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This research investigates the application of healthcare datasets, particularly
MIMIC-11l and MIMIC-1V (Medical Information Mart for Intensive Care Il &
IV), to address the difficulties related to cardiovascular disease (CVD), renal
disease, pulmonary disease, and liver disease. Medical care offers
comprehensive data and critical information regarding the etiology and
consequences of diseases. This research emphasizes the significance of medical
data centers that manage and analyze data to anticipate and identify diseases.
Specifically, it identifies the risk prediction methodologies and the obstacles
encountered in cardiovascular disease detection, encompassing modifiable and
non-modifiable risk factors. This research focuses on using datasets to detect
and predict chronic kidney disease (CKD) risk, with a particular emphasis on
early detection. Furthermore, it analyzes the techniques for categorizing hepatic
and pulmonary disorders within the accessible dataset. This study seeks to
enhance critical care utilization comprehension to tackle existing healthcare
challenges through research outcomes.
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1. Introduction

The growing demand for electronic health records (EHRS) to store patient health data within
international healthcare systems is propelling the proliferation of machine learning tools that
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implement machine learning techniques to tackle the challenges faced in this field. The
technical and biomedical sectors still need to work on providing reliable and valuable
techniques to enhance an individual's health status efficiently, contrary to the immense scope
and anticipation in this domain. Handling an enormous EHR dataset is one of the primary
obstacles. Researchers and medical professionals face a significant challenge in accessing
EHRs conveniently regarding security, interconnectivity, and privacy.

An effort made by MIMIC, which has been an exemplar in accessing massive EHR data sets
explicitly in this domain, as well as the privacy concerns of EHR data, is resolved by de-
identifying patients' health updates [1]. [2] Version four (MIMIC-IV) emerged in 2020 and
has undergone various successive improvements to become this dataset's recent (prime)
version.

MIMIC [3] still faces challenges in being part of this domain while operating in the tasks
associated with data cleansing and preparatory processes, even though they are readily
accessible. This problem is crucial because of the multidisciplinary technical and medical
expertise when working with EHR datasets frequently. The mimic study emphasizes that
researchers must follow ideal standards in data analysis, as they did not perform data
cleansing procedures to guarantee the accuracy of the real-time clinical records represented
in the dataset. Not adhering to the above-mentioned best practice guidelines can result in an
inappropriate research layout that is unreliable, invasive, and biased. [4] Their recent study
noted some instances of explicitly challenging MIMIC designs. In addition, it is very
challenging to compare and recreate various research projects due to the absence of a
consistent framework for extracting and preprocessing MIMIC-IV [5]. For MIMIC, cohort
extraction and preprocessing protocols are available (examined in the following section). It
emphasizes stabilizing particular preprocessing rather than offering an adaptable and
customized protocol that abides by a wholly investigated method. A well-defined data
preprocessing pipeline is necessary, which is user-friendly, adaptable for batch definition,
and customizable by the user.

They focus primarily on this research to address the disparity above by offering a customized
protocol designed to make MIMIC-1V data to employ in the forthcoming tasks. The
preliminary data is purified by removing abnormalities, allowing the user to extrapolate the
missing data. To limit the dimensions, it offers some choices for creating batches of clinical
attributes by utilizing the typical coding method. The sequential data partitioning into some
periods makes the time series filtration as per the user's desire, which leads to the generation
of a seamless time-series dataset. Users can create the patient community as per their
preferences since having the customized features. Researchers can replicate this research
using this protocol but must record and share the customized procedures. In addition to the
other preprocessing equipment in our pipeline, the modeling and evaluation procedure will
incorporate two additional components.  In the modeling process, the most popular ML
tools and deep learning sequential models are appended in the pipeline to predict the data.
The evaluation section includes numerous typical methods to evaluate the developed model's
efficiency and has some alternatives to inspect and interpret the model's integrity. As a
result, this pipeline enhances MIMIC usability. It is highly accessible to researchers, which
can limit the dataset's cleaning, preprocessing, and access to processing time and expertise
needed for having enormous studies in MIMIC-1V (around 300 in mid-2022) [6].
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This research opt for the MIMIC-1V version 2.1 database utilized in BETH Israel Deaconess
Medical Center. It comprises the patient records admitted from 2008 to 2019 [2] [1], which
includes various parameters such as administrative, lab results, and medication data. The
patient is assigned a unique identifier in MIMIC-1V based on the admission record. Once the
hospital admits the patient, they migrate to various departments like the ambulatory surgery
unit and emergency care. Finally, the patient is shifted to the ICU and indicated with an ICU
identifier, which lasts until the patient is discharged from the ICU and transferred to another
department in MIMIC-1V.

2. Significance/Challenges of MIMIC-I11

Beth Israel Deaconess Medical Center gathered the explicitly accessible MIMIC-III
database, including the patient's numerous health records from 2001-2012 [7]. It consists of
the data regarding treatment procedures followed, primary health indicator readings of
hospitalized patients, demographics of the specific individual, medication details, laboratory
data, radiology results, medical recommendations, and fatality-related data. Developing
electronic types of equipment and epidemiology for analyzing and treating critical illness has
recently required the MIMIC-III database to be in great demand for optimizing decision
strategy. It also contains the chronological information of the patients during the entire
hospitalization. The data in tabular format stores the patient's identifier in columns like
traditional spreadsheets. In contrast, the row indicates the specific information of the
patient's identifier. Identifiers denote tables linked by the suffix 'id," and they also use the
prefix operator 'd,’ which assists with logically interpreting the target identifier (e.g.,
dictionary).

2.1 The patient stays

This table [8] is so peculiar it contains the hospitalized information of the patient within the
hospital premises. It includes various data related to admission details, period of ICU stays
[8], patient's discharge endorsement, specific data about the patient, medical treatment
followed, and specialized department migration within the hospital. Someone notices that
this table has a particular connection. For example, an ICU identifier links to a single
admission and patient identifier. Meanwhile, this patient's identifier connects to a
hospitalized and ICU identifier of various hospitals.

2.2 Critical care

This table specifies the patient's information about who is hospitalized in the ICU[8]. It
represents the information about the caretaker's identifier and all procedures undertaken in
the medical chart. It also contains temporal data about time, date, events of clinical services,
monitoring, and introduction of electronic tools for patient care. Additionally, it includes de-
identifying information regarding the ECG report, radiological result, medical records, and
outcome of the patient during their ICU hospitalization, discharge summary, and the overall
treatment details given to the patient during hospitalization.
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2.3 Hospital record system

This table [9] contains the stored data records within the medical care management. Also, it
comprises the data regarding diagnosis as per the ICD standard and data about treatment
procedures followed by indicating specific code details. It also contains the underlying
diagnosis details, which help evaluate an invoice. As per ICD, the data related to varied lab
results, microbiological analysis data, procedures provided to the patient, and organized
prescription is noted in specific codes and stored in this table. Figure 1 and Figure 2 are the
graphical representations of the patient distribution, admission number, admission
distribution, and ICD-9 codes.
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Fig. 2. Admission distribution vs ICD-9 codes

Consequently, ICD-9 faces a higher level of granularity which is a major challenge and it has
a major impact on many researchers. An encoded method called Clinical Classification
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Software (CCS) is employed to rectify this issue [9]. By using ICD-9, the specialized tabular
format is defined in this classification policy to achieve the lowest possible granularity
standard description. The main objective is to facilitate fast medical data analysis and an
effective reporting system. As a result, after utilizing and deploying CCS, the subsequent
admission score drops from 9.3 with 1049 feasibilities to 3.2 with 1031 feasibilities. Finally,
this shows that the CCS encoding system utilization limits the 18 orders of metric
feasibilities. Because of its simplicity, this aspect helps in prediction efficacy. Even, though
granularity is reduced by this approach, there are some demerits of affecting the results of
prediction and description by introducing less data. Also, it might affect the decision-making
and classification performance. One more challenge is that 19,911 samples which is
inadequate to deploy neural network training algorithm referred to 13 codes. As a result, this
research shows that the MIMIC-III data set needs further interpretation to improve its
applicability in medical analysis.

3. Multi-diseases

This paper mainly focuses on the four organ-related illnesses. The organs are the heart,
lungs, liver, and kidney. See below for more details.

3.1 Cardiovascular disease (CVD)

CVD is a disease associated with blockage of blood vessels, distress in the chest leads to
heart attack and other heart failure, and diseases may result in various acute diseases and
mortality [10]. In the past 15 years, it has become number one in the top ten list for causing
death. There were 15 million deaths in 2015 [11]. CVD plays a significant cause of mortality
across the world, as per research conducted in January 2017. The World Health Organization
in 2020 declared that 17.9 million people die every year due to this disease, which will
become the primary cause of death globally.

Furthermore, the mortality rate is increasing every year due to coronary ailments. Experts
expect the population to exceed 23.6 million by 2030. CVD is the prime cause of death
globally, including cerebrovascular disease, coronary heart disease, strokes, peripheral
arterial disease, transient ischemic attacks (T1A), vascular illness, and chronic heart illness.

3.1.1 Challenges of CVD detection

Even though this model looks so effective, it still faces some difficulties in 21 geographical
regions; the WHO_CVD Risk Chart Working Group introduced a new chart that aims to
predict the risk in hospitals and nationwide campaigns for public health [12]. CVD is a
primary cause of death and other ailments globally, and it is crucial to prevent its growth by
early detection and proper treatment.ML algorithm demonstrates that it can detect CVD. It is
achieving more accurate and reliable outcomes by solving various issues. To address the
current risk prediction model issues, the population-centered model needs further
improvement, and it requires more money, time, and effort to gather higher observational
data with diligent updates. The risk prediction method is at the pinnacle of the advancement.
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Lack of standardized data: Training and validation processes in ML algorithms require a
high quantity of data. However, CVD detection has a smaller amount of standardized data.
Precise, stable, and fully developed data can impact the performance of the ML technique.

Imbalanced data: The training data may be imbalanced by the unequal proportion of CVD
and non-CVD cases, and most of the requests are non-CVD: the ML algorithm's worst
performance and inaccurate findings in CVD detection result from this.

The complexity of CVD: In CVD detection, detecting the most crucial factors becomes very
challenging since it is a most dangerous disease associated with numerous health indicators
and signs. This challenge regarding risk factors and complicating variables affects the
outcome's precision in the ML technique. By considering ethical issues, the ML algorithm in
health care affects some ethical values like privacy, bias, and adequately informed decisions.
In the ML algorithm, ensure that the data is unbiased, explicit, and follows ethical standards.

Interpretability: Black boxes are frequently considered in the ML algorithm, making it
problematic to analyze the outcome and comprehend how the algorithm proposed this
determination. Figure 3 below displays the number of people with and without CVD.
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Fig. 3. The number of diseased and non-diseased people
3.1.2 Modifiable Risk Factors

One of the major concerns in the health sector is cardiovascular disease. Luckily, it is mainly
associated with "behavioral risk factors."” It indicates that a person's unhealthy lifestyle
choices, such as not exercising, eating poorly, drinking alcohol, being obese, abusing
tobacco, and having high blood pressure or hypertension, may contribute to CVD. Therefore,
guiding a person's behavior in specific ways can reduce the risk of CVD. Low salt intake, a
healthy, balanced diet, quitting alcohol and tobacco, and continuing regular exercise can all
help lower the risk of CVD. As per experienced medical professional recommendations,
consuming the prescribed medicines regularly for diabetes, high blood pressure, and high
blood cholesterol can prevent heart attack and stroke.
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3.1.3 Non-Modifiable Risk Factors

CVD is associated with many modifiable risk factors in lifestyle or behavior, but still, it has
some other risk factors that are not modified. The patient's past lifestyle, age, and race are the
three prominent non-modifiable risk factors. Researchers have discovered that a genetic
predisposition mainly causes CVD. For instance, Hereditary tendencies like blood clotting
inclinations, which can comprise genetic traits, can cause atherosclerosis, high blood lipids
inflammation, and so on. Likewise, there is a direct correlation between CVD and genetic
tendencies.

One of these genetic disorders is hypercholesterolemia. An insufficient cholesterol level is
usually a modifiable ailment, but due to genetic disorders, it cannot be lessened or
eradicated. Physicians should take into their family history and race. Some specific regions,
such as African areas, the Caribbean, and South Asia, have a higher impact on this disease.
Still, scientific studies have not evaluated an appropriate way to increase this risk.
Eventually, healthcare professionals consider age as a non-modifiable risk factor.

Due to aging, physical conditions change naturally, leading to heart and blood vessel
variations. It can cause the risk of CVD directly. Some physiological changes in our body
during aging are the myocardium becoming rigid and blood vessels losing elasticity. This
variance may lead to poor blood pumping and oxygen transportation to the organs and
tissues. This non-modifiable characteristic enhances the risk of CVD.

.2 Kidney disease

The kidney is the primary internal organ in our body that controls blood pressure, balances
the blood, and is essential for specific hormone production. Kidney Disease Improving
Global Outcomes (KDIGO) describes chronic kidney disease (CKD) as a physical structure
or physiological anomaly that lasts for more than 3 months [13]. Nephrolithiasis, kidney
stones, hemolytic uremic syndrome, kidney cyst formation, a rare blood disorder, blood
clots, breakdown of muscular tissue, glomerulonephritis, and other conditions are among the
conditions that can cause kidney ailments [14],[15]. The symptoms of some CKD cases do
not exist until the last stage of this disease, which makes it more challenging to evaluate the
exact level of risk [16]. The medical statistics declared report in 2005 that 57 million cases
were affected by CKD, of which 38 million people died. In COVID-19, the mortality rate of
CKD patients with non-COVID-19 is 4.5%, whereas the CKD patients with COVID-19 is
44.5%. By 2050, the type 2 diabetes rate will be more than 150 million people, which will be
the primary cause of various kidney ailments, according to World Health Organization
(WHO) analysis [16]. The most common kidney disorders are cysts, hydronephrosis, and
stone formation, which can be treated and prevented easily in the starting phase [17].

On the other hand, these conditions (i.e., "cardiorenal syndrome and uremia™) may result in
acute CKD and kidney malignancies. Although CKD is associated with significant negative
consequences, CVD remains a major cause of mortality worldwide [18]. The healthcare
provider screens and detects CKD in the patient early and prescribes medicines to consume,
which can alter the disease advancement and lower the progress of the final stage of CKD
and acute CVD disease [19].
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Diagnosing this type of CKD is essential as soon as possible to protect the patient's life.
Using various basic methods, medical professionals collect accurate details medical
professionals collect to identify renal disease. These techniques include laboratory test
results, such as blood and urine testing and physician observation. The blood test determines
the "glomerular filtration rate" (GFR), which indicates renal function. The urine test shows
whether the kidney works correctly by displaying the albumin level. Medical professionals
must diagnose at the proper time with the help of a potent and standardized model created by
utilizing the potential data sources. Machine Learning (ML) plays a significant role in
developing an effective model in the medical diagnosis field, enabling rapid and accurate
decision-making.

ML has a subfield called deep learning (DL), which utilizes a series of actions performed
during training to look for essential linkages within the dataset. DL, a multilayer DL model,
highly impacts medical devices and has the potential to handle non-linear data. For instance,
James et al. (2010) developed a predictive model utilizing DL, which predicts CKD based on
medical test results. A similar statement is employed in Ma et al. (2018). DL encounters
significant obstacles in its many applications owing to the variation in medical information,
which improves the stability and accuracy of the created replica and results in repeating
diagnostic models and erroneous rules. As a result, the training procedure can produce a
model with a high variance rather than one that guarantees reaching the maximum values.
The team utilizes a diverse and varied DL model to address this issue. This process is known
as ensemble learning. Merging the conventional and ensemble learning strengths overcomes
the limitations of a single model and generates a more adaptable and standardized model
[22]. There are two types of Ensemble learning base: learner and diversity [23]. The primary
type is homogeneous learning, accomplished using various sample data. Next, achieved
heterogeneous learning by utilizing other models.

The authors developed ensemble classifiers by using multiple combinations such as bagging
[24], boosting [25], and stacking [26]. Our research states that the stacking ensemble model
generates a stable, adaptable, standard model. Many researchers have declared ensemble
learning an accurate and practical model.

Selecting an appropriate feature list constructs a practical model, which is very crucial. The
feature selection is deeply evaluated in the ML algorithm to attain the precise outcome in
medical applications. The feature selection comprises three categories: wrapper, filter, and
embedded [27]. Our research selects the optimal feature list using four feature selection
methods. Based on the data mentioned above, the primary goal of this study is to generate
the ensemble DL, which uses the optimal feature subset and enhances the prediction
performance. Compared with the existing techniques, our proposed feature list performs well
in the early detection of CKD in the medical aspects.

CKD is very complicated and crucial to threaten the survival of the patient. It is so
unfortunate that early-stage symptoms of CKD might be ambiguous, and some other signs
may be confused with different diseases. For instance, some of the kidney disease symptoms
include high blood pressure, lower albumin level, and rapid fall in white blood cells, which
may cross over with hypertension, liver disease, anemia, and heart diseases. Hence, to
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achieve data interpretation and accurate prediction results, the most efficient and accurate
model is required to assist medical professionals in diagnosis.

3.2.1 Risk detection and prediction for chronic kidney disease

The researchers attempted to identify early or preventive measures after discovering kidney
disease risk factors in human life. Detecting disease from the already affected patient is
called disease detection. However, disease prediction states that it will be affected later.
Consequently, the research is under two categories: detection and prediction. As per the first
category, most researchers started CDK detection with the same dataset [28]. For early
detection of CVD, the researchers [29] utilized SVM and ANN. Begin with the data
preprocessing and replace the missing variables. Next, apply the tenfold cross-validation.
The accuracy of ANN is up to 99.75%. Hence, our approach concluded that ANN performs
better than SVM in accuracy. The drawback of this study is the limited sample size, which
leads to dimensionality challenges. Utilizing the SVM approach addresses this issue. This
study proposed the dl approach for CKD identification.

Within the identical year, the authors [30] introduced an intelligent classification model for
CKD, which is Density-based Feature Selection (DFS) with ant colony-based Optimization
(D-ACO). This method has to eradicate the replicated data to solve the issue regarding the
growing feature count, which will eventually provide the solution for problems like
expensive computation, weak interoperability, and overfitting. The author attained detection
accuracy of 95% with only 14 of 24 features by using this method. Simultaneously, the
originators [31] suggested a DNN model to identify earlier whether CKD is present or not.
In this method, the author employed cross-validation to prevent the overfitting issue. It
results in 97% accuracy, which performs better than the other models like Logistic, Naive
Bayes, Random Forest, SVM, and Adaboost. Later, the writers [32] developed an ensemble
approach with random subspace and bagging to create an ideal model for CKD detection that
achieved 100% accuracy on the previous dataset. Preprocessing the data is the first step,
followed by managing missing values and standardizing the data. Three base learners, KNN,
Naive Bayes, and Decision Tree, were voted more often before choosing this algorithm.

Merging the base classifiers enhances classification performance in this research. As a result
of the experiments, the efficiency matrices showed that the proposed model performs better
than the other classifiers. The random subspace method surpasses the bagging algorithm in
many scenarios.

3.3 Lung Disease

Lung disease encompasses a wide range of disorders affecting the lungs, which are crucial
for respiration. These diseases are among the most prevalent medical conditions globally,
with primary causes including smoking, infections, and genetic factors. One common lung
disease is asthma, a chronic condition characterized by inflammation and narrowing of the
airways. This results in wheezing, shortness of breath, chest tightness, and coughing.
Another significant lung disease is Chronic Obstructive Pulmonary Disease (COPD), which
includes conditions like emphysema and chronic bronchitis. COPD impedes airflow,
complicates respiration, and causes symptoms including persistent dyspnea, chronic cough,
mucus secretion, and wheezing.
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Additionally, lung cancer, which originates in the lungs, is a significant health concern. Its
symptoms often include a persistent cough, coughing blood, shortness of breath, and chest
pain. The impact of these diseases underscores the importance of early detection, preventive
measures, and effective treatment to improve the quality of life for those affected.

3.3.1 Risk detection and prediction for lung diseases

This research [33] uses artificial intelligence (Al) to predict ventilator-associated pneumonia
(VAP) as a guide for the early identification of high-risk populations in clinical practice.
Most data were from public databases, with machine learning being the main algorithm. The
random forest (RF) model was the most commonly used. However, none of the studies
predicted that Al models will be vital tools for VAP risk prediction in the future.

This research focuses [34]on ICUs, where routine data, both structured and unstructured,
must be analyzed to forecast interventions for high-risk patients. While machine learning
models have demonstrated superior performance, researchers have employed traditional
statistical approaches. An ensemble model that predicts pneumonia patient outcomes
aggregates many data sources based on the Medical Information Mart for critical care
dataset. With an accuracy of 0.98 of the F1-score, the ensemble model fared better than the
other two models based on caregiver narratives and structured data. Analyzing forecasts lets
one pinpoint the primary influences on individual and collective results.

The authors [35] explored the interaction between in-hospital mortality and the red cell
distribution width (RDW) to platelet ratio (RPR) in patients experiencing acute
exacerbations of chronic obstructive pulmonary disease (AECOPD). The cohort comprised
1738 AECOPD patients from the elCU Collaborative Research Database and 1922
AECOPD patients who were at least 18 years old from MIMIC-III and MIMIC-IV.
Multivariable logistic regression was employed in the study to assess the relationship
between RPR and in-hospital death. The model increased the probability of in-hospital
mortality in patients with second when accounting for confounders. Despite its good
predictive performance, the prediction tactics allowed clinicians to identify patients at high
risk of in-hospital mortality swiftly. The factors included in the prediction approach included
age, ventilation, temperature, WBC, creatinine, hemoglobin, infectious illnesses, etc.
Researchers observed no statistically significant fluctuation in the baseline features of record
patients when they divided the data into training and testing sets at a 7:3 ratio (Table 1[35]).
Figure 4 shows the visual representation of the model in the experimental set.

The authors found a negative correlation between serum albumin levels and deaths in the
hospital in patients receiving critical care for chronic obstructive pulmonary disease (COPD)
[36]. Using multivariate Cox regression analysis, the work used a retrospective observational
cohort from the US Medical Information in Intensive Care database (MIMIC-IV). Serum
albumin levels adversely link with in-hospital mortality, resulting in a 12.4% total in-hospital
mortality rate.
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Fig. 4. The nomogram of the prognosis model.[35]

The study [37] focused on the relationship between critically ill patients’ serum sodium
levels and mortality from concomitant chronic obstructive pulmonary disease (COPD) and
also utilized multivariable Cox regression analysis and Kaplan-Meier curves with data from
the MIMIC-IV database. A constrained cubic spline explored the non-parametric relationship
between serum sodium levels and death. The results showed a significant relationship
between 1- and 3-year mortality in critically ill patients with concurrent COPD and hypo-
and hypernatremia. The study showed that higher death rates in these patients were linked to
both hyponatremia and hypernatremia, providing a new context for the therapeutic strategy
of varying serum sodium levels.

The research conducted by the writers [38] explored the correlation between blood
eosinophil concentrations and death in critically ill patients undergoing an acute exacerbation
of chronic obstructive pulmonary disease (AECOPD). Applied extracted data from the
MIMIC-111 V1.4 database, and then the logistic regression model investigated the association
between eosinophils and outcomes. Adjusted odds ratios of the preliminary blood eosinophil
concentrations were linked to 0.792, 0.812, 0.847, and 0.914 for in-hospital mortality, in-
ICU mortality, hospital length of stay, and ICU length of stay, respectively, following the
creation of two multivariate regression models. Elevated blood eosinophil levels are
associated with a lower in-hospital death rate and a shorter duration of stay in critically sick
persons suffering an abrupt exacerbation of lung illness._Table 1 displays the dataset's
medical data and demographic information.
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Table 1: Diagnostic characteristics of 1019 AECOPD patients from the MIMIC-I11 Dataset

Variable Survivors (n=887) Survivors (n=887)
Age, years 71.2 (63.7,79.7) 79.0(72.3,83.4)
Gender, male, N (%) 443 (49.9) 67 (50.8)

SAPS 11 35(29,43) 47 (39,59)
SOFA score 3(2,5) 6 (4,8)

PH 7.34 (7.27,7.39) 7.32(7.24,7.39)
PaO, 87 (69,127) 87 (69,138)
PaCO, 56 (47,72) 55 (41,73)
Length of hospital stay, days 7.1(4.8,11.8) 7.5(3.3,13.9)
Length of ICU stay, days 29 (1.55.7) 4.1(1.8,9.3)
Emergency 873 (98.4) 131 (99.2)
Elective 4(0.5) 0

Urgent 10(1.1) 1(0.8)

SOFA is ‘sequential organ failure assessment’ and SAPS is ‘simplified acute physiology
score’.

The goal of the research [39] was to create and verify a machine-learning model for the early
detection of moderate-to-severe cases of inhalation-induced acute respiratory distress
syndrome (ARDS). The model utilized the RF method during a 90-hour timeframe that
ended six hours before the beginning of moderate-to-severe respiratory failure, using data
from the electronic ICU and the three most available vital signs. The researchers used two
separate validation cohorts to verify the learned RF classifier and extracted rules for
clinicians using a stable and interpretable rule set. The model identified several predictive
indicators that might utilized to predict ARDS six hours before it starts in critical care units,
including resp_96h _6h min < 9 and resp_96h _6h mean > 16.1. With its predictive solid
power for moderate-to-severe ARDS, this model may help physicians make better decisions
and make it easier for patients to join preventative programs, leading to better outcomes.

Utilizing the Medical Information Mart for Intensive Care (MIMIC-III) and Telehealth
Intensive Care Unit (elCU) Collaborative Research Database (elCU-CRD) databases, this
study [40] created a machine learning-based mortality prediction approach for patients with
acute respiratory distress syndrome (ARDS). The random forest technique was used to
construct the model and evaluate it against other scoring schemes. Regarding forecasting in-
hospital mortality, 30-day mortality, and 1-year mortality, the model outperformed 'SAPS-II,
APPS, OSI, and OI.' Lactate level and platelet count were the most powerful predictors.
Machine learning outperformed current grading systems by a large margin when predicting
ARDS mortality. Table 2 displays the dataset's medical data and demographic information.
The MIMIC |11 Dataset showed a 19.6% in-hospital death rate.

Table 2: Diagnostic characteristics of 2,235 ARDS patients from the MIMIC-I11 Dataset

Variable Expired at hospital Alive at hospital
Patients with ARDS, N (%) 437 (19.6) 1,798 (80.4)
Age, years 70.0 (22.9) 62.5 (25.4)
Gender, male, N (%) 242 (55.4) 996 (55.4)
BMI, kg/m2 27.3(7.6) 27.9 (7.6)
PH 7.40 (0.10) 7.40 (0.10)
Fio2 59.0 (21.1) 59.0 (10.0)
Pa02 114.8 (45.2) 126.9 (44.3)
Length of hospital stay, days 18.2 (22.6) 21.6 (18.7)
Length of ICU stay, days 9.7 (11.4) 10.0 (10.8)
Emergency 363 (83.1) 1,354 (75.3)
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Elective 54 (12.4) 398 (22.1)
Urgent 20 (4.6) 46 (2.6)

Mean arterial pressure, mmHg 75.3 (11.7) 78.4 (10.8)
Heart rate, bpm 94.1 (17.4) 89.8 (15.9)

BMI is body mass index, BPM is beats per minute, and the categorical variables are
presented as N (%).

3.4 Liver disease

The liver is one of the major internal organs in our human body. Finding any malfunction in
the liver can be life-threatening. The sole therapy for this is transplantation, which replaces
with another liver within the deadline. Various factors that help detect the ailment early on
are albumin, age, gender, total bilirubin, SGPT, ALP, etc. Researchers use these features in
the studies mentioned above to identify liver disease. Even if this research uses various ML
techniques based on classification, it faces more challenges. Rather than an ensemble model,
the majority of the recent study utilized a simple ML model. Several data preprocessing
methods are available to optimize the outcome. Researchers have yet to do any research on
this technique.

Moreover, some types of research successfully employ effective feature selection and
transformation methods. Several ensemble algorithms used in this research are boosting,
bagging, stacking, and so on to address this issue and achieve a more significant outcome.
Also, the model's performance is optimized using advanced data p reprocessing techniques
with proper feature scaling and selection procedures.

3.4.1 Dataset for Classifying liver disorders

Researchers classified the liver disease using the Indian Liver Patient Dataset (ILPD) from
the UCI Machine Learning Repository [41]. This dataset assigns the target variable and ten
features in the 11 columns. Gender, age, 'total proteins (TP), albumin (ALB), albumin and
globulin ratio (A/G), alanine aminotransferase (SGPT)," alkaline phosphatase (Alkphos), and
aspartate aminotransferase (SGOT) are among these characteristics. Table [8] formulates the
attributes of the affected person's full features. Researchers divide the results into two
categories: patients with liver sickness and those without it. The results classify patients as
either having a liver disease or a non-liver illness. Figure 5 displays the data of 583 patients,
both with and without liver disease, from the northeastern Indian state of Andhra Pradesh.

W With Liver Disease M Without Liver Disease

500
400
300

200 167

Number of samples

100

I

Data

Fig. 5: The split between liver disease patients and non-patients.
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The researchers [42] suggested a rule-based approach for data classification of various liver
illnesses using machine learning algorithms. 'Rule induction (RI), SVM, decision trees (DT),
naive Bayes, and ANN' using the 'k-fold cross-validation' methodology are some of the
machine learning techniques used in this model. Across all models, the DT linked to a 'rule-
based classification' algorithm achieves greater exactness. It can produce a dataset with 583
records and 12 characteristics. The originators utilize A decision tree method [43] for
detecting liver fibrosis levels. The decision tree model proves that it should end with better
classification accuracy. Researchers utilize classification techniques like ¢4.5, SVM, naive
Bayes, logistic regression, and neural networks to examine liver disease disorders [44]. The
AP data set with the C4.5 model outperformed the UCLA dataset with other models. The
writers [45] predicted progressive fibrosis in patients with chronic hepatitis C using
mathematical models and medical diagnostics. During the training phase, the data was
categorized into two sets: (1) minor to moderate fibrosis (f0—f2) and (2) severe fibrosis (f3—
f4), depending on the metavir score. Creating decision trees, genetic algorithms, multilinear
regression models, and particle swarm optimization achieves an advanced fibrosis
prediction. Researchers found that age, platelet count, albumin, and AST are related to
advanced fibrosis. The authors [46] utilized backpropagation models and SVM for liver
disease classification.

The model uses the UCI repository dataset as a training dataset. A backpropagation model
performed better than SVM. Han Ma et al. determine the best prediction model for Non-
Alcoholic Fatty Liver Disease (NAFLD) detection [47]. The people's health records
collected from the medical checkups held at Zhejiang University's first affiliated hospital
generated the model. The Bayesian network model outperformed 11 other models. It is
beneficial for the medical community to diagnose liver disease patients using the live
graphical user interface [48].

[49] used the dataset of Indian Liver Patients, 583 patient records to train the model on ten
features. A comparison analysis of many classification algorithms, including 'SVM, KNN,
ANN," and 'logistic regression," was done to determine the best prediction model. This
comparison led to ANN obtaining better accuracy. Using the UCI repository dataset and 15
life quality parameters, the author [49] suggested a C4.5 decision tree model. This study
made a performance comparison between the C4.5 model and the k-means clustering
algorithm. The result stated that C4.5 yielded more accurate data.

4. Conclusion

The survey determined that the MIMIC-III and MIMIC-IV datasets are essential for
advancing critical care in predicting, detecting, and managing cardiovascular, renal, and
hepatic diseases. The researchers can identify modifiable and non-modifiable risk factors for
cardiovascular disease and develop predictive models to enhance patient treatment by
analyzing the hospital record system. Employing this information facilitates predicting and
identifying chronic kidney disease while mitigating disease development and improving
patient health. Moreover, it enables the prognosis of liver illness and the formulation of
therapy strategies by classifying liver disease based on comprehensive patient data. These
databases enhance the prediction and detection of pneumonia and COPD. It primarily

Nanotechnology Perceptions Vol. 20 No.6 (2024)



Investigating Critical Care: Innovations in.... Shahnazeer C K et al. 2214

concentrates on the patients' death rate. Addressing challenges related to data integrity,
model uniformity, and security threats is necessary to utilize the critical care dataset
properly. Future studies should address these issues and comprehensively analyze the
information to improve the development of the healthcare system and clinical outcomes.
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