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Over the past decade, there has been a significant advancement in the research 

and development of Unmanned Aerial Vehicles (UAVs) and Deep Learning 

(DL) methods, which, when used in conjunction with path planning algorithms, 

help UAVs achieve autonomy. UAVs have been flown autonomously using a 

variety of techniques, but modern deep learning techniques such as 

Convolutional Neural Networks (CNN), Imitation Learning (IL), and Deep 

Reinforcement Learning (DRL) are some of the techniques that have recently 

been favored. Different approaches like path planning, localization, and obstacle 

avoidance are used. Multiple approaches using CNN, RL, and IL were put out 

in this area. The majority of the literature on the subject since 2020 is reviewed 

in this study. The goal is to compare different methods used in the autonomous 

navigation of a UAV. Different existing algorithms and methods have been 

discussed and explored in the category of deep learning.  

Keywords: Convolutional Neural Networks, Deep Learning, Deep 

Reinforcement Learning, Flight. 
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1. Introduction 

A type of aircraft capable of autonomous flight in real-time without any human intervention 

is referred to as a UAV. There are various types of UAVs, such as single rotor, multi-rotor, 

fixed-wing, etc., depending on the purpose it is used for Mohsan, Khan, Noor, Ullah, & 

Alsharif (2022). The applications of these UAVs have recently increased in delivery, remote 

sensing, wireless networking, photography, military, mining, agriculture, 3D mapping of 

unknown locations (ex: collapsed buildings), and many more Ahmed, Mohanta, Keshari, & 

Yadav (2022); X. Jiang et al. (2022); Messina & Modica (2020); Park & Choi (2020). Being 

able to locate itself autonomously and in real-time and navigate its way is one of the critical 

requirements for a UAV in such applications. This study focuses on exploring the different 

ways using which UAVs can navigate around. The different techniques for UAV navigation 

can mainly be divided into 3 main sections: GPS-based navigation, vision-based navigation, 

and inertial navigation Lu, Xue, Xia, & Zhang (2018). GPS is a popular and traditional 

option because it is inexpensive and provides a high degree of accuracy, but it comes with a few  

 

Figure 1. Inertial Navigation Frame denoting the roll, pitch, and yaw axes of a UAV. 

It can only tell the UAV where it is at that particular moment, then there is GPS loss, sensor 

degradation, spoofing of events, etc. This means that GPS-based navigation does not provide 

“a continuous map” of an area that could be produced using a vision-based navigation 

system. Hence, integrating vision-based navigation or visual lidar odometry along with GPS 

is a decent option because it can work in all kinds of environments and doesn’t require a lot of 

computing power Dissanayaka, Wanasinghe, De Silva, Jayasiri, & Mann (2023). Also, it 

works better in bad weather conditions than GPS does. Thus, Vision-based systems provide 

high levels of accuracy but they also come with their limitations on what they can and cannot 

detect. If an obstacle is in their way or thrown at them, they cannot react appropriately in 

that scenario. To overcome the limitations of Vision-based navigation researchers came up 
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with the concept of Inertial Navigation Shao et al. (2020). It is a very good option because 

it can fly autonomously without crashing into obstacles while achieving great speed. There 

are multiple advantages of using Inertial Navigation systems over the previous traditional 

techniques of navigation, one of the main ones is that it does not require any kind of input 

from any external or artificial source for getting the input data, as all the sensors are embedded 

on the UAV itself, so there is no need for connecting the UAV over an unsafe network where 

there might be the slightest possibility of getting the data altered. Various sensors 

(gyroscopes, accelerometers, and magnetometers) that provide altitude information for the 

platform are the core material needed for Inertial Navigation as all the decisions for questions 

like “where to go next?”, “What will be the next optimal move?” is taken based on that 

information, so they can be imagined as oxygen for UAVs. The main component that is 

responsible for collecting the data and reporting the changes in altitude, velocity, experienced 

gravitational forces, and also the changes in orientation of the UAV by using pitch, yaw, and 

roll (as shown in Figure 1) is given by Inertial Measure Unit (IMU). 

IMU mainly comprises Accelerometers, Gyroscopes, and Magnetometers, which are used for 

reducing the noise from the input data. For further reduction in the noise, there are two 

approaches first by using the Kalman filter and the other is to use machine learning 

algorithms like neural networks. Based on the UAV’s previous state, measurements, and 

control inputs, the Kalman filter is a mathematical technique that is used to estimate the state of 

the UAV, such as the position and velocity of a moving item, on noisy data over time. The 

UAV’s position and orientation can be estimated more precisely by using the Kalman filter in 

combination with other navigation techniques, such as GPS. For instance, the Kalman filter 

can be fused with GPS and accelerometer readings, to correct any errors or drift in the 

accelerometer readings using the more accurate GPS readings for UAV navigation. Another 

approach is based on machine learning which has been more explored in the previous decade. In 

contrast to Kalman filters, these algorithms learn from training data, which comprises inputs and 

outputs, to generalize to previously unknown data. Overall, the trade-off between accuracy, 

computing efficiency, and robustness as well as the particular requirements of the UAV 

navigation application will determine whether to use a Kalman filter, machine learning, or a 

hybrid of both. 

This review article will go into detail about the various DL algorithms such as CNN, DRL, 

and IL. The majority of these findings are from research published in 2020 and later, with an 

emphasis on navigation, path planning, obstacle avoidance, and localization for UAVs. The 

review is organized in the following manner: Section 2 is divided into three parts 2.1, 2.2, 

and 2.3, subsection 2.1 gives a brief idea about various methods used in CNN for navigation, 

path planning, localization, and obstacle detection and avoidance, whereas subsection 2.2 gives 

the idea of DRL techniques in a detailed manner, and subsection 2.3 gives details about the IL 

approach. Next, Section 3 is an extensive comparison between these CNN, DRL, and IL 

techniques. Finally, in Section 4 conclusions are drawn along with future work. 

 

2. Autonomous Navigation 

There is a plethora of frequently used machine learning and deep learning approaches for 

attaining autonomy some of which include Deep Autoencoders (DAE), Deep Belief Networks 
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(DBN), CNN, IL, and DRL. Out of these, DBN and DAE are not the first choices that pop up 

in the researchers’ minds, as numerous weights need to be trained using the raw inputs during 

the training process using supervised learning Ren, Huang, & Gabbar (2022). While on the other 

hand, CNN reduces the number of weights using the concepts of weight sharing and local 

receptive field during the training phase. The main drawback of utilizing a CNN is that it may 

prevent us from obtaining the global maxima during the training phase and instead lead us 

into the path of local minima. The most popular methodology among these is DRL, which 

uses the policy gradient algorithm or the Q-Learning approach to obtain the highest rewards 

depending on the agent’s behaviors. Hence, in the context of UAV navigation, machine 

learning techniques, such as DRL, IL, and CNN are the most prominent choices, and these 

techniques can be used to perform tasks such as navigation, path planning, obstacle 

avoidance, and localization. As depicted in Figure No. 2 each branch is a different 

subsection of this Section 2 and will dive deeper into these concepts individually and see what 

different architectures are being used by the researchers in these areas. 

2.1 Deep Convolution Neural Networks (DCNN) 

DCNN is a DL algorithm that typically works with multidimensional input arrays of 

images and has a multi-layered architecture. All the layers of CNN are assigned learnable 

biases and weights so that they are easily distinguishable from one another. It overcomes the 

drawbacks of the Feed-Forward Neural Network (FFNN) by using partially connected layers 

and the weight-sharing capabilities of CNN, also it can work well on high-resolution images 

as well. There are various types of pre-trained CNN architectures available that can be used. 

Some of them are VGGNet, ResNet, Inception, Xception, GoogLeNet, ZFNet, DenseNet, 

InceptionResNet, MobileNet, and many others K. He, Zhang, Ren, & Sun (2015); Howard et 

al. (2017); Simonyan & Zisserman (2014); Szegedy, Ioffe, Vanhoucke, & Alemi (2017); 

Szegedy et al. (2014). 

 

Figure 2. Different techniques under deep learning for autonomous navigation of a UAV. 

Let’s now go over some UAV navigational methods that have been used in recent years 

using the CNN approach. Beginning with a novel hybrid aerodynamic quadrotor model called 

NeuroBEM that mixes blade-element-momentum (BEM) with a neural network and performs 

better than both learned residual dynamics and first-principles BEM theory Bauersfeld, 
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Kaufmann, Foehn, Sun, & Scaramuzza (2021). Gaussian processes can also improve the 

quadrotors’ nominal dynamics. So the training of Gaussian processes on the data from 

previously recorded flights to forecast the acceleration error of the nominal model given its 

current velocity is given in Torrente, Kaufmann, Föhn,  & Scaramuzza (2021). 

By combining FFNN with the Model Predictive Control (MPC) framework, it is possible to 

forecast a quadrotor’s whole translational dynamics, therefore overcoming FFNN’s 

disadvantages B. Jiang et al. (2022). Software mapping approaches that enable visual 

navigation are investigated, along with a closed-loop end-to-end DNN-based visual navigation 

engine for autonomous nano-drones by Palossi et al. (2019). 

Visual odometry is the method of estimating the distance traveled by determining equivalent 

odometry data from successive camera pictures. A deep learning solution for this visual 

odometry is proposed which validates that CNN is capable of predicting camera motion 

when it receives only optical flow as input Pandey, Pena, Byrne, & Moloney (2021). Dronet, 

a CNN that can safely pilot a UAV across city streets, forecasts both the likelihood of a 

collision and the appropriate steering angle for the unmanned vehicle. This CNN is 

integrated with a fully linked regression to forecast the steering angles of UAVs Amer, Samy, 

Shaker, & ElHelw (2021). Some approaches use style transfer between artificial and actual 

training pictures that may also be done with the help of GANs (Generative Adversarial 

Networks). A path planner resembling the “A*” method in a heuristic sense, but unlike “A*” it 

does not call for the storage of frontier nodes in memory is proposed where this planner finds 

collision-free pathways based on the relative locations of identified items or obstacles Tullu, 

Endale, Wondosen, & Hwang (2021). 

Localization is another key concept that is used by UAVs for navigation purposes. A 

continual learning Simultaneous Localization and Mapping (SLAM) system is proposed in 

which SLAM was performed with a drone in a challenging and visually ambiguous 

warehouse environment W. Chen et al. (2022). Using mapping, a UAV can explore unknown 

environments and deliver scaled exploration maps. Such a 3D map-ping method in real-time 

that combines deep learning and SLAM on a budget-friendly UAV is given in Steenbeek & 

Nex (2022). Suggestions on improving how the UAV images are put together and processed 

for accurately flying over ungrounded woodland routes are given in MENFOUKH, TOUBA, 

KHENFRI, & GUETTAL (2020). An automatic obstacle avoidance system for UAVs to fly 

safely in indoor/outdoor environments is proposed by Dai et al. (2020). 

Table 1. Comparisons of a few approaches using convolution neural networks for navigation. 

These models are compared based on their metrics and limitations. 
Ref. Model Metrics Limitations 

Chhikara, DCNN- MSE: 0.0082 There are several lights- 
Tekchan- GA MAE: 0.0243 ing difficulties in the images 

Dani, MAPE: 1.9587 of the dataset because it was 

Kumar,  generated using the onboard 

Chamola,  Camera in the corridor. This 

& Guizani  The Corridor dataset explains why 

(2020)  The quadrotor performs better. 
  Indoors than outdoors. The 

  The drone’s battery life is about 30 

  minutes, and maneuvering it 
  in crowded spaces is a challenging 
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Padhy, DenseNet- MSE (T): 0.12383 The  Parrot  drones’  unpre- 

Ahmad, 201 MSE (R): 0.0828 predictable and irregular state es- 
Verma, MAE (T): 1.79144 time prevents it from us- 

Bakshi, & MAE (R): 3.6442 ing location feedback in the path 

Sa (2021)  planning, which occasionally 
  affects the overall navigation 

  Process. The fact that other 

  factors, such as control and 
  State estimations have an im-. 

  pact on actual UAV flying 

  in real-world situations should 
  be emphasized in addition to 

  Their network prediction. 

Pham, PencilNet MAE Ec: 0.017 By taking into consideration 
Sarabakha, MAE Ed: 0.031 the drifts and deteriorated 

Odnoshyvkin, MAE Eθ: 0.018 state estimation performance 

& Kayacan MAE FN: 20.5 in dark illumination, which 
(2022)  Have a detrimental impact on 

  the perception system’s ac- 

  Curacy, the system’s performance may be 
enhanced. 

  Mance may be enhanced. 

Safa et al. DLSC - MAE (L): 0.588 Aisles a r e   where I llumina- 
(2022) QBS MAE (M): 0.1572 on conditions abruptly shift, 

  making feature matching un- 

  Predictable. The end of the 
  Aisles is where it performs the 

  Worst. 

Arshad et Drone- RMSE: 0.48 One drawback is that drones’ 

al. (2022) STM- agile dynamics aren’t properly used 
 RENet In contrast to ear- 

  lier CNN-based controllers, it 

  is therefore not possible to 
  Assign the robot a particular 

  Goal to pursue. 

There is also a tabular comparison in Table 1 between different CNN techniques for UAV 

navigation concerning the models used with their metrics and limitations. So, after going 

through all these different CNN methodologies, using CNN for UAV navigation gives a wide 

range of challenges — understanding the inner workings of the model, incorporating spatial 

information into the model, and dealing with overfitting the training data. However, adopting 

CNN approaches provides us with a competitive advantage since they perform exceptionally 

well on image recognition tasks, can readily be trained on big datasets, and can learn and extract 

significant features from the input data. There are a few disadvantages to utilizing CNN as 

well. First, it may not work well with sequential data or time series data. Second, it may have 

trouble with tiny datasets or insufficient training data. Finally, training CNN may be 

computationally expensive. 

2.2 Deep Reinforcement Learning (DRL) 

DRL is a fusion of RL with DL. It is beneficial for handling dynamically changing 

environments. It primarily contains two components: an Agent and an Environment. An Agent 

interacts with an Environment and attempts to influence that environment Arulkumaran, 

Deisenroth, Brundage, & Bharath (2017). In terms of UAV navigation, the UAV is our Agent 

and the Environment is the surroundings of the UAV in which it is maneuvering. So as the 

UAV navigates, it employs a trial-and-error method that results in rewards and penalties. The 
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following are the primary three categories into which DRL techniques are divided: 

2.2.1 Value-Based Methods: These methods, which primarily use Q-Learning and SARSA 

(State Action Reward State Action), such as Deep Q-Networks (DQN), are based on the idea 

of the value function. 

2.2.2 Policy-Based Methods: These methods, which are based on the idea of a policy 

function, are primarily represented by REINFORCE and Proximal Policy Optimization 

(PPO), such as Trust Region Policy Optimization (TRPO). 

2.2.3 Actor-Critic Methods: These methods integrate approaches that are value-based 

and policy-based. For instance, Asynchronous Advantage Actor- Critic(A3C) teaches both 

the actor and critic roles concurrently. 

One of the key objectives of this deep neural network is the development of adaptive systems 

that are capable of experience-driven learning in the real world. DRL is an independent 

Markov Decision Process (MDP) based on the mathematical framework for experience-driven 

learning that enables the modeling of almost any complicated environment H. Jiang, Wang, 

Yau, & Wan (2020). Figure 3 gives us a more precise idea about the flow of the 

mathematical framework of MDP used by DRL. The MDP is composed of the following 

five tuples: < S, A, R, p, γ >: S — a set of states, A — a set of actions, R — reward 

function, p — transition function, γ — discounting factor. 

 

Figure 3. Diagrammatic representation of reinforcement learning structure. 

The mathematical framework of DRL typically comprises the following: 

a Set of states ‘S’ - The distribution of the starting state is represented as p(s0). 

The final state is represented as ST. 

b A set of actions A. 

c Policy πθ(st+1|st, at) that maps state(s) and action(a) at a particular time(t) onto 

a distribution of states at time t + 1 using parameter set Θ. 

d A reward function with each transition R(st, at, st+1). 
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Some of the DRL techniques that have been implemented in the past few years for UAV 

navigation consider the issue of UAV navigation in a highly dynamic environment as an 

MDP, where the problem is broken down into three easier subproblems and successfully 

solved using the created Layered-RQN. The problem is formulated as a PO-MDP and a deep 

reinforcement learning method, PPO (Proximal Policy Optimization) is then applied to solve 

the problem Tong et al. (2021). To produce a digital twin of the location, a high-fidelity 

rendering engine is combined with 3D scans of the actual environment T. Lee, Mckeever, & 

Courtney (2022). 

A RL PPO-based learning algorithm is proposed by Chikhaoui, Ghazzai, & Massoud (2022), 

allowing the UAV to navigate in 3D environments. Nowadays DRL is also used for the 

navigation of a swarm of drones so that they can move from source to destination without 

colliding with one another. Another approach uses the FFCN algorithm which is trained to 

control a swarm of drones, which offers innovative fault tolerance by building dynamic 

patterns and avoiding collisions Raja, Baskar, Dhanasekaran, Nawaz, & Yu (2021). An RL 

framework for the UAV swarm flocking problem is presented by Yan, Bai, Zheng, & Guo 

(2020). Localization can also be implemented using DRL. A UAV visual localization 

approach uses deep learning characteristics from satellite images Hou et al. (2020). The 

localization is achieved in a Global Navigation Satellite System (GNSS) denied environment. 

A network called Dragon (DRGN) is proposed that is spatially and temporally aware, with a 

well-designed GAT-FANET communication structure based on network architecture search, 

and a memory unit with Gate Recurrent Units (GRU) to support long-term memory Ye, 

Wang, Chen, Jiang, & Song (2022). Deep Deterministic Policy Gradient (DDPG) and Q-

learning (QL) are two RL approaches that are used to teach the UAV to interpret its 

surroundings and provide efficient scheduling to carry out a data-gathering task. To collect 

data from geographically dispersed ground sensor nodes throughout a particular geographic 

region in a predefined amount of time, a self-taught UAV is used as a flying mobile unit. The 

QL is designed to pick the sequence of nodes to visit to shorten the data-collecting time, while 

the DDPG is intended to automatically decide the optimal path to travel in an area with 

obstacles Bouhamed, Ghazzai, Besbes, & Massoud (2020b). 

To locate pathways that avoid collisions while yet allowing numerous cellularly linked 

UAVs to connect to Ground Base Stations (GBSs) in the existence of a dynamic jammer, the 

UAV route navigation issue is thought to be a sequential choice issue. Thus, a signal-to-

interference-plus-noise ratio (SINR) mapping with an offline Temporal Difference (TD) 

learning technique is suggested for the RL agent X. Wang, Gursoy, Erpek, & Sagduyu (2021). 

A DRL-QiER model, a DRL solution with a special quantum-inspired experience replay 

(QiER) framework, is designed to enable the UAV to select the ideal flying path inside each 

time frame by transforming the navigation issue into an MDP. The suggested DRL-QiER 

system offers an improved trade-off between sampling priority and variety by using the 

Grover-iteration-based amplitude amplification method and connecting the significance of an 

experienced transition to its associated quantum bit (qubit). Numerical data demonstrate the 

efficacy and superiority of the suggested DRL-QiER solution when compared to different 

sample baselines. Also, an effort was made to cut down on UAV flight routes, estimated outage 

length, and the weighted sum of time cost Li & Aghvami (2022). 

DDQN (Dueling Deep Q Network) is trained for path coverage planning and data harvesting 
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Theile, Bayerlein, Nai, Gesbert, & Caccamo (2021). Instead of considering the trained model 

as a “black box,” a new DRL strategy for model explainability is given that allows huge 

maps to be fed directly into the convolutional layers of the DRL agent L. He, Aouf, & Song 

(2021). Small quadcopter UAVs can avoid collisions by seeking a way through crowd-

spaced 3D objects with the use of a 3D vision cone-based reactive navigation algorithm. This 

proposed method is evaluated in MATLAB utilizing a range of 3D obstacle scenarios to 

demonstrate its applicability. It is also compared against two other 3D navigation algorithms 

Ming & Huang (2021). 

There are also some tabular comparisons between several DRL strategies for UAV navigation 

in Table 2 concerning the trajectory types, models utilized, their success rates, and their 

limitations. Though there are so many unique DRL methodologies, using DRL for UAV 

navigation offers several challenges, including dealing with partial observability, balancing 

exploration and exploitation, overcoming the curse of dimensionality, and factoring existing 

information into the training process. Additionally, employing DRL has several benefits — It 

offers an end-to-end learning method, learns from interactions with the dynamic environment, 

manages high dimensional and noisy observations, and is employed in a range of control tasks. 

The use of DRL has some drawbacks, including slower computation, high training costs, 

difficulties with convergence and stability, a potential need for large amounts of training data, 

and sensitivity to hyperparameter selections. 

2.3 Imitation Learning (IL) 

IL is a machine learning approach that includes learning from examples or demonstrations of 

experts rather than through interacting with the environment in a trial-and-error manner. 

Table 2. Comparisons of some methods using deep reinforcement learning. Different 

parameters like the “Trajectory type” are used for training, their success rates, and a few 

drawbacks of the approaches. 
Authors Method Static (%) Dynamic (%) Notes 

Ramezani Dooraki & 
Lee (2022) 

SCAN 98% 82% 1) RGB-D camera noises 
2) No obstacle avoidance 

3) Not applicable on swarm 

D. Wang, Fan, Han, 
& Pan (2020) 

ORCA 3D-S 100% 
 

The two-stage RL policy may oscillate 
when the scenario changes rapidly due to 

shifting obstacles.  
ORCA 3D-L 100% 

 
Only considers observation at the current 
moment. 

Y. Chen, González-

Prelcic, & Heath 
(2020) 

Object 

Detection + 
DQN 

Flight 

distance: 
200m 

OD+DQN: 78% 
 

 
CAD2RL Flight 

distance: 
1200m 

OD+DQN: 40% 
 

C. Wang, Wang, 

Wang, & Zhang 
(2020) 

LwH POfD 

DDPGfD A3C 

CAD2RL: 

40% 

SenAvo-Pri: 97%, 

NaivePri: 96% 

When baseline decay rate and standard 

deviation are calibrated, LwH shows 
resistance.    

SenAvo-Pri: 76%, 

NaivePri: 41% 

 

   
SenAvo-Pri: 0%, 

NaivePri: 0% 

 

Imitative learning may be applied to UAV navigation to help drones travel effectively and 

securely by taking cues from experienced pilots or pre-planned flight patterns. In this 
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approach, the UAV picks up navigation skills by watching the actions of a human expert or 

another autonomous agent, so it is well-suited for obstacle avoidance and path planning, but it 

is restricted to the quality of the observations and the variety of the UAV’s surroundings. The 

different techniques in IL, include: 

i Behavioral Cloning (BC): The model learns to imitate the expert’s behavior by 

supervised learning on the expert’s demonstration data. 

ii Inverse Reinforcement Learning (IRL): The model learns to imitate the expert’s 

behavior by finding a reward function that best explains the expert’s actions. 

iii Generative Adversarial Imitation Learning (GAIL): The model learns to imitate the 

expert’s behavior by competing against a discriminator that tries to distinguish between the 

expert’s actions and the model’s actions. 

An end-to-end neural network controller, a controller based on linear regression, and a 

variational autoencoder (VAE) based controller are all trained using data aggregation in virtual 

environments. With a greater range of travel in both training and testing, VAE performs better 

than the other two Wei, Liang, Michelmore, & Kong (2022). Another approach is where an 

encoder function similar to DroNet which is similar to an equivalent 8-layer Resnet is used 

which takes the current Image as an input and provides output in the form of a latent 

compressed vector. Two dense layers and sixtranspose convolutional layers are used for the 

gate decoder and the image decoder respectively. The goal of training a total of 5 policies was 

to reduce the expected difference of D distance between our expert and control policy across 

the observed states Bonatti, Madaan, Vineet, Scherer, & Kapoor (2020). 

Another method is Imitation Learning with Indirect Intervention (I3L) which replicates 

situations in which the learning agent is watched over by an expert (human) and receives 

assistance via a communication channel. In I3L, an “advisor” interacts with the agent during 

both training and testing time, in contrast to standard IL approaches where the “teacher” only 

interacts with the agent during training. This approach combines BC with IL and it is called 

Behavior Cloning under Intervention (BCUI) Nguyen, Dey, Brockett, & Dolan (2019). BC is 

an approach used in IL wherein the goal of the model is to accurately replicate the activities 

of an expert rather than gaining high performance at a specific activity. The approximate BC 

algorithm initially trains a loss neural network and predicts how distant an action is from the 

expert’s action in a certain state. It then uses the updated loss network to compute the loss 

for the imitator Lowman, McClellan, & Mullins (2021). 

A technique that combines a DRL model and an IL model is called Imitation Augmented 

Deep Reinforcement Learning (IADRL). The IL model is influenced by GAIL, which is based 

on GANs, whereas DRL is based on the PPO network with an actor-critic architecture. The 

latest PPO-based generator is combined with a TRPO-based generator, which also acts as the 

DRL model’s policy Zhang et al. (2020). A Robust Model Based Imitation Learning 

framework (RMBIL) is provided, in which an end-to-end differentiable tracking control 

problem developed based on Model-Based Imitation Learning (MBIL) is implemented using 

the NDI algorithm. To approximate dynamical differences, the Neural ODE model is 

employed, which backpropagates through a black box ODE solver utilizing the adjoint 

sensitivity approach to solve the initial-value issue Lin, Li, Zhou, Wang, & Meng (2021). 
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An alternative approach concentrates on RL-based anomaly identification and rectification. To 

identify test system anomalies, the corresponding goal weights and purpose of the real-time 

observed test system are learned. Normal behaviors teach us regular control of attention and 

objective weight. From the observed behaviors, it is also possible to learn the objective 

purpose and the equivalent objective function weight. Learning this equivalent weight to the 

normal for the abnormal system and by resisting the impact of the potential noise anomalies, 

the suggested algorithm eliminates the anomaly and causes the abnormal actions to have the 

normal goal Lian et al. (2022). 

There are also a few approaches that use IL for controlling swarms which are discussed now. 

The first technique describes a strategy for coordinating UAV operations in scattered 

circumstances with insufficient observations; this job is seen as a multi-agent partially 

observable Markov game. The following UAVs aim to repeatedly mimic the leader UAV’s 

movements until the desired precision is obtained. The Line Of Sight (LOS) communication 

range is the main topic of the study. A belief and policy component is included in the 

proposed Belief Policy Interrelated Imitation (BPII) algorithm B. Yang, Ma, & Xia (2022). 

The second method takes into account the deployment of many UAVs in a large metropolis 

to carry out activities related to monitoring urban traffic. A unified machine learning model 

is trained using the Federated Learning (FL) framework suggested with the help of the leader 

UAV. An MDP is used to formulate the issue. The objective function is reformulated using 

the GAIL model with Earth Mover Distance (EMD) to achieve accurate swarm control. To 

improve the UAV’s imprecise external guidance, a Self-Imitation Learning (SIL) model is 

employed to take advantage of the distinction between past beneficial experiences and 

imitation deviations. Mean Squared Error (MSE) is used to reduce the errors that occurred 

during training B. Yang, Shi, & Xia (2022). 

An E2EIL (End-to-end Incremental Learning) lane-keeping and collision-checking model is 

proposed, which is combined with MPC to achieve real-time control. The basic objective is to 

learn an E2EIL cost map that is “generalizable”. On top of this, MPC in image space is 

carried out using a real-time produced agent-view costmap K. Lee, Vlahov, Gibson, Rehg, & 

Theodorou (2021). This is another method that chooses the optimum course of action to 

navigate the system using the RL policy. Accurately determining the values of each action 

under multiple conditions is the main issue here. An expert policy is created that retrains the 

network to make educated guesses about certain activities. Two output signals are created, 

the first of which provides the target velocity’s tuning action and the second provides the 

navigation velocity’s tuning action Hua & Fang (2022). 

A policy that maps inputs given by a human expert toward an objective by avoiding obstacles is 

proposed by Candare & Daguil (2020). CNN (3D), LSTM-RNN, and CNN (2D) are used for 

the policy representation of the desired controller behavior, each policy was trained at 100 

epochs. 

A technique that uses an Artificial Neural Network (ANN) consists of one hidden layer (35 

neurons) and one output layer (4 neurons) is used to map higher-level features to end effector 

control values. Various methods like the Monte Carlo DAgger, Sequential DAgger, GNC 

DAgger, and Moving Window DAgger are applied to design the opti- mal Guidance 

Navigation Control system (GNC) by comparing with the expert GNC policy Shukla, 
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Keshmiri, & Beckage (2020). 

Using IL for UAV navigation presents a variety of difficulties, including developing and 

gathering expert demonstrations, selecting the best algorithm for a given job, and including 

exploration and unpredictability in the learned policy. Additionally, using IL offers various 

advantages, including the ability to use already-existing expert knowledge, shorter training 

times than DRL techniques, and less risk of overfitting compared to supervised learning 

techniques. IL has a variety of limitations, such as difficulty with partial observability, the 

potential inability to learn novel behavior that deviates from the expert, and the need for fine-

tuning for practical applications. 

 

3 Comparative Study 

UAVs frequently use DRL, CNN, and IL techniques for navigation. But each of these 

techniques has its pros and cons for its usage, also each has a unique feature which cannot be 

found in others. Like for instance processing visual data from the UAV cameras allows 

CNNs to navigate by using image recognition and classification. On the other hand, DRL 

allows the UAV to make decisions based on reward-based systems and involves learning 

through trial-and-error interactions with the dynamic complex environment, while the IL 

approach uses expert demonstration and learns from it. So, the CNNs analyze visual input 

more quickly and effectively, but DRL makes decisions more flexibly and adjusts to changing 

situations more effectively, and IL learns and adapts more quickly and accurately. In contrast, 

CNNs could have trouble adapting to new contexts and need to be retrained, similarly, in the 

case of IL, it may require more data if the environment’s complexity increases, whereas DRL 

can learn with more experience. The main aspects of UAV navigation include localization, 

path planning, and obstacle avoidance. To determine a comparative study, we will discuss all 

three areas of UAV navigation for each approach. 

(1) Path Planning – Starting with path planning as it is the most basic and most 

important component of any autonomous navigation system it is the process of determining 

the best path between a starting point and an endpoint, finding a course that is both safe and 

effective. In the case of CNN, the decisions are based on the visual input given by the camera 

hence in a rapidly changing environment there can be challenges faced. Whereas in the case of 

IL, it is guided by learning from expert demonstrations, so it works effectively in surroundings 

that are structured and have a clear path, but it can struggle in environments that are not 

structured and do not have a well-defined path. As for DRL, it is more effective in terms of 

adaptability and path planning as it works on trial and error so maneuvering in complex 

environments is comparatively easy, but the training time of a DRL model is very high. 

(2) Obstacle Avoidance – It is the technique of avoiding collisions while the UAV travels 

to a goal, it is also one of the important aspects of UAV navigation. Let’s start with IL, it may 

be able to handle simple stable obstacles but it struggles when the count of obstacles increases 

or in diverse environments. DRL techniques can also handle simple obstacles using trial and 

error, but integrating some real-time-based decision-making may require a lot of training for a 

greater amount of time. Finally, CNNs are considered to be the best when it comes to 

collision/ obstacle avoidance as they use visual information as their input, so they can be 
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trained to avoid obstacles. The only drawback of CNN is that it has to be trained in different 

scenarios to be able to avoid obstacles effectively in complex environments. 

(3) Localization – The process of localization involves figuring out the UAV’s position 

and orientation. Beginning with DRL, using this method UAVs can be taught to estimate the 

it’s location based on sensor inputs and past information. In the case of CNN algorithms, they 

are adept at establishing the position and orientation from visual data but may suffer if there is 

very little visual data available or the quality of the visual data is not up to the mark. 

Whereas IL algorithms have a heavy reliance on expert demonstrations and hence may have 

difficulty with localization. 

Overall, while all three IL, CNN, and DRL techniques can be used for navigation along with 

path planning, obstacle avoidance, and localization, each method has its challenges 

depending on the environment and has its advantages and disadvantages. Several different 

types of CNN and DRL algorithms that are used for UAV navigation are compared in Table 

3. The choice of which technique to use depends on the requirements and constraints of the 

application. 

Table 3. Various CNN and DRL algorithms for UAV navigation are compared. The “Input” 

and “Output” columns list the types of information used as input for the UAV and what is returned 

as the output from each technique, respectively. The “Real-time” columns show whether each 

technique has been operated in real-time or not. 
Ref. Technique Algorithm Dataset Input Output Real-

time 

Mumuni & Amuzu 

(2022) 

CNN (visual 

odometry) 

Cowan-GGR KITTI, Camera, State 

Information 

Depth Maps with 

Object Boundaries 

YES 

S. Singh et al. (2022) DRL (Actor-

Critic) 

CACLA 
 

Surge Angle (75 to 

-75) 

NO 

Qiu, Jin, Lv, & Zheng 
(2022) 

Lidar navigation 
system based on 

ArUco-LIO. 

ArUco Custom Camera, State 
Information, and Lidar 

Pose in the real-
world frame 

YES 

Zhao, Yang, Zhang, 

Yan, & Yue (2022) 

DRL (Policy-

Based) 

PPO 
 

Control Signals NO 

Bouhamed, Ghazzai, 
Besbes, & Massoud 

(2020a) 

DRL (Actor-
Critic) 

DDPG 
 

Control Signals NO 

Shin, Kang, & Kim 
(2019) 

DRL (Value-
Based) 

DD-DQN RGB and Depth Map Control Signals NO 

Santos, Matos-

Carvalho, Tomic, 
Beko, & Correia 

(2022) 

RNN + LSTM GTRS Custom State 

Information 

Control Signals NO 

A. Singh & Jha (2021) DRL (Actor-
Critic) 

Safe-MADDPG 
 

Control Signals NO 

Xue & Chen (2022) DRL (Actor-

Critic) 

FRSVG (0) 
 

Control Signals NO 

Mughal, Khokhar, & 

Shahzad (2021) 

CNN (visual 

odometry) + GPS 

 
Custom-labeled template 

images, Geo-tagged 

ortho mosaics, GPS 

Coordinates: 

Latitude (ϕ), 

Longitude (λ) 

YES 

Yang, Zhang, Liu, & 

Song (2020) 

DRL (Value-

Based) 

DDQN-PER Raw pixels from the 

camera and state 

information 

Control Signals NO 

Abedin, Munir, Tran, 

Han, & Hong (2020) 

DRL (Value-

Based) 

UAV-BS (DQN 

with replay 

memory) 

State Information Control Signals NO 
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4 Conclusion And Future Work 

The most widely used methods for autonomous UAV navigation are RL and DL. 

Researchers are looking into ways to make UAV navigation systems more autonomous and less 

reliant on human input as a result of the growing demand for autonomous UAV navigation. This 

includes creating algorithms that can learn and adjust to dynamic environments and 

circumstances without requiring human involvement and reduce the collision probability. A 

growing demand for cutting-edge navigation systems that can guarantee safe and reliable 

UAV operations will arise as UAVs become more common in a variety of industries, 

including agriculture, logistics, and emergency response. In the end, improvements in DL 

and the combination of several navigation methods to produce more autonomous and 

adaptable systems will define the future of UAV navigation. These developments will 

significantly contribute to making UAVs an even bigger part of our daily lives. 

The future of UAV navigation is rapidly evolving with advances in DRL, IL, IRL, and CNN. 

As there were some limitations when using CNN and DRL approaches, there was IL to solve 

some of its issues. Some new methods have been emerging in the past few years in the area of 

IL and DRL, some of these approaches have a hybrid combination of these techniques like 

Hybrid Deep Reinforcement and Imitation Learning (HDRIL), Deep Reinforcement Learning 

with Expert Demonstrations (DRLED) and Meta-Reinforcement Learning (MetaRL). All these 

methods combine different features of DRL and IL algorithms for accurate navigation and path 

planning along with avoiding obstacles and mapping. So, there is no single approach that can 

solve this problem so all the new techniques are either some evolutionary approaches or some 

hybrid of the existing approaches which can be used in a complex dynamic environment. 

Finally, specific techniques used for UAV navigation may vary based on the requirements and 

constraints of the specific application. 
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