 214%, 135%, 436%
inaccuracy, specificity, sensitivity, precision, fi score, matthews correlation coefficient,
negative predictive value, respectively and decreases by -95%, -97%, -72% in FDR, FPR, and
FNR respectively. The result is depicted in Fig 12.
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Fig. 12 — Improvement between without semi-supervised approach and proposed model
(TSR-SDL)

Limitation: Proposed methods are a powerful technique for improving the performance and
robustness of machine learning models. However, there are some limitations that need to be
considered when using ensemble methods. Here are some of the limitations of the ensemble
method:

1. Increased computational complexity: Proposed methods require training multiple
models, which can significantly increase the computational complexity and time
required to train and evaluate the models.

2. Overfitting: Proposed methods can be prone to overfitting if the models in the ensemble
are too complex and/or the training data is limited. This can lead to poor generalization
performance on new data.

3. Limited interpretability: Proposed methods are often considered as "black box" models,
meaning that it can be difficult to interpret the results and understand how the ensemble
arrived at its predictions. This can be a limitation in certain applications, especially in
high-risk domains such as healthcare and finance.

4. Sensitivity to individual model performance: Proposed methods depend on the
performance of individual models in the ensemble. If one or more models in the
ensemble perform poorly, it can negatively impact the overall performance of the
ensemble.

5. Difficulty in selecting the right models: Proposed methods require selecting a set of
diverse and complementary models to achieve optimal performance. However,
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selecting the right models can be a challenging task, and the performance of the
ensemble is highly dependent on the choice of models.

In summary, while proposed methods are a powerful technique for improving machine
learning performance, they are not without limitations. Careful consideration is required
when selecting models, evaluating performance, and interpreting results to ensure that the
benefits of ensemble methods outweigh their limitations.

6. Conclusions:

In this research paper, Semi supervised deep learning models have shown promising results
in medical imaging, where labeled data is often scarce and expensive to acquire. By utilizing
both labeled and unlabeled data, semi supervised deep learning models can improve the
accuracy of medical image analysis and diagnosis. Here are some practical applications of
semi supervised deep learning models in medical imaging:

e Detection of Abnormalities: Semi supervised deep learning models can be used to
detect abnormalities in medical images, such as tumors or lesions. By training the model
on both labeled and unlabeled data, the model can learn to identify subtle patterns and
features that are indicative of an abnormality.

o Disease Diagnosis: Semi supervised deep learning models can be used to aid in the
diagnosis of diseases, such as Alzheimer's or Parkinson's. By utilizing both labeled and
unlabeled data, the model can learn to identify patterns and features in medical images
that are indicative of the disease.

Overall, semi supervised deep learning models have the potential to significantly improve the
accuracy and efficiency of medical image analysis and diagnosis, especially in cases where
labeled data is scarce or expensive to acquire. Although accuracy is extensive applicability, it
is not always the best performance statistic to use, especially when the target variable classes
in the dataset are imbalanced. Low (FPR, FNR, and FDR) and high (sensitivity, specificity,
precision, and Matthew’s correlation coefficient) indicate an efficient and effective model. The
proposed model achieves an increase in 234%, 1137%, 64%, 214%, 135% 436% accuracy,
specificity, sensitivity, precision, fl score, Matthew’s correlation coefficient, negative
predictive value respectively and decrease by -95%, -97%, -72% in FDR, FPR, and FNR
respectively. We can conclude that the model trained with (MURA) dataset from Stanford
University was not enough to predict the data set collected HATA CHC. This proposed semi-
supervised learning approach solve the issue of unlabelled dataset and also improves the
performance of the model. In the future, this proposed method may be applied to a wide variety
of other medical imaging datasets.

Compliance with Ethical Standards

The authors declare that they do not have any Conflict of Interest. This research does not
include any human or animal participation.

Nanotechnology Perceptions 20 No. S1 (2024)



Availability of data and materials
Data shall be made available from corresponding author on request.

Funding
This work does not receive any kind of funding in any form.

Acknowledgements
Not applicable

References

[1]
[2]
[3]
[4]
[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Agrawala, “Learning With A Probabilistic Teacher,” Ieee Trans. Inf. Theory, Vol. 16, No.
4, Pp. 373-379, 1970, Doi: 10.1109/Tit.1970.1054472.

S. Fralick, “Learning To Recognize Patterns Without A Teacher,” Ieee Trans. Inf. Theory, Vol.
13, No. 1, Pp. 57-64, 1967, Doi: 10.1109/Tit.1967.1053952.

H. Scudder, “Probability Of Error Of Some Adaptive Pattern-Recognition Machines,” Ieee
Trans. Inf. Theory, Vol. 11, No. 3, Pp. 363-371, 1965, Doi: 10.1109/Tit.1965.1053799.

P. Rajpurkar Et Al., “Mura: Large Dataset For Abnormality Detection In Musculoskeletal
Radiographs,” Arxiv Prepr. Arxiv1712.06957,2017.

D.-H. Lee And Others, “Pseudo-Label: The Simple And Efficient Semi-Supervised Learning
Method For Deep Neural Networks,” In Workshop On Challenges In Representation Learning,
Icml, 2013, Vol. 3, No. 2.

Q. Xie, M.-T. Luong, E. Hovy, And Q. V Le, “Self-Training With Noisy Student Improves
Imagenet Classification,” Jun. 2020.

M. Ragab, S. Alshehri, N. A. Alhakamy, R. F. Mansour, And D. Koundal, “Multiclass
Classification Of Chest X-Ray Images For The Prediction Of Covid-19 Using Capsule
Network,” Comput. Intell. Neurosci., Vol. 2022, 2022.

A. Sharma, K. Singh, And D. Koundal, “A Novel Fusion Based Convolutional Neural Network
Approach For Classification Of Covid-19 From Chest X-Ray Images,” Biomed. Signal Process.
Control, Vol. 77, P. 103778, 2022.

P. Malhotra, S. Gupta, D. Koundal, A. Zaguia, M. Kaur, And H.-N. Lee, “Deep Learning-Based
Computer-Aided Pneumothorax Detection Using Chest X-Ray Images,” Sensors, Vol. 22, No.
6, P. 2278, 2022.

A. S. Al-Ghamdi, M. Ragab, S. A. Alghamdi, A. H. Asseri, R. F. Mansour, And D. Koundal,
“Detection Of Dental Diseases Through X-Ray Images Using Neural Search Architecture
Network,” Comput. Intell. Neurosci., Vol. 2022, 2022.

P. Malhotra, S. Gupta, And D. Koundal, “Comparative Analysis Of Deep Learning Based
Automated Segmentation Of Pneumothorax On Chest X-Ray Images,” Ecs Trans., Vol. 107,
No. 1, P. 8905, 2022.

S. Laine And T. Aila, “Temporal Ensembling For Semi-Supervised Learning,” Arxiv Prepr.
Arxiv1610.02242, 2016.

S. Choudhary, V. Narayan, M. Faiz, And S. Pramanik, “Fuzzy Approach-Based Stable Energy-
Efficient Aodv Routing Protocol In Mobile Ad Hoc Networks,” In Software Defined
Networking For Ad Hoc Networks, Springer, 2022, Pp. 125-139.

Ouali, Y., Hudelot, C., & Tami, M. (2020). An Overview Of Deep Semi-Supervised
Learning. Arxiv Preprint Arxiv:2006.05278.

A. Tarvainen And H. Valpola, “Mean Teachers Are Better Role Models: Weight-Averaged
Consistency Targets Improve Semi-Supervised Deep Learning Results,” Arxiv Prepr.
Arxiv1703.01780, 2017.

Li, X, Lu, P., Hu, L., Wang, X., & Lu, L. (2022). A Novel Self-Learning Semi-Supervised

Nanotechnology Perceptions 20 No. S1 (2024)



Enhancing X-Ray Image Classification.... Pawan Kumar Mall et al. 1152

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33]

[34]

Deep Learning Network To Detect Fake News On Social Media. Multimedia Tools And
Applications, 81(14), 19341-19349.

P. Smiti, S. Srivastava, And N. Rakesh, “Video And Audio Streaming Issues In Multimedia
Application,” In 2018 8th International Conference On Cloud Computing, Data Science
Engineering (Confluence), 2018, Pp. 360-365, Doi: 10.1109/Confluence.2018.8442823.

S. Srivastava And S. Sharma, “Analysis Of Cyber Related Issues By Implementing Data Mining
Algorithm,” In 2019 9th International Conference On Cloud Computing, Data Science
Engineering (Confluence), 2019, Pp. 606-610, Doi: 10.1109/Confluence.2019.8776980.

T. Miyato, S. Maeda, M. Koyama, And S. Ishii, “Virtual Adversarial Training: A Regularization
Method For Supervised And Semi-Supervised Learning,” Ieee Trans. Pattern Anal. Mach.
Intell., VVol. 41, No. 8, Pp. 1979-1993, 2018, Doi: 10.1109/Tpami.2018.2858821.

D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, And C. Raffel, “Mixmatch: A
Holistic Approach To Semi-Supervised Learning,” Arxiv Prepr. Arxiv1905.02249, 2019.
Dong, S., Xia, Y., & Peng, T. (2021). Network Abnormal Traffic Detection Model Based On
Semi-Supervised Deep Reinforcement Learning. leee Transactions On Network And Service
Management, 18(4), 4197-4212.

Dong-Dongchen, W., & Weigao, Z. H. (2018, July). Tri-Net For Semi-Supervised Deep
Learning. In Proceedings Of Twenty-Seventh International Joint Conference On Atrtificial
Intelligence (Pp. 2014-2020).

Shi, W., Gong, Y., Ding, C., Tao, Z. M., & Zheng, N. (2018). Transductive Semi-Supervised
Deep Learning Using Min-Max Features. In Proceedings Of The European Conference On
Computer Vision (Eccv) (Pp. 299-315).

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., & Hinton, G. E. (2020). Big Self-Supervised
Models Are Strong Semi-Supervised Learners. Advances In Neural Information Processing
Systems, 33, 22243-22255.

M. A. Mohammed Et Al., “Novel Crow Swarm Optimization Algorithm And Selection
Approach For Optimal Deep Learning Covid-19 Diagnostic Model,” Comput. Intell. Neurosci.,
Vol. 2022, 2022.

A. T. Nagi, M. J. Awan, M. A. Mohammed, A. Mahmoud, A. Majumdar, And O. Thinnukool,
“Performance Analysis For Covid-19 Diagnosis Using Custom And State-Of-The-Art Deep
Learning Models,” Appl. Sci., Vol. 12, No. 13, P. 6364, 2022.

J. N. Hasoon Et Al., “Covid-19 Anomaly Detection And Classification Method Based On
Supervised Machine Learning Of Chest X-Ray Images,” Results Phys., Vol. 31, P. 105045,
2021.

D. A. Ibrahim, D. A. Zebari, H. J. Mohammed, And M. A. Mohammed, “Effective Hybrid Deep
Learning Model For Covid-19 Patterns Identification Using Ct Images,” Expert Syst., P.
E13010, 2022.

H. Allioui Et Al., “A Multi-Agent Deep Reinforcement Learning Approach For Enhancement
Of Covid-19 Ct Image Segmentation,” J. Pers. Med., Vol. 12, No. 2, P. 309, 2022.

A. G. Howard Et Al., “Mobilenets: Efficient Convolutional Neural Networks For Mobile Vision
Applications,” Arxiv Prepr. Arxiv1704.04861, 2017.

K. He, X. Zhang, S. Ren, And J. Sun, “Identity Mappings In Deep Residual Networks,” Mar.
2016, [Online]. Available: Http://Arxiv.Org/Abs/1603.05027.

K. He, X. Zhang, S. Ren, And J. Sun, “Deep Residual Learning For Image Recognition,” Corr,
Vol. Abs/1512.0, 2015, [Online]. Available: Http://Arxiv.Org/Abs/1512.03385.

X. Zhang, J. Zou, K. He, And J. Sun, “Accelerating Very Deep Convolutional Networks For
Classification And Detection,” Ieee Trans. Pattern Anal. Mach. Intell., Vol. 38, No. 10, Pp.
1943-1955, 2015.

K. Simonyan And A. Zisserman, “Very Deep Convolutional Networks For Large-Scale Image

Nanotechnology Perceptions 20 No. S1 (2024)



[35]
[36]
[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Recognition,” Arxiv Prepr. Arxiv1409.1556, 2014.
F. Setiawan, B. N. Yahya, And S.-L. Lee, “Deep Activity Recognition On Imaging Sensor
Data,” Electron. Lett., Vol. 55, No. 17, Pp. 928-931, 2019.
Li, Z., Ko, B., & Choi, H. J. (2019). Naive Semi-Supervised Deep Learning Using Pseudo-
Label. Peer-To-Peer Networking And Applications, 12, 1358-1368..
Y. Benjamini, “Discovering The False Discovery Rate,” J. R. Stat. Soc. Ser. B (Statistical
Methodol., Vol. 72, No. 4, Pp. 405-416, 2010.
Xiao, Y., Wu, J., Lin, Z., & Zhao, X. (2018). A Semi-Supervised Deep Learning Method Based
On Stacked Sparse Auto-Encoder For Cancer Prediction Using Rna-Seq Data. Computer
Methods And Programs In Biomedicine, 166, 99-105.
D. Chicco And G. Jurman, “The Advantages Of The Matthews Correlation Coefficient (Mcc)
Over F1 Score And Accuracy In Binary Classification Evaluation,” Bmc Genomics, Vol. 21,
No. 1, Pp. 1-13, 2020.
Yao, H., Fu, D., Zhang, P., Li, M., & Liu, Y. (2018). Msml: A Novel Multilevel Semi-
Supervised Machine Learning Framework For Intrusion Detection System. leee Internet Of
Things Journal, 6(2), 1949-1959.
P Mall And P. Singh, “Credence-Net: A Semi-Supervised Deep Learning Approach For
Medical Images,” Int. J. Nanotechnol., Vol. 20, 2022.

Narayan, Vipul, Et Al. "7 Extracting Business Methodology: Using Atrtificial Intelligence-Based
Method." Semantic Intelligent Computing And Applications 16 (2023): 123.
Narayan, Vipul, Et Al. "A Comprehensive Review Of Various Approach For Medical Image
Segmentation And Disease Prediction." Wireless Personal Communications 132.3 (2023):
1819-1848.
Mall, Pawan Kumar, Et Al. "Rank Based Two Stage Semi-Supervised Deep Learning Model
For X-Ray Images Classification: An Approach Toward Tagging Unlabeled Medical
Dataset.” Journal Of Scientific & Industrial Research (Jsir) 82.08 (2023): 818-830.
Chaturvedi, Pooja, A. K. Daniel, And Vipul Narayan. "A Novel Heuristic For Maximizing
Lifetime Of Target Coverage In Wireless Sensor Networks." Advanced Wireless
Communication And Sensor Networks. Chapman And Hall/Crc, 2023. 227-242.

Narayan, Vipul, Et Al. "Severity Of Lumpy Disease Detection Based On Deep Learning
Technique." 2023 International Conference On Disruptive Technologies (lcdt). leee, 2023.
Narayan, Vipul, Et Al. "Fuzzynet: Medical Image Classification Based On Glcm Texture
Feature." 2023 International Conference On Atrtificial Intelligence And Smart Communication
(Aisc). leee, 2023
Narayan, Vipul, Et Al. "Deep Learning Approaches For Human Gait Recognition: A
Review." 2023 International Conference On Artificial Intelligence And Smart Communication
(Aisc). leee, 2023.

Mall, Pawan Kumar, Et Al. "Fuzzynet-Based Modelling Smart Traffic System In Smart Cities
Using Deep Learning Models." Handbook Of Research On Data-Driven Mathematical
Modeling In Smart Cities. Igi Global, 2023. 76-95.

Narayan, Vipul, And A. K. Daniel. "Energy Efficient Protocol For Lifetime Prediction Of
Wireless Sensor Network Using Multivariate Polynomial Regression Model.” Journal Of
Scientific & Industrial Research 81.12 (2022): 1297-13009.

Biographies

Pawan Kumar Mall: Pawan Kumar Mall received M. Tech degree in Computer Science
Engineering from A.KT.U. India in 2016. Presently he is working as a research scholar in the
Department of Computer Science & Engineering. His current research interests are Wireless

Nanotechnology Perceptions 20 No. S1 (2024)



Enhancing X-Ray Image Classification.... Pawan Kumar Mall et al. 1154

Sensor Networks and Cloud computing and Image Processing He has published various papers
in International Journals and International conferences.

Pradeep Kumar Singh: Pradeep Kumar Singh received the B.E. Degree in Computer Science
from D. D. U. University of Gorakhpur, Gorakhpur, India, the MTech degree in Computer
Science and Technology from University of Roorkee, Roorkee (how IITR), India and Ph.D.
in Computer Science and Engineering from D.D.U. University of Gorakhpur, Gorakhpur,
India. He is currently working as Professor with Department of Computer Science and
Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India. His
current research interests include memory and parallelism optimization for embedded systems,
multi core architectures and compiler optimization.

Nanotechnology Perceptions 20 No. S1 (2024)



