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This research investigates the application of healthcare datasets, particularly 

MIMIC-III and MIMIC-IV (Medical Information Mart for Intensive Care III & 

IV), to address the difficulties related to cardiovascular disease (CVD), renal 

disease, pulmonary disease, and liver disease. Medical care offers 

comprehensive data and critical information regarding the etiology and 

consequences of diseases. This research emphasizes the significance of medical 

data centers that manage and analyze data to anticipate and identify diseases. 

Specifically, it identifies the risk prediction methodologies and the obstacles 

encountered in cardiovascular disease detection, encompassing modifiable and 

non-modifiable risk factors. This research focuses on using datasets to detect 

and predict chronic kidney disease (CKD) risk, with a particular emphasis on 

early detection. Furthermore, it analyzes the techniques for categorizing hepatic 

and pulmonary disorders within the accessible dataset. This study seeks to 

enhance critical care utilization comprehension to tackle existing healthcare 

challenges through research outcomes.   

Keywords: MIMIC-III, MIMIC-IV, CVD, CKD, lung disease, liver disease.  

 

 

1. Introduction 

The growing demand for electronic health records (EHRs) to store patient health data within 

international healthcare systems is propelling the proliferation of machine learning tools that 
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implement machine learning techniques to tackle the challenges faced in this field. The 

technical and biomedical sectors still need to work on providing reliable and valuable 

techniques to enhance an individual's health status efficiently, contrary to the immense scope 

and anticipation in this domain. Handling an enormous EHR dataset is one of the primary 

obstacles. Researchers and medical professionals face a significant challenge in accessing 

EHRs conveniently regarding security, interconnectivity, and privacy. 

An effort made by MIMIC, which has been an exemplar in accessing massive EHR data sets 

explicitly in this domain, as well as the privacy concerns of EHR data, is resolved by de-

identifying patients' health updates [1]. [2] Version four (MIMIC-IV) emerged in 2020 and 

has undergone various successive improvements to become this dataset's recent (prime) 

version.  

MIMIC [3] still faces challenges in being part of this domain while operating in the tasks 

associated with data cleansing and preparatory processes, even though they are readily 

accessible. This problem is crucial because of the multidisciplinary technical and medical 

expertise when working with EHR datasets frequently. The mimic study emphasizes that 

researchers must follow ideal standards in data analysis, as they did not perform data 

cleansing procedures to guarantee the accuracy of the real-time clinical records represented 

in the dataset. Not adhering to the above-mentioned best practice guidelines can result in an 

inappropriate research layout that is unreliable, invasive, and biased. [4] Their recent study 

noted some instances of explicitly challenging MIMIC designs. In addition, it is very 

challenging to compare and recreate various research projects due to the absence of a 

consistent framework for extracting and preprocessing MIMIC-IV [5]. For MIMIC, cohort 

extraction and preprocessing protocols are available (examined in the following section). It 

emphasizes stabilizing particular preprocessing rather than offering an adaptable and 

customized protocol that abides by a wholly investigated method. A well-defined data 

preprocessing pipeline is necessary, which is user-friendly, adaptable for batch definition, 

and customizable by the user.  

They focus primarily on this research to address the disparity above by offering a customized 

protocol designed to make MIMIC-IV data to employ in the forthcoming tasks. The 

preliminary data is purified by removing abnormalities, allowing the user to extrapolate the 

missing data. To limit the dimensions, it offers some choices for creating batches of clinical 

attributes by utilizing the typical coding method. The sequential data partitioning into some 

periods makes the time series filtration as per the user's desire, which leads to the generation 

of a seamless time-series dataset. Users can create the patient community as per their 

preferences since having the customized features. Researchers can replicate this research 

using this protocol but must record and share the customized procedures. In addition to the 

other preprocessing equipment in our pipeline, the modeling and evaluation procedure will 

incorporate two additional components.   In the modeling process, the most popular ML 

tools and deep learning sequential models are appended in the pipeline to predict the data. 

The evaluation section includes numerous typical methods to evaluate the developed model's 

efficiency and has some alternatives to inspect and interpret the model's integrity. As a 

result, this pipeline enhances MIMIC usability. It is highly accessible to researchers, which 

can limit the dataset's cleaning, preprocessing, and access to processing time and expertise 

needed for having enormous studies in MIMIC-IV (around 300 in mid-2022) [6]. 
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This research opt for the MIMIC-IV version 2.1 database utilized in BETH Israel Deaconess 

Medical Center. It comprises the patient records admitted from 2008 to 2019 [2] [1], which 

includes various parameters such as administrative, lab results, and medication data. The 

patient is assigned a unique identifier in MIMIC-IV based on the admission record. Once the 

hospital admits the patient, they migrate to various departments like the ambulatory surgery 

unit and emergency care. Finally, the patient is shifted to the ICU and indicated with an ICU 

identifier, which lasts until the patient is discharged from the ICU and transferred to another 

department in MIMIC-IV.  

 

2. Significance/Challenges of MIMIC-III 

Beth Israel Deaconess Medical Center gathered the explicitly accessible MIMIC-III 

database, including the patient's numerous health records from 2001-2012 [7]. It consists of 

the data regarding treatment procedures followed, primary health indicator readings of 

hospitalized patients, demographics of the specific individual, medication details, laboratory 

data, radiology results, medical recommendations, and fatality-related data. Developing 

electronic types of equipment and epidemiology for analyzing and treating critical illness has 

recently required the MIMIC-III database to be in great demand for optimizing decision 

strategy. It also contains the chronological information of the patients during the entire 

hospitalization. The data in tabular format stores the patient's identifier in columns like 

traditional spreadsheets. In contrast, the row indicates the specific information of the 

patient's identifier. Identifiers denote tables linked by the suffix 'id,' and they also use the 

prefix operator 'd,' which assists with logically interpreting the target identifier (e.g., 

dictionary). 

2.1 The patient stays 

This table [8] is so peculiar it contains the hospitalized information of the patient within the 

hospital premises. It includes various data related to admission details, period of ICU stays 

[8], patient's discharge endorsement, specific data about the patient, medical treatment 

followed, and specialized department migration within the hospital. Someone notices that 

this table has a particular connection. For example, an ICU identifier links to a single 

admission and patient identifier. Meanwhile, this patient's identifier connects to a 

hospitalized and ICU identifier of various hospitals.  

2.2 Critical care 

This table specifies the patient's information about who is hospitalized in the ICU[8]. It 

represents the information about the caretaker's identifier and all procedures undertaken in 

the medical chart. It also contains temporal data about time, date, events of clinical services, 

monitoring, and introduction of electronic tools for patient care. Additionally, it includes de-

identifying information regarding the ECG report, radiological result, medical records, and 

outcome of the patient during their ICU hospitalization, discharge summary, and the overall 

treatment details given to the patient during hospitalization. 
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2.3 Hospital record system 

This table [9] contains the stored data records within the medical care management. Also, it 

comprises the data regarding diagnosis as per the ICD standard and data about treatment 

procedures followed by indicating specific code details. It also contains the underlying 

diagnosis details, which help evaluate an invoice. As per ICD, the data related to varied lab 

results, microbiological analysis data, procedures provided to the patient, and organized 

prescription is noted in specific codes and stored in this table. Figure 1 and Figure 2 are the 

graphical representations of the patient distribution, admission number, admission 

distribution, and ICD-9 codes. 

 

Fig.1. distribution vs. admission number [9] 

 

Fig. 2.  Admission distribution vs ICD-9 codes 

Consequently, ICD-9 faces a higher level of granularity which is a major challenge and it has 

a major impact on many researchers. An encoded method called Clinical Classification 



                                          Investigating Critical Care: Innovations in.... Shahnazeer C K et al. 2204 
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

Software (CCS) is employed to rectify this issue [9]. By using ICD-9, the specialized tabular 

format is defined in this classification policy to achieve the lowest possible granularity 

standard description. The main objective is to facilitate fast medical data analysis and an 

effective reporting system. As a result, after utilizing and deploying CCS, the subsequent 

admission score drops from 9.3 with 1049 feasibilities to 3.2 with 1031 feasibilities. Finally, 

this shows that the CCS encoding system utilization limits the 18 orders of metric 

feasibilities. Because of its simplicity, this aspect helps in prediction efficacy. Even, though 

granularity is reduced by this approach, there are some demerits of affecting the results of 

prediction and description by introducing less data. Also, it might affect the decision-making 

and classification performance. One more challenge is that 19,911 samples which is 

inadequate to deploy neural network training algorithm referred to 13 codes. As a result, this 

research shows that the MIMIC-III data set needs further interpretation to improve its 

applicability in medical analysis.  

 

3. Multi-diseases 

This paper mainly focuses on the four organ-related illnesses. The organs are the heart, 

lungs, liver, and kidney. See below for more details. 

3.1 Cardiovascular disease (CVD) 

CVD is a disease associated with blockage of blood vessels, distress in the chest leads to 

heart attack and other heart failure, and diseases may result in various acute diseases and 

mortality [10]. In the past 15 years, it has become number one in the top ten list for causing 

death. There were 15 million deaths in 2015 [11]. CVD plays a significant cause of mortality 

across the world, as per research conducted in January 2017. The World Health Organization 

in 2020 declared that 17.9 million people die every year due to this disease, which will 

become the primary cause of death globally. 

Furthermore, the mortality rate is increasing every year due to coronary ailments. Experts 

expect the population to exceed 23.6 million by 2030. CVD is the prime cause of death 

globally, including cerebrovascular disease, coronary heart disease, strokes, peripheral 

arterial disease, transient ischemic attacks (TIA), vascular illness, and chronic heart illness. 

3.1.1 Challenges of CVD detection 

Even though this model looks so effective, it still faces some difficulties in 21 geographical 

regions; the WHO_CVD Risk Chart Working Group introduced a new chart that aims to 

predict the risk in hospitals and nationwide campaigns for public health [12]. CVD is a 

primary cause of death and other ailments globally, and it is crucial to prevent its growth by 

early detection and proper treatment.ML algorithm demonstrates that it can detect CVD. It is 

achieving more accurate and reliable outcomes by solving various issues. To address the 

current risk prediction model issues, the population-centered model needs further 

improvement, and it requires more money, time, and effort to gather higher observational 

data with diligent updates. The risk prediction method is at the pinnacle of the advancement. 
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Lack of standardized data: Training and validation processes in ML algorithms require a 

high quantity of data. However, CVD detection has a smaller amount of standardized data. 

Precise, stable, and fully developed data can impact the performance of the ML technique. 

Imbalanced data: The training data may be imbalanced by the unequal proportion of CVD 

and non-CVD cases, and most of the requests are non-CVD: the ML algorithm's worst 

performance and inaccurate findings in CVD detection result from this. 

The complexity of CVD: In CVD detection, detecting the most crucial factors becomes very 

challenging since it is a most dangerous disease associated with numerous health indicators 

and signs. This challenge regarding risk factors and complicating variables affects the 

outcome's precision in the ML technique. By considering ethical issues, the ML algorithm in 

health care affects some ethical values like privacy, bias, and adequately informed decisions. 

In the ML algorithm, ensure that the data is unbiased, explicit, and follows ethical standards. 

Interpretability: Black boxes are frequently considered in the ML algorithm, making it 

problematic to analyze the outcome and comprehend how the algorithm proposed this 

determination. Figure 3 below displays the number of people with and without CVD.  

 

Fig. 3. The number of diseased and non-diseased people 

3.1.2 Modifiable Risk Factors  

One of the major concerns in the health sector is cardiovascular disease. Luckily, it is mainly 

associated with "behavioral risk factors." It indicates that a person's unhealthy lifestyle 

choices, such as not exercising, eating poorly, drinking alcohol, being obese, abusing 

tobacco, and having high blood pressure or hypertension, may contribute to CVD. Therefore, 

guiding a person's behavior in specific ways can reduce the risk of CVD. Low salt intake, a 

healthy, balanced diet, quitting alcohol and tobacco, and continuing regular exercise can all 

help lower the risk of CVD. As per experienced medical professional recommendations, 

consuming the prescribed medicines regularly for diabetes, high blood pressure, and high 

blood cholesterol can prevent heart attack and stroke. 
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3.1.3 Non-Modifiable Risk Factors 

CVD is associated with many modifiable risk factors in lifestyle or behavior, but still, it has 

some other risk factors that are not modified. The patient's past lifestyle, age, and race are the 

three prominent non-modifiable risk factors. Researchers have discovered that a genetic 

predisposition mainly causes CVD. For instance, Hereditary tendencies like blood clotting 

inclinations, which can comprise genetic traits, can cause atherosclerosis, high blood lipids 

inflammation, and so on. Likewise, there is a direct correlation between CVD and genetic 

tendencies. 

One of these genetic disorders is hypercholesterolemia. An insufficient cholesterol level is 

usually a modifiable ailment, but due to genetic disorders, it cannot be lessened or 

eradicated. Physicians should take into their family history and race. Some specific regions, 

such as African areas, the Caribbean, and South Asia, have a higher impact on this disease. 

Still, scientific studies have not evaluated an appropriate way to increase this risk. 

Eventually, healthcare professionals consider age as a non-modifiable risk factor. 

Due to aging, physical conditions change naturally, leading to heart and blood vessel 

variations. It can cause the risk of CVD directly. Some physiological changes in our body 

during aging are the myocardium becoming rigid and blood vessels losing elasticity. This 

variance may lead to poor blood pumping and oxygen transportation to the organs and 

tissues. This non-modifiable characteristic enhances the risk of CVD. 

.2 Kidney disease 

The kidney is the primary internal organ in our body that controls blood pressure, balances 

the blood, and is essential for specific hormone production. Kidney Disease Improving 

Global Outcomes (KDIGO) describes chronic kidney disease (CKD) as a physical structure 

or physiological anomaly that lasts for more than 3 months [13]. Nephrolithiasis, kidney 

stones, hemolytic uremic syndrome, kidney cyst formation, a rare blood disorder, blood 

clots, breakdown of muscular tissue, glomerulonephritis, and other conditions are among the 

conditions that can cause kidney ailments [14],[15]. The symptoms of some CKD cases do 

not exist until the last stage of this disease, which makes it more challenging to evaluate the 

exact level of risk [16]. The medical statistics declared report in 2005 that 57 million cases 

were affected by CKD, of which 38 million people died. In COVID-19, the mortality rate of 

CKD patients with non-COVID-19 is 4.5%, whereas the CKD patients with COVID-19 is 

44.5%. By 2050, the type 2 diabetes rate will be more than 150 million people, which will be 

the primary cause of various kidney ailments, according to World Health Organization 

(WHO) analysis [16]. The most common kidney disorders are cysts, hydronephrosis, and 

stone formation, which can be treated and prevented easily in the starting phase [17]. 

On the other hand, these conditions (i.e., "cardiorenal syndrome and uremia") may result in 

acute CKD and kidney malignancies. Although CKD is associated with significant negative 

consequences, CVD remains a major cause of mortality worldwide [18]. The healthcare 

provider screens and detects CKD in the patient early and prescribes medicines to consume, 

which can alter the disease advancement and lower the progress of the final stage of CKD 

and acute CVD disease [19]. 
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Diagnosing this type of CKD is essential as soon as possible to protect the patient's life. 

Using various basic methods, medical professionals collect accurate details medical 

professionals collect to identify renal disease. These techniques include laboratory test 

results, such as blood and urine testing and physician observation. The blood test determines 

the "glomerular filtration rate" (GFR), which indicates renal function. The urine test shows 

whether the kidney works correctly by displaying the albumin level. Medical professionals 

must diagnose at the proper time with the help of a potent and standardized model created by 

utilizing the potential data sources. Machine Learning (ML) plays a significant role in 

developing an effective model in the medical diagnosis field, enabling rapid and accurate 

decision-making. 

ML has a subfield called deep learning (DL), which utilizes a series of actions performed 

during training to look for essential linkages within the dataset. DL, a multilayer DL model, 

highly impacts medical devices and has the potential to handle non-linear data. For instance, 

James et al. (2010) developed a predictive model utilizing DL, which predicts CKD based on 

medical test results. A similar statement is employed in Ma et al. (2018). DL encounters 

significant obstacles in its many applications owing to the variation in medical information, 

which improves the stability and accuracy of the created replica and results in repeating 

diagnostic models and erroneous rules. As a result, the training procedure can produce a 

model with a high variance rather than one that guarantees reaching the maximum values. 

The team utilizes a diverse and varied DL model to address this issue. This process is known 

as ensemble learning. Merging the conventional and ensemble learning strengths overcomes 

the limitations of a single model and generates a more adaptable and standardized model 

[22]. There are two types of Ensemble learning base: learner and diversity [23]. The primary 

type is homogeneous learning, accomplished using various sample data. Next, achieved 

heterogeneous learning by utilizing other models.  

The authors developed ensemble classifiers by using multiple combinations such as bagging 

[24], boosting [25], and stacking [26]. Our research states that the stacking ensemble model 

generates a stable, adaptable, standard model. Many researchers have declared ensemble 

learning an accurate and practical model.  

Selecting an appropriate feature list constructs a practical model, which is very crucial. The 

feature selection is deeply evaluated in the ML algorithm to attain the precise outcome in 

medical applications. The feature selection comprises three categories: wrapper, filter, and 

embedded [27]. Our research selects the optimal feature list using four feature selection 

methods. Based on the data mentioned above, the primary goal of this study is to generate 

the ensemble DL, which uses the optimal feature subset and enhances the prediction 

performance. Compared with the existing techniques, our proposed feature list performs well 

in the early detection of CKD in the medical aspects. 

CKD is very complicated and crucial to threaten the survival of the patient. It is so 

unfortunate that early-stage symptoms of CKD might be ambiguous, and some other signs 

may be confused with different diseases. For instance, some of the kidney disease symptoms 

include high blood pressure, lower albumin level, and rapid fall in white blood cells, which 

may cross over with hypertension, liver disease, anemia, and heart diseases. Hence, to 
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achieve data interpretation and accurate prediction results, the most efficient and accurate 

model is required to assist medical professionals in diagnosis. 

3.2.1 Risk detection and prediction for chronic kidney disease 

The researchers attempted to identify early or preventive measures after discovering kidney 

disease risk factors in human life. Detecting disease from the already affected patient is 

called disease detection. However, disease prediction states that it will be affected later. 

Consequently, the research is under two categories: detection and prediction. As per the first 

category, most researchers started CDK detection with the same dataset [28]. For early 

detection of CVD, the researchers [29] utilized SVM and ANN. Begin with the data 

preprocessing and replace the missing variables. Next, apply the tenfold cross-validation. 

The accuracy of ANN is up to 99.75%. Hence, our approach concluded that ANN performs 

better than SVM in accuracy. The drawback of this study is the limited sample size, which 

leads to dimensionality challenges. Utilizing the SVM approach addresses this issue. This 

study proposed the dl approach for CKD identification. 

Within the identical year, the authors [30] introduced an intelligent classification model for 

CKD, which is Density-based Feature Selection (DFS) with ant colony-based Optimization 

(D-ACO). This method has to eradicate the replicated data to solve the issue regarding the 

growing feature count, which will eventually provide the solution for problems like 

expensive computation, weak interoperability, and overfitting. The author attained detection 

accuracy of 95% with only 14 of 24 features by using this method. Simultaneously, the 

originators  [31] suggested a DNN model to identify earlier whether CKD is present or not. 

In this method, the author employed cross-validation to prevent the overfitting issue. It 

results in 97% accuracy, which performs better than the other models like Logistic, Naïve 

Bayes, Random Forest, SVM, and Adaboost. Later, the writers [32] developed an ensemble 

approach with random subspace and bagging to create an ideal model for CKD detection that 

achieved 100% accuracy on the previous dataset. Preprocessing the data is the first step, 

followed by managing missing values and standardizing the data. Three base learners, KNN, 

Naïve Bayes, and Decision Tree, were voted more often before choosing this algorithm.  

Merging the base classifiers enhances classification performance in this research. As a result 

of the experiments, the efficiency matrices showed that the proposed model performs better 

than the other classifiers. The random subspace method surpasses the bagging algorithm in 

many scenarios. 

3.3 Lung Disease 

Lung disease encompasses a wide range of disorders affecting the lungs, which are crucial 

for respiration. These diseases are among the most prevalent medical conditions globally, 

with primary causes including smoking, infections, and genetic factors. One common lung 

disease is asthma, a chronic condition characterized by inflammation and narrowing of the 

airways. This results in wheezing, shortness of breath, chest tightness, and coughing. 

Another significant lung disease is Chronic Obstructive Pulmonary Disease (COPD), which 

includes conditions like emphysema and chronic bronchitis. COPD impedes airflow, 

complicates respiration, and causes symptoms including persistent dyspnea, chronic cough, 

mucus secretion, and wheezing.  
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Additionally, lung cancer, which originates in the lungs, is a significant health concern. Its 

symptoms often include a persistent cough, coughing blood, shortness of breath, and chest 

pain. The impact of these diseases underscores the importance of early detection, preventive 

measures, and effective treatment to improve the quality of life for those affected. 

3.3.1 Risk detection and prediction for lung diseases 

This research [33] uses artificial intelligence (AI) to predict ventilator-associated pneumonia 

(VAP) as a guide for the early identification of high-risk populations in clinical practice. 

Most data were from public databases, with machine learning being the main algorithm. The 

random forest (RF) model was the most commonly used. However, none of the studies 

predicted that AI models will be vital tools for VAP risk prediction in the future. 

This research focuses [34]on ICUs, where routine data, both structured and unstructured, 

must be analyzed to forecast interventions for high-risk patients. While machine learning 

models have demonstrated superior performance, researchers have employed traditional 

statistical approaches. An ensemble model that predicts pneumonia patient outcomes 

aggregates many data sources based on the Medical Information Mart for critical care 

dataset. With an accuracy of 0.98 of the F1-score, the ensemble model fared better than the 

other two models based on caregiver narratives and structured data. Analyzing forecasts lets 

one pinpoint the primary influences on individual and collective results. 

The authors [35] explored the interaction between in-hospital mortality and the red cell 

distribution width (RDW) to platelet ratio (RPR) in patients experiencing acute 

exacerbations of chronic obstructive pulmonary disease (AECOPD). The cohort comprised 

1738 AECOPD patients from the eICU Collaborative Research Database and 1922 

AECOPD patients who were at least 18 years old from MIMIC-III and MIMIC-IV. 

Multivariable logistic regression was employed in the study to assess the relationship 

between RPR and in-hospital death.  The model increased the probability of in-hospital 

mortality in patients with second when accounting for confounders. Despite its good 

predictive performance, the prediction tactics allowed clinicians to identify patients at high 

risk of in-hospital mortality swiftly. The factors included in the prediction approach included 

age, ventilation, temperature, WBC, creatinine, hemoglobin, infectious illnesses, etc. 

Researchers observed no statistically significant fluctuation in the baseline features of record 

patients when they divided the data into training and testing sets at a 7:3 ratio (Table 1[35]). 

Figure 4 shows the visual representation of the model in the experimental set. 

The authors found a negative correlation between serum albumin levels and deaths in the 

hospital in patients receiving critical care for chronic obstructive pulmonary disease (COPD) 

[36]. Using multivariate Cox regression analysis, the work used a retrospective observational 

cohort from the US Medical Information in Intensive Care database (MIMIC-IV). Serum 

albumin levels adversely link with in-hospital mortality, resulting in a 12.4% total in-hospital 

mortality rate.  
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Fig. 4. The nomogram of the prognosis model.[35] 

The study [37] focused on the relationship between critically ill patients' serum sodium 

levels and mortality from concomitant chronic obstructive pulmonary disease (COPD) and 

also utilized multivariable Cox regression analysis and Kaplan-Meier curves with data from 

the MIMIC-IV database. A constrained cubic spline explored the non-parametric relationship 

between serum sodium levels and death. The results showed a significant relationship 

between 1- and 3-year mortality in critically ill patients with concurrent COPD and hypo- 

and hypernatremia. The study showed that higher death rates in these patients were linked to 

both hyponatremia and hypernatremia, providing a new context for the therapeutic strategy 

of varying serum sodium levels. 

The research conducted by the writers [38] explored the correlation between blood 

eosinophil concentrations and death in critically ill patients undergoing an acute exacerbation 

of chronic obstructive pulmonary disease (AECOPD). Applied extracted data from the 

MIMIC-III V1.4 database, and then the logistic regression model investigated the association 

between eosinophils and outcomes. Adjusted odds ratios of the preliminary blood eosinophil 

concentrations were linked to 0.792, 0.812, 0.847, and 0.914 for in-hospital mortality, in-

ICU mortality, hospital length of stay, and ICU length of stay, respectively, following the 

creation of two multivariate regression models. Elevated blood eosinophil levels are 

associated with a lower in-hospital death rate and a shorter duration of stay in critically sick 

persons suffering an abrupt exacerbation of lung illness. Table 1 displays the dataset's 

medical data and demographic information. 
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Table 1: Diagnostic characteristics of 1019 AECOPD patients from the MIMIC-III Dataset 
Variable Survivors (n=887) Survivors (n=887) 

Age, years 71.2 (63.7,79.7) 79.0 (72.3,83.4) 

Gender, male, N (%) 443 (49.9) 67 (50.8) 

SAPS II 35 (29,43) 47 (39,59) 

SOFA score 3 (2,5) 6 (4,8) 

PH 7.34 (7.27,7.39) 7.32 (7.24,7.39) 

PaO2 87 (69,127) 87 (69,138) 

PaCO2 56 (47,72) 55 (41,73) 

Length of hospital stay, days 7.1 (4.8,11.8) 7.5 (3.3,13.9) 

Length of ICU stay, days 2.9 (1.5,5.7) 4.1 (1.8,9.3) 

Emergency 873 (98.4) 131 (99.2) 

Elective 4 (0.5) 0 

Urgent 10 (1.1) 1 (0.8) 

SOFA is ‘sequential organ failure assessment’ and SAPS is ‘simplified acute physiology 

score’. 

The goal of the research [39] was to create and verify a machine-learning model for the early 

detection of moderate-to-severe cases of inhalation-induced acute respiratory distress 

syndrome (ARDS). The model utilized the RF method during a 90-hour timeframe that 

ended six hours before the beginning of moderate-to-severe respiratory failure, using data 

from the electronic ICU and the three most available vital signs. The researchers used two 

separate validation cohorts to verify the learned RF classifier and extracted rules for 

clinicians using a stable and interpretable rule set. The model identified several predictive 

indicators that might utilized to predict ARDS six hours before it starts in critical care units, 

including resp_96h_6h_min < 9 and resp_96h_6h_mean ≥ 16.1. With its predictive solid 

power for moderate-to-severe ARDS, this model may help physicians make better decisions 

and make it easier for patients to join preventative programs, leading to better outcomes. 

Utilizing the Medical Information Mart for Intensive Care (MIMIC-III) and Telehealth 

Intensive Care Unit (eICU) Collaborative Research Database (eICU-CRD) databases, this 

study [40] created a machine learning-based mortality prediction approach for patients with 

acute respiratory distress syndrome (ARDS). The random forest technique was used to 

construct the model and evaluate it against other scoring schemes. Regarding forecasting in-

hospital mortality, 30-day mortality, and 1-year mortality, the model outperformed 'SAPS-II, 

APPS, OSI, and OI.' Lactate level and platelet count were the most powerful predictors. 

Machine learning outperformed current grading systems by a large margin when predicting 

ARDS mortality. Table 2 displays the dataset's medical data and demographic information. 

The MIMIC III Dataset showed a 19.6% in-hospital death rate. 

Table 2: Diagnostic characteristics of 2,235 ARDS patients from the MIMIC-III Dataset 
Variable Expired at hospital Alive at hospital 

Patients with ARDS, N (%) 437 (19.6) 1,798 (80.4) 

Age, years 70.0 (22.9) 62.5 (25.4) 

Gender, male, N (%) 242 (55.4) 996 (55.4) 

BMI, kg/m2 27.3 (7.6) 27.9 (7.6) 

PH 7.40 (0.10) 7.40 (0.10) 

FiO2 59.0 (21.1) 59.0 (10.0) 

PaO2 114.8 (45.2) 126.9 (44.3) 

Length of hospital stay, days 18.2 (22.6) 21.6 (18.7) 

Length of ICU stay, days 9.7 (11.4) 10.0 (10.8) 

Emergency 363 (83.1) 1,354 (75.3) 
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Elective 54 (12.4) 398 (22.1) 

Urgent 20 (4.6) 46 (2.6) 

Mean arterial pressure, mmHg 75.3 (11.7) 78.4 (10.8) 

Heart rate, bpm 94.1 (17.4) 89.8 (15.9) 

BMI is body mass index, BPM is beats per minute, and the categorical variables are 

presented as N (%). 

3.4 Liver disease  

The liver is one of the major internal organs in our human body. Finding any malfunction in 

the liver can be life-threatening. The sole therapy for this is transplantation, which replaces 

with another liver within the deadline. Various factors that help detect the ailment early on 

are albumin, age, gender, total bilirubin, SGPT, ALP, etc. Researchers use these features in 

the studies mentioned above to identify liver disease. Even if this research uses various ML 

techniques based on classification, it faces more challenges. Rather than an ensemble model, 

the majority of the recent study utilized a simple ML model. Several data preprocessing 

methods are available to optimize the outcome. Researchers have yet to do any research on 

this technique. 

Moreover, some types of research successfully employ effective feature selection and 

transformation methods. Several ensemble algorithms used in this research are boosting, 

bagging, stacking, and so on to address this issue and achieve a more significant outcome. 

Also, the model's performance is optimized using advanced data p reprocessing techniques 

with proper feature scaling and selection procedures. 

3.4.1 Dataset for Classifying liver disorders 

Researchers classified the liver disease using the Indian Liver Patient Dataset (ILPD) from 

the UCI Machine Learning Repository [41]. This dataset assigns the target variable and ten 

features in the 11 columns. Gender, age, 'total proteins (TP), albumin (ALB), albumin and 

globulin ratio (A/G), alanine aminotransferase (SGPT),' alkaline phosphatase (Alkphos), and 

aspartate aminotransferase (SGOT) are among these characteristics. Table [8] formulates the 

attributes of the affected person's full features. Researchers divide the results into two 

categories: patients with liver sickness and those without it. The results classify patients as 

either having a liver disease or a non-liver illness. Figure 5 displays the data of 583 patients, 

both with and without liver disease, from the northeastern Indian state of Andhra Pradesh.  

 

Fig. 5: The split between liver disease patients and non-patients. 
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The researchers [42] suggested a rule-based approach for data classification of various liver 

illnesses using machine learning algorithms. 'Rule induction (RI), SVM, decision trees (DT), 

naive Bayes, and ANN' using the 'k-fold cross-validation' methodology are some of the 

machine learning techniques used in this model. Across all models, the DT linked to a 'rule-

based classification' algorithm achieves greater exactness. It can produce a dataset with 583 

records and 12 characteristics. The originators utilize A decision tree method [43] for 

detecting liver fibrosis levels. The decision tree model proves that it should end with better 

classification accuracy. Researchers utilize classification techniques like c4.5, SVM, naive 

Bayes, logistic regression, and neural networks to examine liver disease disorders [44]. The 

AP data set with the C4.5 model outperformed the UCLA dataset with other models. The 

writers [45] predicted progressive fibrosis in patients with chronic hepatitis C using 

mathematical models and medical diagnostics. During the training phase, the data was 

categorized into two sets: (1) minor to moderate fibrosis (f0–f2) and (2) severe fibrosis (f3–

f4), depending on the metavir score. Creating decision trees, genetic algorithms, multilinear 

regression models, and particle swarm optimization achieves an advanced fibrosis 

prediction. Researchers found that age, platelet count, albumin, and AST are related to 

advanced fibrosis. The authors [46] utilized backpropagation models and SVM for liver 

disease classification. 

The model uses the UCI repository dataset as a training dataset. A backpropagation model 

performed better than SVM. Han Ma et al. determine the best prediction model for Non-

Alcoholic Fatty Liver Disease (NAFLD) detection [47]. The people's health records 

collected from the medical checkups held at Zhejiang University's first affiliated hospital 

generated the model. The Bayesian network model outperformed 11 other models. It is 

beneficial for the medical community to diagnose liver disease patients using the live 

graphical user interface [48]. 

[49] used the dataset of Indian Liver Patients, 583 patient records to train the model on ten 

features. A comparison analysis of many classification algorithms, including 'SVM, KNN, 

ANN,' and 'logistic regression,' was done to determine the best prediction model. This 

comparison led to ANN obtaining better accuracy. Using the UCI repository dataset and 15 

life quality parameters, the author [49] suggested a C4.5 decision tree model.  This study 

made a performance comparison between the C4.5 model and the k-means clustering 

algorithm. The result stated that C4.5 yielded more accurate data. 

 

4. Conclusion 

The survey determined that the MIMIC-III and MIMIC-IV datasets are essential for 

advancing critical care in predicting, detecting, and managing cardiovascular, renal, and 

hepatic diseases. The researchers can identify modifiable and non-modifiable risk factors for 

cardiovascular disease and develop predictive models to enhance patient treatment by 

analyzing the hospital record system. Employing this information facilitates predicting and 

identifying chronic kidney disease while mitigating disease development and improving 

patient health. Moreover, it enables the prognosis of liver illness and the formulation of 

therapy strategies by classifying liver disease based on comprehensive patient data. These 

databases enhance the prediction and detection of pneumonia and COPD. It primarily 
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concentrates on the patients' death rate. Addressing challenges related to data integrity, 

model uniformity, and security threats is necessary to utilize the critical care dataset 

properly. Future studies should address these issues and comprehensively analyze the 

information to improve the development of the healthcare system and clinical outcomes. 
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