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The paper explores the significance of optimal design in ensuring the 

robustness, service life, and structural integrity of civil engineering projects, 

particularly focusing on large and inherently complex steel structures. Meta-

heuristic methods are lauded for their effectiveness in improving the 

functionality and architecture of steel structures, offering advantages such as 

adaptability to dynamic and uncertain environments, escape from local optima, 

and parallel processing capabilities. The paper displays real-life examples and 

case studies demonstrating their application in enhancing the efficiency and 

performance of different steel structures. The challenges associated with 

integrating meta-heuristic Genetic Algorithm “GA” methods into the 

development and optimization of steel constructions is discussed, along with 

potential approaches. The paper details the optimization technique, problem 

formulation, and objective function, using the total construction cost 

constrained by stress and displacement as an illustrative example. In conclusion, 

the paper asserts that employing meta-heuristic methods Genetic Algorithm” for 

steel structure optimization offers a practical means of reducing costs, 

enhancing structural performance, and fostering ecologically friendly designs.  

Keywords: Genetic algorithm; meta-heuristics; method of optimization; 

objective function; steel structures. 
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1. Introduction 

Optimizing the overall design process for steel structures therefore entails anticipating 

construction difficulties early in the design phase, resulting in an optimization process 

centered on minimizing, the structure's cost of construction. The typical technique for 

optimizing steel construction is to lower the structure's weight. However, connections seldom 

account for more than 5%[1] of a structure's overall weight. In practice, this low share 

conceals a large cost, which can exceed 30% of the whole structure's manufacturing cost 

[2,3]. In reality, the cost of labor, which is determined mostly by the intricacy of the 

assembly, determines the price of a framework. As a result, an optimized structural definition 

based simply on weight requirements may result in construction arrangements that are not 

optimal. In terms of building costs, it is far from perfect. As a result, we developed an 

optimization approach aimed at lowering the structure's construction costs. This cost includes 

the steel superstructure's material, fabrication, and assembly expenses, as well as the 

foundation systems' material and production costs. This ideal optimization approach 

additionally considers the component's dimensional attributes [4], the type of the supports, 

and the design of the connections  [5].  

To achieve our objectives, we must take a methodical approach, Fig1,  beginning with 

formulating the optimal design problem in order to resolve the optimization issue by 

providing an overview of the different optimization criteria, namely the design variables, 

which are the cross-sections of the load-bearing elements. The optimization limitations are 

drawn from the Steel construction code requirements Eurocode 3 (EC3) [6]. Then, a model 

based on heuristic approaches was created. 

 

Fig. 1.  Methodological approach. 

 

2. MATHEMATICAL REPRESENTATION OF THE GLOBAL OPTIMIZATION 

PROBLEM 

Optimization is a common and widely used term to define and implement design techniques 

for product development [7]. 

Optimization usually means enhancing or perfecting a project in various performance areas. 

However, from a mathematical standpoint, optimization has a specific definition. According 
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to reference [8] It operates under the premise that the design process is a selection procedure 

where the most effective functional form is chosen from numerous possible alternatives. 

The functional configuration is then expressed by selecting the appropriate quantity values 

and design features that correctly represent the current configuration. This is how the problem 

is mathematically represented as: 

             minimize f(x) 

            gi(x) ≤ 0                                                             

            hj(x) = 0                                                                    (1) 

             (x) = (x1 , x2, … … … … xn) 

f is the objective function to be minimized, g and h are respectively the inequality and 

equality limiting functions that define the admissible domain of solutions, and  (x) is the 

vector of design variables that describe the optimization formulation of the optimization 

problem suitable for the metal structure. 

 

3. PROPOSED SOLUTION METHODS 

A.  Metaheuristics  

   An optimization technique known as meta-heuristics,” Meta” meaning supernatural, and 

heuristics are two Greek terms that have been combined, In reality, these algorithms are 

designed as general methods for solving a wide variety of complex problems without 

substantially modifying the strategy adopted. They are often used in the fields of operations 

research, engineering or artificial intelligence [9]. 

By sampling an objective function, metaheuristics are often stochastic iterative algorithms 

that approximate a global optimum or the global extremum of a function. Like search 

algorithms, they attempt to learn the characteristics of a problem in order to approach the 

optimal solution [10,11].  

Meta-heuristics are very varied, ranging from simple local search to complex global search 

algorithms. However, these techniques employ a high degree of abstraction, which allows 

them to be adapted to a wide variety of problems [12]. 

B.  Metaheuristic Classification 

Meta-heuristics are often nondeterministic; they might not even figure out the best answer 

until they confirm it's the best[13]. A distinction can be made between meta-heuristics that 

produce a population of solutions in the search space during each cycle and those that produce 

a unique solution. You cannot be sure of finding an optimal solution using   single-solution 

metaheuristics, as these often require more search space.  

C.  Genetic Algorithms 

Genetic algorithms GA were developed by Charles Darwin and inspired by biological 

mechanisms. From the 1990s onwards, a number of publications mentioned the use of GAs to 

solve optimization problems in the field of civil engineering. A GA is an iterative algorithm 
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that evolves a set of solutions, randomly initialized, and called a population [14]. Our 

algorithm uses coding to encode all the sections of the search space. This step associates a 

data structure, called a chromosome, with each point in the state space, the aim being to 

optimize the weight and cost of a metal structure.  In the understanding that each person is 

unique, GAs aim to simulate the evolutionary process of species in their natural habitat, a 

similarity with Darwin's theory of evolution and Mendel's modern genetic [15].  

Fig. 2 represent an overview of a life cycle of GA works [16]: 

 

Fig. 2.  Life Cycle of Genetic Algorithm 

The steps are as follows: 

• Initialization: To begin, the algorithm generates a population of potential solutions 

(individuals), which are commonly represented as strings of binary or real-valued variables. 

• Fitness Evaluation: Individuals in the population are assessed using a fitness function 

that assesses how successfully they tackle the challenge at hand. The fitness function directs 

the algorithm to produce better results. 

• Selection: Individuals from the existing population are chosen to be parents for the 

following generation. The likelihood of selection is generally related to an individual's fitness, 

favoring superior answers. 

• Crossover: The chosen individuals go through crossover, which entails merging pieces 

of their genetic information to produce new offspring. This procedure is analogous to 

biological reproduction. 

• Mutation: To increase population variety, some individuals endure random alterations 

known as mutations. This stops the algorithm from reaching a poor result too fast. 

• Replacement: A new generation of individuals replaces the previous generation, and 

the process is repeated from step 2 for a specified number of generations or until a 

termination, condition is fulfilled. 
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4. GENETIC ALGORITHM  APPLICATION AND OPTIMIZATION 

The first application in this article is a classic issue of optimizing the weight of a ten-bar 

lattice, which has already been covered in other sources, in order to compare our conclusions. 

The second application is a theoretical example involving the weight and production cost 

optimization of a 2D to 5-bar gantry in accordance with Eurocode3. This is to recognize and 

acknowledge GAs' interest. 

D.  Example 1: 10-bar lattice 

This example was picked from the literature [17] and involves the optimization of the weight 

of a 10-bar planar lattice using evolutionary algorithms to create a comparison in order to 

establish the validity of the findings achieved. As a result, the geometry and properties of the 

materials utilized were assumed identical.  

• Density of steel= 2770 kg/m3, Young's modulus E=6.89 104 MPa  

1)  Example Demonstration  : 

• The aim is to reduce the overall weight of a 10-bar planar lattice. 

• Two forces of F= 444.822 kN are applied to the structure at nodes 2 and 4. The 

allowed stress in the bars in this case is 172.37MPa and the vertical displacement at node 2 is 

limited to: Uymax =-5.08 cm. 

 

Fig. 3.  10-bar flat latticework 

TABLE I.  THE BEST STRUCTURE WITH NPOP = 60 AND NGENER=100 

Paramètres de l’algorithme 

Cc = 4 Coefficient of penalties on constraint verification 

Pc=0.85 Crossover probability 

Pm=0.005 Probability of mutation 

npop = 60 population size 

nGener=100 iterations 

RESULTS 

Weight 2359,6KG 
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Bar numbers 21 2 11 12 3 

Bar cross-
sections cm²) 

2.8e-3 1.1e-3 2.0e-3 2.1e-3 1.2e-3 

Bar numbers 3 12 11 12 2 

Bar cross-

sections (cm²) 

1.2e-3 2.1e-3 2.0e-3 2.1e-3 1.1e-3 

 

Fig. 4.  10-bar element iterations results 

 

Fig. 5.  10-bar element optimization results 

E. Comparison of outcomes with others 

Comparison of Our application's results with earlier Table 1, findings discovered in other 

publications about the same example with the same variables, sections, and limitations. 

TABLE II.  COMPARISON OF THE OUTCOMES OF 10-BAR LATTICE 

OPTIMIZATION  

AG 2023 Z. El Maskaoui 2017 

Optimum Weight (kg) 2359,6 2519, 56 

Section of optimum 21-2-11-12-3-3-

12-11-12-2    

42-17-38-30-1-11-35-34-

38- 26 

We notice that the results we achieved are similar to, if not slightly better than, those found in 

other references, and consequently, we will have verified or supported our process for 

expressing the various aspects of an optimization issue as well as those of genetic algorithms. 
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Moreover, we anticipate that this will assist us in optimizing the weight and manufacturing 

cost of any construction, which is what we'll be doing in the second case. 

F. Optimal Weight and Cost of Manufacturing for 2d Gantry Design 

The optimization approach given here is utilized to discover the best design for the gantry 

depicted in Figure. The five bars represent the optimization variables. 

1)  Example Demonstration: 

• The bars have a density of =7800 kg/m3, Young's modulus E=2.10* 10^4 MPa and the 

steel used is of the grade: S235  

• The aim is to identify the optimal arrangement for the bar cross-sections. 

• Two forces of F = 50 KN are applied to the structure at nodes 4, and the allowed stress 

in the bars in this case is 235 MPa.  

• The horizontal displacement at node 4 is limited to: Ux max =1,8cm 

In Fig. 6, we show the results of optimization findings for the weight and cost of a planar 

gantry.  

 

Fig. 6.  1-floor gantry crane. 

The column cross-sections are of type HEB, whereas the beam cross-sections are of type IPE. 

The beams with the same cross-section belong to the same group, which will be a design 

variable later on. 

2)  The optimization problem can be suitably formulated as follows: 

 

• Under the constraints Ci where : 

CG: the overall production cost of the structure ; 

I: vector of the dimensional characteristics of the bars; 

Xa: support nature vector; Xn: node nature vector. 
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Ci: stress, with i = 1,..., N where N is the number of stresses associated with the structure. 

a) Objective function: 

(CG) = (Cpu)(W)                                                        (3) 

(Cpu) : unit cost for a KG of steel 

(W):  weight of the structure 

 

b) Optimization Variables:  

The dimensional properties of elements, the type of connections (beam to beam, column to 

column, etc.) between elements, and the type of connections between columns and 

foundations are the three types of design variables that can be used to create different design 

solutions for a structure[18].  

c) The Element's Dimensional Properties: 

• IPE sections for beams: 18 components ranging in height from 80 mm to 600 mm. 

• HEA and HEB sections for columns: 49 elements ranging in height from 100 mm to 

1000 mm. 

TABLE III.  DIMENSIONAL PROPERTIES 

Design variable Eléments Section type 

Bars 2 IPE 

1 , 3, 4, 5 HEB, HEA 

3) Constraints: 

The various regulatory requirements for the dimensioning of steel structures (The 

dimensioning constraints are those defined by EC3 regulations) [19,20], as well as the 

requirements linked to the client's financial restrictions and the limits of the architectural 

sketch, constitute the constraints of the optimization issue. Consequently, these constraints are 

linked to the: Strength of cross-sections 

• resistance of elements to buckling(EC3, 5.36): 

NEdi 

NRdi  
+

 MyEdi 

MyRdi  
+ 

MzEdi  

MzRdi  
≤  1 ; i = 1 … … n         (5)  

NEd: normal design load;  NRd: resistant normal force;  

MEd: design yielding moment; MRd: resistant yielding moment; 

• Column buckling resistance (EC3, 5.51) 

NEdi 

xyi ∗ NRdi  
+ kyi

 MyEdi 

MyRdi  
+ kzy 

MzEdi  

MzRdi  
≤ 1; i = 1. . p (6) 
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x: buckling coefficient ;  k : moment coefficient ; 

• limitation of the deformations of the bent elements: 

νi ≤  νlim, i =  1, . . , p                                                             (7) 

• limitation of horizontal frame deflections: 

μi (I, Xa, Xn) ≤ μlimi , i =  1, . . , p                                     (8)   

• limitation of the overall cost of building the structure:   

If the client sets the budget for the structural work package, however, this is a limit that must 

not be exceeded.  In this case, the best solution will be compared with CGlim on the basis of 

its overall cost CG. It is said that :  

CG ≤ CGlim                                                                 (9) 

4) Summary of the algorithm steps: 

Fig 7 gives a summary of the different steps of the algorithm. 

 

Fig. 7.  Summary of the algorithm steps. 

TABLE IV.  TABLE 4 THE BEST STRUCTURE WITH NPOP = 50 AND 

NGENER=100 

Algorithm parameters 

C = 3 Coefficient of penalties on constraint verification 

Pc=0.80 Crossover probability 

Pm=0.002 Probability of mutation 

npop = 50 population size 

NGener100 Iterations 

RESULTS 

Weight 2766,9 Kg 

Bar cross-

sections (cm²) 

3,88E-

03   

2,01E-

03   

3,88E-

03    

2,60E-

03   

2,60E-

03 
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Bar numbers  22 5 22 43 43 

 

Fig. 8.  Evolution of the structure's mass 

TABLE V.  THE BEST STRUCTURE WITH NPOP = 80 AND NGENER=100 

Paramètres de l’algorithme 

C = 3 Coefficient of penalties on constraint verification 

Pc=0.80 Crossover probability 

Pm=0.002 Probability of mutation 

npop = 80 population size 

nGener=100 Iterations 

RESULTS 

Weight 2231,623 Kg 

Bar cross-

sections (cm²) 

3,4E-03 1,64E-03 3,4E-03 2,53E-03 2,53

E-

03 

Bar numbers 44 4 44 20 20 

 

Fig. 9.  Evolution of the structure's mass through generations and population numbers 
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We can observe that the weight  of the top person are extremely near or even close for various 

collections, depending on the size of the population. This is because the algorithm converges 

on the individual with the lowest penalty:  

phii=W*(1+Cc*(p1+p2+…….pn));   with n  number of penalty; 

So, if p1 and p2 are zero since the individual meets the constraints on the acceptable 

constraint and arrow, which yields phii=W, it will eventually offer the best weight of the least 

penalized individual, or one that is not punished at all.  

Using the objective function (3) we get: 

 (Cprofiles) = (CpA) * (W) 

Then the average prices for materials of the structural steel is: 450 DZD/kg.  

TABLE VI.  RESULTS COST COMPARISON 

GAs Approach Weight Cost (DA) 

50 npop 2766,9 Kg 1.245.105 

80 npop 2231,623 Kg 1.004.230 

The results of the genetic algorithm optimization show that the optimal solution is the one that 

corresponds to the minimum weight (2231.623 kg) after 80 populations. However, this 

solution corresponds to the minimum cost (here equal to 1,004,230 DZD). 

 

5. CONCLUSION 

We have attempted to demonstrate in this paper that the use of meta-heuristics, particularly 

"genetic algorithms," as a design aid tool to guide engineering decision-makers toward 

optimal solutions offers an innovative and powerful approach to solving complex design 

problems. These algorithms optimize structural performance while considering a wide range 

of constraints and variables. 

The main advantage of genetic algorithms lies in their ability to explore a very broad set of 

alternatives and uncover optimal or near-optimal solutions. Moreover, the accuracy with 

which the problems are modeled, the appropriate selection of optimization parameters, and 

the rigorous validation of the obtained results significantly affect the quality of the outcomes. 

Finally, we can assert that this dimensioning tool is endowed with artificial intelligence, 

moreover, is an optimizer that helps save on raw materials. This method has also allowed us 

to explore other types of structures in our future research projects.  
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