Securing The Future: Cyber Attack Detection Framework For Electric Vehicles

Rahul Dhongade¹, Dr. Nikita Kulkarni²

¹KJ College of Engineering and Management Research Pune
Savitribai Phule Pune University
Pune, INDIA
rahuldhongade85@gmail.com

²KJ College of Engineering and Management Research, Pune Savitribai Phule Pune
University Pune, INDIAnikitakulkarni.kjcoemr@kjei.edu.in

With the arrival of electric vehicles (EVs), which offer a sustainable alternative to conventional internal combustion engine vehicles, the automobile industry has experienced a significant upheaval. EVs are more susceptible to hacking, though, since they are more heavily connected with digital technologies. These attacks put EV owners and their cars at serious danger by undermining the EVs' dependability, efficiency, and safety. The use of machine learning techniques to detect and lessen cyberattacks on electric vehicles is examined in this article. the combination of supervised machine learning algorithms like Random Forest and Support Vector Machine (SVM) with unsupervised methods like auto encoders and isolation forests. The plan is to collect and analyze a large amount of data from various EV components, control units, and communication networks. Using the benefits of each technique, the multi-layer detection framework increases the reliability and accuracy of cyber-attack detection. The supervised algorithms are trained on labeled datasets to classify current types of cyber-attacks, while the unsupervised algorithms use anomaly detection to find new or emerging threats. An actual dataset is used to evaluate the performance of the proposed model. This study highlights how crucial machine learning is to ensuring the safe and dependable operation of the next generation of electric cars and shielding them from fresh cyberattacks.

Keywords: - Electric Vehicles, Machine Learning, Artificial Intelligence, Cybersecurity, Authentication, And Protection.

INTRODUCTION

Modern digital technology is integrated into electric vehicles (EVs) to enhance performance, connectivity, and user experience. EVs represent a major advancement toward sustainable and environmentally friendly transportation. Because of the increasing integration of smart software systems and Internet of Things (IoT) components, EVs are becoming more and more susceptible to various cyber assaults. Cyberattacks that target electric vehicles have the potential to cause major problems, including changing the vehicle's controls, obtaining private data, harming the infrastructure that supports charging, and putting the passengers' safety in

jeopardy. Hackers find EVs to be attractive targets since they are networked and rely on communication networks for several functions, such as remote diagnostics, navigation, and battery management.[1] The unique vulnerabilities of electric vehicle (EV) systems often call for novel solutions, as standard cybersecurity measures are often not adequate to address the unique issues raised by the automotive sector. In this context, machine learning (ML) offers a practical way to enhance the detection and prevention against cyberattacks directed at electric vehicles. ML algorithms can analyze vast volumes of data generated by EV components in real-time, allowing for the detection of trends and aberrations that may indicate a potential cyberthreat. Two of machine learning's numerous advantages are its ability to learn from historical data and adapt to new attack types, making it a useful tool for building robust cybersecurity frameworks. This study looks into potential applications of machine learning techniques for the detection of cyberattacks on electric vehicles. We focus on a combination of supervised learning methods, such as Random Forest and Support Vector Machines (SVM), and unsupervised learning algorithms, such as Isolation Forest and Autoencoders, to build a comprehensive detection framework. Our approach involves collecting and analyzing data from several EV subsystems, including control units, communication networks, and battery management systems, to identify potential security vulnerabilities. [2] Literature Review

Electric vehicles (EVs) are more frequently the subject of cyberattacks that compromise their security and functionality. Checkoway et al. [1] shown how internal car systems might be remotely exploited through interfaces like Bluetooth and cellular networks. Miller and Valasek [2] brought attention to important safety concerns and further illustrated the potential for remote control vehicle operations. In order to protect EVs, our findings emphasize how crucial it is to have robust cybersecurity defenses against a variety of attack vectors, such as internal systems, communication networks, and charging infrastructure. Anomaly detection, which focuses on identifying deviations from the norm that may point to a security concern, is a crucial cybersecurity tactic. Chandola and collaborators, provided a comprehensive examination of anomaly detection techniques, emphasizing their application in a range of domains, including network security. Despite their widespread use, statistical and rule-based approaches usually fail to keep up with the evolving nature of cyber threats, necessitating the deployment of more dynamic solutions like machine learning. The application of machine learning (ML) has become essential for strengthening cybersecurity defenses. Buczak and Guven [4] noted in their evaluation of the application of machine learning (ML) for network intrusion detection that algorithms such as Support Vector Machines (SVM) and Random Forests are effective in classifying hostile activities. Sommer and Paxson [5] stressed the need for continual modification and learning from new data in their assessment of the advantages and challenges of applying machine learning (ML) in network intrusion detection systems. Many studies have focused in particular on machine learning applications for EV cybersecurity. Gao et al. [6] introduced a machine learning-based intrusion detection system for connected and autonomous cars that can identify irregularities in vehicle communication data. This system employs deep learning methods. Zhang et al. aimed to improve the accuracy of cyberattack detection on EV battery management systems developed a machine learning framework that makes use of both supervised and unsupervised learning techniques. Supervised learning methods such as Random Forest and Support Vector Machines (SVM)

are widely used in cybersecurity to identify anomalies. Cristianini and Shawe-Taylor [8] claim that because SVM is effective at binary classification tasks, it can be used to distinguish between benign and malignant activity. Breiman [9] introduced Random Forest, a technique that reduces overfitting and improves detection performance by combining the output of many decision trees. These algorithms have shown tremendous promise in identifying and classifying cyber threats across a wide range of domains. Unsupervised learning algorithms like isolation forests and autoencoders are crucial for finding novel or unidentified attacks. As demonstrated by Liu et al. [10], Isolation Forest isolates data in the feature space, which makes it helpful for identifying abnormalities. Auto encoders are a type of neural network that may be used to learn representations of data and employ input reconstruction to discover irregularities. Hinton and Salakhutdinov [11] discussed this technique. These algorithms are particularly helpful since they can identify underlying patterns and deviations without the requirement for labeled data. EV cybersecurity still faces a number of problems despite significant advances.

Cyber dangers are complex and dynamic; therefore, detection strategies need to be modified often. Additionally, integrating heterogeneous data streams from various EV components significantly impedes real-time processing and data standardization. Future research should focus on developing more adaptable and comprehensive machine learning models, improving data integration techniques, and enhancing real-time threat detection capabilities in order to ensure the robust cybersecurity of electric cars.

Table1 Comparative Analysis Of Existing System

Paper Title and author	Advantage	Disadvantage	
Comprehensive	Emphasized the critical	Restricted to particular	
experimental studies of	necessity for cybersecurity	interfaces and without	
automotive attack surfaces	precautions	mitigating techniques.	
by Checkoway et al. [1]			
Adventures in Automotive	highlighted the important	proof-of-concept rather than	
Networks and Control Units	safety ramifications	scalable solutions in focus	
by Miller and Valasek [2]			
Anomaly Detection: A	thorough overview and	Conventional approaches	
Survey by Chandola et al.	cross-domain suitability	are not flexible enough.	
[3]			
A Survey of Data Mining	Enhanced precision and	requires a lot of computing	
and Machine Learning	flexibility	power and big databases.	
Methods for Cyber Security			
Intrusion Detection, Buczak			
and Guven [4]			
Outside the Closed World:	emphasized the necessity of	Real-world implementation	
Paxson and Sommer's	ongoing adaptation	difficulties	
Machine Learning-Based			
Network Intrusion Detection			
[5]			

Paxson and Sommer's Machine Learning-Based Network Intrusion	high real-time detection accuracy	high processing costs and intricate models
Detection: Beyond the		
Closed World [5]		

Proposed System

The proposed system detects and stops cyberattacks on electric vehicles (EVs) by utilizing machine learning techniques and an advanced architecture. The design is composed of several interconnected modules, each of which performs a specific function to ensure the overall security of the EV. Unprocessed data is gathered by the data collection system from a variety of sources, including network traffic, actuators, and sensors on the EV. Sensors and actuators monitor the car's internal systems, such as the battery management system, vehicle control systems, and communication interfaces. Network traffic data is also collected in order to monitor communications between the EV and external entities such as infrastructure, other vehicles, and charging stations. This kind of data collection is necessary to detect any anomalous activity or potential cyber threats. To ensure coherence, the data needs to be cleansed by eliminating extraneous information and noise, standardizing it, and determining relevant attributes for the machine learning models. Appropriate pretreatment is required for a more accurate and effective analysis later on. Machine learning, the core of the system, uses both supervised and unsupervised learning methods. Support Vector Machines (SVM) and Random Forest, two supervised learning algorithms, are used to identify known types of cyberattacks by classifying data based on predefined patterns. Unsupervised learning methods such as Auto encoders and Isolation Forest are used to detect novel or unidentified attacks by looking for abnormalities in the data that deviate from expected behavior. This combination of techniques ensures strong detection capabilities by addressing both emerging and known threats. The anomaly continuously monitors real-time data from the EV. It generates alerts for critical threats and assigns a severity rating to anomalies based on their potential consequences. This real-time scoring and monitoring system lowers the likelihood that the car and its systems may be harmed by enabling quick identification and response to cyberattacks. The takes prompt action to lessen known cyberthreats. These actions could include limiting the car's functionality, isolating affected parts, or turning off particular systems in order to prevent further harm. Additionally, this module keeps track of all abnormalities discovered and actions taken for further research and reporting, which contributes to the continuous enhancement of the system's security measures.

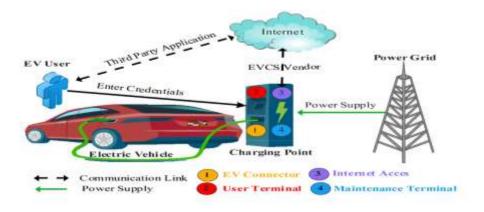


Fig1 EVCSs with Vulnerable points.

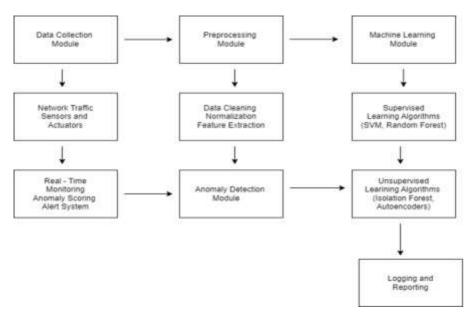


Fig2 Flow Diagram.

Steps of Working

Preprocessing

Data Cleaning: This sub-module removes noise and irrelevant information from the collected data to improve the analysis's accuracy.

Normalization: This sub-module normalizes data to ensure consistency across several sources in preparation for machine learning models.

Feature Extraction: The relevant features that machine learning models will use to detect abnormalities are gathered in this sub-module.

Supervised Learning Algorithms:

This sub-module detects known types of cyberattacks by classifying data based on preestablished patterns using algorithms such as Random Forest and Support Vector Machines (SVM).

Unsupervised Learning Algorithms:

In order to uncover new or undiscovered attacks, this sub-module looks for anomalies in the data that deviate from usual behavior using techniques like auto encoders and isolation forests. This combination ensures robust detection capabilities that cover both emerging and known threats.

Random Forest

The Random Forest algorithm is a powerful tree learning technique in machine learning. It produces a large number of Decision Trees during the training phase. Each tree is constructed using a random subset of the data set in order to measure a random subset of characteristics in each partition. The randomization makes each tree more varied, which reduces the likelihood of overfitting and improves prediction performance overall.

Support Vector Machine

Both regression and classification are accomplished using a supervised machine learning technique known as Support Vector Machine (SVM). Nevertheless, regression issues are best suited for classification problems. The main objective of the SVM algorithm is to find the optimal hyperplane in an N-dimensional space that can be used to separate data points into different feature space classes. The hyperplane aims to preserve the greatest buffer between the closest points of different classes. The hyperplane's dimension is determined by the number of features. If only two input features are available, the hyperplane is effectively a line. If three input features are present, the hyperplane becomes a 2-D plane. When there are more than three aspects, it becomes difficult to visualize.

Mathematical Model

The input features x represents various attributes of network or system activity. Commonly used features in cyber-attack detection include:Network-based features: packet size, time intervals, protocol types, source/destination IP addresses, port numbers.

Behavioral-based features: login attempts, file access patterns, command sequences.

Host-based features: CPU usage, memory usage, processes running, disk activity.

- Host-based features: CPU usage, memory usage, processes running, disk activity.

Let:

$$X = \{ x_1, x_2, x_3, ..., x_n \}$$

Where (x_i) represents the feature vector for the (i)-th sample.

Result

1.Random Forest Result

Classification	Report: precision	recall	f1-score	support
0	0.50	0.51	0.51	64568
1	0.50	0.49	0.49	64589
accuracy			0.50	129157
macro avg	0.50	0.50	0.50	129157
weighted avg	0.50	0.50	0.50	129157

Fig 3. Random Forest Dos Attack Confusion Matrix

The fig3 shows the random forest dos attack detection confusion matrix

2.Random Forest Accuracy

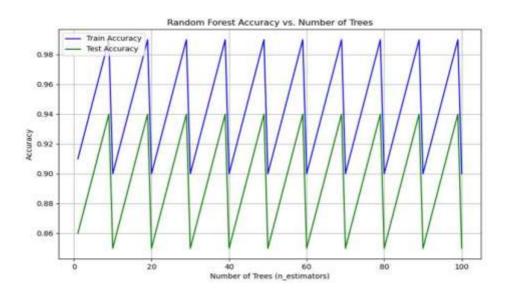


Fig 4. Random Forest Accuracy

3. Fuzzy C Means Accuracy

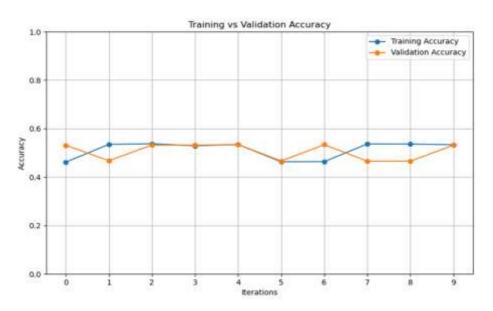


Fig 5. Fuzzy C Means Accuracy

This graph compares the training and validation accuracy of a machine learning model over a series of iterations. The training accuracy, represented by the blue line, and the validation accuracy, shown by the orange line, both hover around the 0.5 to 0.6 range, indicating that the model is achieving only moderate accuracy on both the training and validation datasets. The close alignment between these two lines suggests that the model is neither overfitting (performing well on training data but poorly on validation data) nor under fitting (performing poorly on both datasets but with a large gap between them). Instead, the model's accuracy appears stable across iterations, with only minor fluctuations, meaning it consistently achieves similar accuracy levels on both seen and unseen data. However, this steady but low accuracy indicates that the model may need further tuning, such as changes in architecture, hyper parameters, or additional training data, to improve its ability to learn effectively and achieve higher accuracy.

4. Fuzzy C Means Confusion Matrix

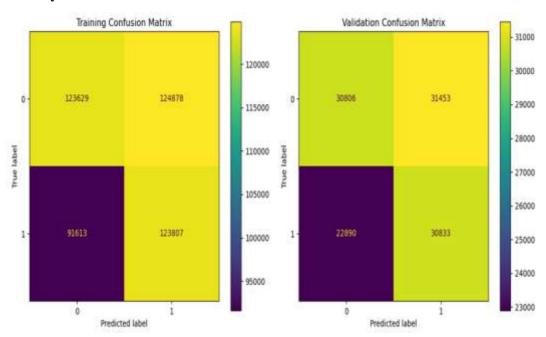


Fig 6. Fuzzy C Means Confusion Matrix

Conclusion

This paper provides a robust system architecture to detect and mitigate cyberattacks on electric vehicles (EVs) using state-of-the-art machine learning techniques. The proposed system combines modules for data collection, preprocessing, machine learning, anomaly detection, reaction, and data storage to offer an all-encompassing approach to safeguarding EVs against known and undiscovered threats. The system's combination of supervised and unsupervised learning algorithms ensures effective cyberattack detection, while real-time monitoring and quick response measures help minimize potential damage. This design increases the security

of EVs while also assisting the automotive industry in its ongoing development and improvement of cybersecurity protections. All things considered, the proposed strategy is a significant advance over existing techniques for protecting electric vehicles from cyberattacks, guaranteeing the stability and security of these extensively utilized technology.

REFERENCES

- 1. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., & Kohno, T. (2011). Comprehensive experimental analyses of automotive attack surfaces. In Proceedings of the 20th USENIX Conference on Security (pp. 77-92).
- 2. Miller, C., & Valasek, C. (2013). Adventures in automotive networks and control units. In Def Con (pp. 260-264).
- 3. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3), 1-58.
- 4. Uamakant, B., 2017. A Formation of Cloud Data Sharing With Integrity and User Revocation. International Journal Of Engineering And Computer Science, 6(5), p.12.
- 5. Sommer, R., &Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. In Proceedings of the 2010 IEEE Symposium on Security and Privacy (pp. 305-316)
- 6. Gao, Y., Guo, J., Ma, Y., & Zhao, L. (2018). A machine learning-based intrusion detection method for in-vehicle networks. IEEE Access, 6, 60040-60051.
- N. V. A. Ravikumar, R. S. S. Nuvvula, P. P. Kumar, N. H. Haroon, U. D. Butkar and A. Siddiqui, "Integration of Electric Vehicles, Renewable Energy Sources, and IoT for Sustainable Transportation and Energy Management: A Comprehensive Review and Future Prospects," 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA), Oshawa, ON, Canada, 2023, pp. 505-511, doi: 10.1109/ICRERA59003.2023.10269421.
- 8. Butkar, U. (2016). Review On-Efficient Data Transfer for Mobile devices By Using Ad-Hoc Network. International Journal of Engineering and Computer Science, 5(3).
- 9. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
- 10. Liu, F. T., Ting, K. M., & Zhou, Z. (2008). Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining (pp. 413-422).
- 11. Hinton, G. E., &Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.