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Scene classification using deep learning (DL) is a common and effective way in 

RS and geospatial analysis. It is most vital in environmental monitoring, 

mapping, land planning, and land management. Nevertheless, the current 

techniques are issues as vulnerability to noise interference, lower classification 

accuracy, and poor generalization skills. Remote sensing images are frequently 

used in the description of urban and rural regions, change detection, and other 

fields. In general, the RSI is high-resolution and covers extensive and diverse 

data, appropriate analysis of RSIs is most significant. DL systems like 

Convolutional Neural Networks (CNNs) are exposed significant result in image 

detection tasks, making them suitable for scene classification in RSIs. So, this 

study develops a new Water Flow Optimizer with Deep Learning Enabled 

Scene Detection and Classification (WFODL-SDC) algorithm on RSIs. The 

main focus of the WFODL-SDC system lies in the optimal detection and 

classification of various scenes that exist in it. To accomplish this, the WFODL-

SDC technique involves an adaptive median filtering (AMF) method for 

removing the noise that exists in it. Besides, the WFODL-SDC technique uses 

SE-DenseNet system for the derivation of useful feature vectors. The 

experimental values inferred that the WFODL-SDC methodology obtains 

optimal results with other recent approaches. At last, auto encoder (AE) has 

been executed for the recognition and classification of various kinds of scenes. 

The simulation result analysis of the WFODL-SDC technique undergoes 

utilizing benchmark image database.  

Keywords: Scene Detection, Scene classification, Remote Sensing Image, 

Water Flow Optimizer, Deep Learning, Adaptive Median Filtering.  
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1. Introduction 

Remote sensing images (RSI) normally include many objects owing to their wide geographic 

analysis. In present scenario, remote sensing (RS) has the overview of deep learning (DL)-

based performances for data extraction from scene imageries over object recognition and 

classification [1]. Accurately identifying objects in such images poses tasks for computers 

[2], but DL-based models have verified extremely effectual and amazing feature extractor 

abilities. Given the occurrence of higher-resolution RSI with ample details, object 

recognition models play a vital part in data extraction by recognizing numerous objects 

within a remote sensing scene [3]. Scene classification is a popular study topic in the domain 

of computer vision (CV) used to observation of Earth [4]. Yet, many supervised 

classification models neglect to simplify when restricted labeled information is accessible 

[5]. However, labeling huge amounts of RS data is time-consuming, needs expert 

knowledge, and is labor-intensive. Several models are projected to defeat the issue of 

inadequate labeled RS data, for example, self-supervised or semi-supervised methods [6]. 

Few-shot learning (FSL) stimulated by the human capability to acquire novel models from 

one or few samples to simplify to novel examples is a significant technique in this 

perspective [7]. 

Nevertheless, these methods frequently struggle to meet different demands, and as an 

outcome, their application can normally restrict to exact situations [8]. In comparison, DL 

has extended important traction in object recognition uses owing to the accessibility of 

massive databases and advances in computing technology [9]. DL-based approaches deliver 

faster recognition speed and enhanced accuracy when equated to classical hand-crafted 

object recognition models. Therefore, DL-driven object detection is quickly developing, 

allowing precise object recognition and removal of scene data from RSI [10]. 

This study introduces a new Water Flow Optimizer with Deep Learning Enabled Scene 

Detection and Classification (WFODL-SDC) technique on RSIs. The main focus of the 

WFODL-SDC system lies in the optimal detection and classification of various scenes that 

exist in it. Besides, the WFODL-SDC technique uses SE-DenseNet model for the derivation 

of useful feature vectors. For parameter tuning of the SE-DenseNet system, the WFO 

approach can be employed.  

 

2. LITERATURE SURVEY 

In [11], a novel RS scene understanding method named multi-scale attention R-CNNs (MSA 

R-CNNs) model has been developed, which includes a great feature extractor network for 

improved feature extractor from images. An adaptive dynamic inner lateral (ADIL) 

connection unit is presented in order to tackle data loss in a distributed lightweight attention 

module (DLAM) and feature pyramid network (FPN) to enhance feature data processing. 

Khan and Basalamah [12] present a multi-branch DL structure that competently integrates 

global contextual features with many features to classify difficult land scenes. Normally, the 

structure contains dual branches. The initial branch removes contextual data from dissimilar 

areas of the input images, and the next branch experiences a FCNs model to remove many 

local features. Wang et al. [13] developed a label-free self-distillation contrastive learning 
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with a transformer architecture (LaST) model.  

In [14], a multi-task network is presented. At first, 3-D ResUnet technique was applied. 

Next, the network of multi-tasks contains dual sub-tasks such as multi-temporal semantic 

segmentation and binary change recognition. The shared system branch uses 3-D residual 

blocks for removal. In the specific branch, a 3D GAN has been combined. Alahmari et al. 

[15] propose a Hybrid Multi-Strategy Aquila Optimizer with DL-Driven Crop Type 

Classification (HMAODL-CTC) system. Finally, the projected HMAODL-CTC system 

employs an ELM model for the classification of crop type. 

Guan et al. [16] designed a new attention module (EuPea) method, which is calculated to 

efficiently take inter-element data in mapping feature and produce extra influential feature 

map for usage in NNs. In EuPea attention device, the projected model includes distance and 

Pearson correlation co-efficient data among elements from the mapping feature. In [17], a 

mayfly optimizer with DL based robust RSI scene classification (MFODL-RRSISC) 

algorithm is projected. For classification of scene, the developed method uses NasNet for 

MFO-based parameter tuning, feature extractor, and SAE classification algorithm.  

 

3. THE PROPOSED MODEL 

In this paper, we have introduced a novel WFODL-SDC methodology on RSIs. The main 

focus of the WFODL-SDC system lies in the optimal detection and classification of various 

scenes that exist in it. To accomplish this, the WFODL-SDC technique involves AMF-based 

preprocessing, SE-DenseNet based feature extractor, WFO-based parameter tuning, and AE-

based classification. Fig. 1 portrays the workflow of WFODL-SDC technique. 

 

Fig. 1. Workflow of WFODL-SDC technique 
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3.1. Image Preprocessing 

Primarily, the WFODL-SDC technique involves AMF technique to eradicate the noise that 

exists in it.AMF plays an essential role in improving scene classification by efficiently 

modifying noise and maintaining crucial particulars within images [18]. In the perspective of 

scene classification, where images may display fluctuating levels of noise and variations, 

AMF dynamically alters its filtering parameters depending on the local features of the image. 

This model excels in upholding the reliability of crucial features while successfully 

overpowering noise artifacts, donating to amended image quality for following scene 

analysis. By combining adaptive median filtering into the pre-processing pipeline for scene 

classification, the method becomes stronger for noise variants, foremost to improve accuracy 

in classifying scenes across dissimilar visual surroundings. 

3.2. Se-Densenet Model 

The SE module‐based channel attention device permits the system to adaptively rectify the 

significance of diverse feature channels, permitting it to concentrate on more discriminative 

features. The WFODL-SDC technique uses SE-DenseNet model for the derivation of useful 

feature vectors. Due to the restrictions on the simplification performance of rule‐based and 

ML techniques, we accepted a DL‐based scene detection method [19]. For feature extraction 

and identification, we employ the backbone system of a DenseNet169 architecture that joins 

a scene detection approach and channel attention device. DenseNet enhances the movement 

of data and gradients among NN layers by linking mapping features from entire previous 

layers with similar spatial sizes.. Assume that, x0 is the input image that is delivered over 

NNs of n layers. Each lth layer in the system contains a non-linear transformer, 

Hl(∙)contains a ReLU, pooling, BN, or convolution (Conv). The (l − 1)th layer output is 

signified as xl−1, which is linked as an input to lth layer in classical Conv feed‐forward 

network that is exposed in Eq. (1): 

xl = Hl(xl−1).                                                             (1) 

The ResNet evades non-linear transformation with identity function by integrating a skip 

connection. The gradient in ResNet can able to flow straight from final to previous layers 

over the identity function exposed in Eq. (2): 

x = H(x) + xl−1.                                                       (2) 

On the other hand, the abstract is employed in order to link the identity function and 

Hlresultant that may delay data flow in the system. To increase data flow among the layers, 

DenseNet uses straight contacts from any layer to every following layer. As an outcome, the 

feature map of entire previous layers x0, … , xl−1, are delivered to the lth layer as an input 

that is exposed in Eq. (3): 

xl = Hl([x0, x1, … , xl−1]),                                                 (3) 

Whereas, x0, x1, … , xl−1 signifies the sequence of mapping feature created from the 0, … , l −
1 layers. In DenseNet, the channel counts produced by mapping feature sequences in deep 

layer upsurges considerably if the feature map size rests similar. This can outcome in an 

upsurge in the calculation and memory charges. Therefore, to find out this problem, 

downsampling layers have been employed in DenseNet structure to reduce the feature map 
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size. The layers of downsampling will separate the DenseNet structure into many dense 

blocks, where each one contains of feature map of dissimilar dimensions. 

  

Fig. 2. Architecture of SE-DenseNet model 

After the bottleneck layer, the SE unit is applied in order to alter the significance of 

dissimilar feature map channels. The main intention for employing an SE module is the point 

that dissimilar networks within mapping feature transmit dissimilar amounts of data. Fig. 2 

illustrates the infrastructure of SE-DenseNet model. Standard DNN gives entire channels 

similarly and individually, so they are incapable to take and emphasize the most selective 

element of feature map. By clearly demonstrating the channel needs and altering their 

relative significance, the SE module displays higher solution in differentiating significant 

features. Initially, the SE squeeze process employs global average pooling and reduces every 

feature channel spatial size to a single value. The network descriptor is the outcome of 

pooling process that collects channel specific data.  

3.3. Hyperparameter Tuning Process 

Hyperparameter tuning is the process of selecting the optimal values for a machine 

learning model’s hyper parameters. Hyperparameters are settings that control the learning 

process of the model, such as the learning rate, the number of neurons in a neural network, 

or the kernel size in a support vector machine.  

https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/machine-learning/


                                               A Scene Detection and Classification Model.... M. Rega et al. 2924 
 

Nanotechnology Perceptions Vol. 20 No. S14 (2024) 

 

The goal of hyper parameter tuning is to find the values that lead to the best performance 

on a given task. At this stage, the WFO approach can be deployed for parameter tuning of 

the SE-DenseNet algorithm. WFO is a SI method developed by Prof. Kaiping Luo in year 

2021, takes motivation from the 2 distinguishing categories of water flows determined by 

nature turbulent and laminar [20]. Naturally, water movements from higher to lower can be 

the same as the method of examining for an outcome in an optimizer complexity. This 

method analyzes the behaviour of turbulent and laminar flows from the water flow technique 

by applying mathematical expressions and determines the optimum performance by constant 

iteration. The mathematical definition of turbulent and laminar flow will be given by: 

1. Laminar Operator: During the laminar flow, every particle is moved in parallel to one 

another in the identical direction however, their speed changes because of the settings. The 

approach of motion will be indicated by applying Eq. (4). 

yi(t) = xi(t) + s ∗ d ∀i ∈ {1,2, … , m}                            (4) 

Whereas,tindicates the existing iteration number, m implies the size of populations, xi(t) 

refers the location of the ith elements at the tth iteration, yi(t) is the potential movement 

location of the tth individual at the tth rounds, s describes the random number among zero to 

one, and the d vector denotes the mutual way of movements of each individual at the 

existing iterations; d will be measured as presented in Eq. (5). 

d = xbest − xk(t), xbest ≠ xk(t)                                    (5) 

Now, xbesi indicate the optimum solution acquired by the existing iteration of the population 

and xk(t) characterizes thearbitrarily chosen particlewithin population. 

During the laminar flow operator, each individual of the population utilizes a consistent 

parallel unidirectional search, wherein the similar direction vector d confirms that explore 
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will be unidirectional, and arbitrariness of s denotes that various individuals are diverse 

movement steps. 

2. Turbulen Operator: During turbulence, water particles were impacted by alternative 

difficulties and demonstrated unbalanced rotational movements. The probable movement 

location yi was produced by the arbitrary dimensions of the ith individual by employing Eq. 

(6). 

yi = {

xi
j1

(t) + |xi
j1(t) − xk

j1(t)| ∗ θ ∗ cos(θ), ifr < pe

(ubjl − lbj1) ∗
xk

i2
(t) − lbi2

ubi2
− lbi2 + lbj1, otherwise

          (6) 

The vortex conversion of water particles in similar layer is denoted in upper part of Eq. (6) 

and the second part of Eq. (6) represents general cross‐layer movements of particles. 

Whereas j1 indicates a dimension arbitrarily chosen in the particles, j2 refers to a size 

varying from j1 randomly chosen from the particle, and xk
j1

(t) describes the significance of 

the j1th dimensional of kth particle at the tth iteration. θ indicatesthearbitrary number within 

ranges −′π to ′π, ubj1 and lbj1 means the up and low boundaries of the chosen dimensional, 

r defines a randomized number from zero to one, and pe ∈ (0,1) was a control parameter 

termed the vortex possibility 

In the iterations of the method execution, the technique executes a stochastic analysis of the 

2 behaviors, turbulent and laminar, and their individual execution probabilities have been 

measured by the factor pl. The fitness choice is asignificantfeaturein managing the 

efficiencyof WFO methodology. The hyperparameter choice procedure comprises the 

encoded solution for measuring the performance of candidate results. During this case, the 

WFOapproachassumes accuracy as the main condition to plan the fitness function (FF) that 

is expressed as:  

Fitness =  max (P)                                                       (7) 

P =
TP

TP + FP
                                                             (8) 

In which, FP and TPsignifies false and true positive values. 

3.4. Classification using AE model 

The AE is dependent upon a FFNN [21]. Its output and input layers are generally similar, so 

the system can able to rebuild the output to create it as near to the input At last, AE can be 

applied for the detection and classification of various kinds of scenes.. In AEs, H is said to be 

hidden layer(HL); X denotes the input layer; X̃ refers to the output layer; f and gare the 

encoder and decoder, respectively. The encoder f and decoder g methods have been 

presented in Eqs. (9) and (10), correspondingly. 

f: x → h: hj = σ(Weixi + bei),                                              (9) 

g ∶  h → x̃ ∶  x̃i = σ(Wdjhj + bdj),                                     (10) 
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Here, xi denotes the feature of original. xi is changed to hj after encrypted by the encoding. 

hj is transformed to Xi after being decrypted by the decoding. be and We signifies the bias 

and weight of the encoder, correspondingly. bd and Wd indicates the bias and weight of 

decoder, correspondingly. σ states the activation function, which can create the new feature, 

so enhances the model’s skill. This research clarifies that the method can absorb the deep 

semantic features of abnormal and normal traffic. So, it has been create the size of H lesser 

than X. Once the AE rebuilds an output feature x̃ similar to the input feature x. The HL takes 

most top feature h between the new feature at AE. The learning model of AE is defined as 

reducing the loss function. Generally, the loss function is said to be the MSE as below. 

MSE =
1

2n
∑(xi − g(f(xi))

2
n

i=1

, =
1

2n
∑(

n

i=1

xi − x̃i)
2.                       (11) 

The SAE training method contains training every AE layer separately, beginning from the 

input layer. After the layer is trained, its encoded output becomes input for the next layer. 

This stacking procedure permits the SAE to learn gradually abstract and hierarchical 

representations of the input data. 

 

4. RESULT ANALYSIS 

The experimentation validation of the WFODL-SDC methodology is examined using the 

UCM and AID databases. The UCM [22] dataset includes 2100 samples with 21 classes as 

exposed in Table 1. 

Table 1 Details of the UCM database 
UCM Dataset 

Classes No. of Instances 

C1 100 

C2 100 

C3 100 

C4 100 

C5 100 

C6 100 

C7 100 

C8 100 

C9 100 

C10 100 

C11 100 

C12 100 

C13 100 

C14 100 

C15 100 

C16 100 

C17 100 

C18 100 

C19 100 

C20 100 

C21 100 

Total Instances 2100 
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Fig. 3. UCM dataset (a-b) Confusion matrices, (c-d) PR-curve and ROC-curve 

Fig. 3 illustrates the classifier results of the WFODL-SDC method at UCM dataset. Figs. 3a-

3b showcases the confusion matrices gained by the WFODL-SDC system with 70%:30% of 

TRAPH/TESPH. This simulation value indicated that the WFODL-SDC model can be 

identified and categorized with 21 class labels appropriately. Meanwhile, Fig. 3c indicates 

the PR result of the WFODL-SDC approach. The figure defined that the WFODL-SDC 

algorithm gives greater PR effectiveness with every class. In conclusion, Fig. 3d showcases 

the ROC result of the WFODL-SDC algorithm. This figure signified that the WFODL-SDC 

method offers efficient results with increased ROC values with diverse class labels. 

Table 2 reveals the overall scene classifier outcome of the WFODL-SDC algorithm on 70% 

of TRAPH of UCM dataset. The simulation values stated that the WFODL-SDC technique 

has proficient effectual recognition of 21 classes. 

Table 2 Scene classification of WFODL-SDC model with UCM dataset under 70% of 

TRAPH 
Classes 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑠𝑐𝑜𝑟𝑒 

TRAPH (70%) 

C1 96.12 62.50 64.94 63.69 

C2 96.80 69.09 55.88 61.79 

C3 96.39 57.97 62.50 60.15 
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C4 96.19 59.15 60.87 60.00 

C5 96.67 65.62 60.87 63.16 

C6 95.92 59.02 50.70 54.55 

C7 96.73 63.51 69.12 66.20 

C8 96.53 64.00 66.67 65.31 

C9 97.21 65.15 70.49 67.72 

C10 96.46 59.02 57.14 58.06 

C11 96.12 62.16 61.33 61.74 

C12 96.26 60.27 62.86 61.54 

C13 96.80 66.22 69.01 67.59 

C14 95.99 56.10 66.67 60.93 

C15 96.46 67.86 52.78 59.38 

C16 96.94 66.20 69.12 67.63 

C17 96.33 66.27 67.90 67.07 

C18 96.73 67.11 68.92 68.00 

C19 96.46 60.32 58.46 59.38 

C20 95.51 54.29 52.78 53.52 

C21 96.94 68.06 69.01 68.53 

Average 96.46 62.85 62.76 62.66 

A wide-ranging scene classification results were reported by the WFODL-SDC methodology 

with 30% of TESPH at UCM datasets as illustrated in Table 3. These obtained outcomes 

underscore that the WFODL-SDC algorithm correctly recognized all categories of scenes 

present in the UCM dataset. It is also perceived that the WFODL-SDC method can be 

capable of recognizing the samples with increased classifier outcomes. 

Table 3 Scene classification of WFODL-SDC technique with UCM dataset under 30% of 

TESPH 
Classes 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑠𝑐𝑜𝑟𝑒 

TESPH (30%) 

C1 96.83 57.89 47.83 52.38 

C2 95.71 61.90 40.62 49.06 

C3 96.51 69.44 69.44 69.44 

C4 96.98 73.08 61.29 66.67 

C5 96.03 58.33 67.74 62.69 

C6 97.46 70.97 75.86 73.33 

C7 96.51 64.71 68.75 66.67 

C8 96.35 59.26 57.14 58.18 

C9 96.19 69.23 69.23 69.23 

C10 95.08 57.50 62.16 59.74 

C11 96.83 59.26 64.00 61.54 

C12 97.14 73.08 63.33 67.86 

C13 96.83 64.52 68.97 66.67 

C14 97.14 68.57 77.42 72.73 

C15 96.67 62.07 64.29 63.16 

C16 96.51 64.71 68.75 66.67 

C17 97.62 57.69 78.95 66.67 

C18 97.62 70.37 73.08 71.70 

C19 96.51 67.57 71.43 69.44 

C20 97.46 75.00 64.29 69.23 

C21 96.83 68.00 58.62 62.96 

Average 96.70 65.39 65.39 65.05 
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Fig. 4. Average of the WFODL-SDC model at UCM dataset 

In Fig. 4, the average scene recognition outcome of the WFODL-SDC technique is reported 

on UCM dataset. The results imply the proficient capability of the WFODL-SDC technique 

in the scene classification process. With 70% of TRAPH, the WFODL-SDC technique 

provides average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, and 𝐹𝑠𝑐𝑜𝑟𝑒of 96.46%, 62.85%, 62.76%, and 62.66%, 

respectively. Also, based on 30% of TESPH, the WFODL-SDC method gives average 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, and 𝐹𝑠𝑐𝑜𝑟𝑒of 96.70%, 65.39%, 65.39%, and 65.05%. 

 

Fig. 5. 𝐴𝑐𝑐𝑢𝑦 curve of the WFODL-SDC method at UCM dataset 

The effectiveness of the WFODL-SDC method with UCM dataset is clearly displayed in Fig. 

5 in the usage of training accuracy (TRAA) and validation accuracy (VALA) curves. This 
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figure signifies useful analysis into the behaviour of the WFODL-SDC technique over 

diverse epoch counts, signifying its learning process and generalization capabilities. 

Noticeably, the figure assumes a continuous improvement in the TRAA and VALA with 

growth in epochs. It ensures the adaptive nature of the WFODL-SDC algorithm with a 

pattern recognition process under the TRA and TES data. The rising trend in VALA outlines 

the ability of the WFODL-SDC technique to vary to the TRA data and also surpass in 

providing correct classification on unnoticed data, providing robust generalization 

capabilities. 

Fig. 6 illustrates an extensive representation of the training loss (TRLA) and validation loss 

(VALL) results of the WFODL-SDC method with UCM dataset over varying epochs. The 

progressive lessens in TRLA highpoints the WFODL-SDC model improving the weights and 

reducing the classification error on the TRA and TES data. The figure specifies a clear 

understanding of the WFODL-SDC system relevant to the TRA data, highlighting its 

proficiency in capturing patterns within both datasets. Mainly, the WFODL-SDC system 

incessantly increases its parameters in lessening the differences among the prediction and 

real TRA class labels. 

 

Fig. 6. Loss curve of the WFODL-SDC model with UCM dataset 

The performance of the WFODL-SDC methodology is compared with other approaches on 

UCM database is given in Table 4 and Fig. 7. The results imply that the SC+Pooling, 

SG+UFL, and CCM-BOVW methods have obtained least performance with 𝑎𝑐𝑐𝑢𝑦 values of 

81.67%, 86.64%, and 86.64%, correspondingly. Moreover, the PSR, COPD, and Dirichlet 

algorithms have attained closer 𝑎𝑐𝑐𝑢𝑦 values of 89.10%, 91.33%, and 92.80%. However, the 

WFODL-SDC technique accomplishes superior performance with maximum 𝑎𝑐𝑐𝑢𝑦of 

96.70%. 
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Table 4 𝐴𝑐𝑐𝑢𝑦 outcome of WFODL-SDC system with other algorithms under UCM dataset 

UCM Dataset 

Method Accuracy (%) 

SC+Pooling 81.67 

SG+UFL 86.64 

CCM-BOVW  86.64 

PSR Model 89.10 

COPD Model 91.33 

Dirichlet 92.80 

WFODL-SDC 96.70 

 

Fig. 7. 𝐴𝑐𝑐𝑢𝑦outcome of WFODL-SDC model compared under UCM dataset 

The AID dataset [23] comprises 3000 instances with 30 classes as shown in Table 5. 

Table 5 Details of AID dataset 
AID Database 

Class No. of Instances 

C1 100 

C2 100 

C3 100 

C4 100 

C5 100 

C6 100 

C7 100 

C8 100 
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C9 100 

C10 100 

C11 100 

C12 100 

C13 100 

C14 100 

C15 100 

C16 100 

C17 100 

C18 100 

C19 100 

C20 100 

C21 100 

C22 100 

C23 100 

C24 100 

C25 100 

C26 100 

C27 100 

C28 100 

C29 100 

C30 100 

Total Instances 3000 

Fig. 8 showcases the classifier results of the WFODL-SDC system at AID dataset. Figs. 8a-

8b indicates the confusion matrices determined by the WFODL-SDC approach with 

70%:30% of TRAPH/TESPH. This figure detailed that the WFODL-SDC algorithm can be 

recognized and categorized with 30 class labels suitably. Moreover, Fig. 8c denotes the PR 

result of the WFODL-SDC algorithm. The figure shows that the WFODL-SDC algorithm 

gains remarkable PR effectiveness with classes. Also, Fig. 8d displays the ROC result of the 

WFODL-SDC technique. This figure characterized that the WFODL-SDC technique 

acquires better experimentation results with increased ROC values with diverse class labels. 

 

Fig. 8. AID dataset (a-b) Confusion matrices of WFODL-SDC method (c-d) PR-curve and 

ROC-curve 
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Table 6 displays the overall scene classifier outcome accomplished by the WFODL-SDC 

technique on 70% of TRAPH with AID dataset. These experimentation outcomes denoted 

that the WFODL-SDC algorithm correctly identified all categories of scenes existing in the 

AID dataset. It is also noticed that the WFODL-SDC algorithm can the capability of 

recognizing the samples with increased classifier results. 

Table 6 Scene classification of WFODL-SDC model with AID dataset under 70% of 

TRAPH 
Classes 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑠𝑐𝑜𝑟𝑒 

TRAPH (70%) 

C1 96.38 46.03 40.85 43.28 

C2 96.10 43.66 42.47 43.06 

C3 96.05 40.58 40.00 40.29 

C4 96.76 50.00 57.35 53.42 

C5 96.48 46.67 40.00 43.08 

C6 96.14 42.50 49.28 45.64 

C7 96.57 50.72 47.95 49.30 

C8 97.00 57.97 54.05 55.94 

C9 96.90 53.62 52.86 53.24 

C10 96.14 47.67 53.25 50.31 

C11 97.14 52.38 52.38 52.38 

C12 96.48 50.00 51.35 50.67 

C13 96.71 41.38 40.68 41.03 

C14 95.90 45.65 53.85 49.41 

C15 96.43 44.59 49.25 46.81 

C16 96.71 41.43 50.88 45.67 

C17 96.67 49.12 40.58 44.44 

C18 96.86 53.25 57.75 55.41 

C19 96.81 53.12 47.89 50.37 

C20 96.24 41.33 46.97 43.97 

C21 96.29 45.57 50.70 48.00 

C22 96.29 47.37 48.65 48.00 

C23 96.05 41.38 32.88 36.64 

C24 97.00 53.85 51.47 52.63 

C25 96.00 43.42 44.59 44.00 

C26 96.76 55.74 45.33 50.00 

C27 96.81 53.85 48.61 51.09 

C28 96.48 36.36 33.90 35.09 

C29 96.24 44.87 49.30 46.98 

C30 96.29 46.27 42.47 44.29 

Average 96.49 47.35 47.25 47.15 

An extensive scene classification outcome succeeded by the WFODL-SDC algorithm with 

30% of TESPH under AID dataset as publicized in Table 7. These experimental outcomes 

emphasize that the WFODL-SDC technique properly recognized all categories of scenes 

present in the AID dataset. It is also discovered that the WFODL-SDC system can be the 

ability to recognize the samples with greater classifier results. 

Table 7 Scene classification of the WFODL-SDC system with AID dataset under 30% of 

TESPH 
Classes 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑠𝑐𝑜𝑟𝑒 

TESPH (30%) 

C1 96.89 52.17 41.38 46.15 

C2 96.44 39.13 33.33 36.00 

C3 96.78 52.38 36.67 43.14 

C4 95.78 42.86 56.25 48.65 
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C5 95.44 32.26 33.33 32.79 

C6 97.11 58.62 54.84 56.67 

C7 97.44 57.14 59.26 58.18 

C8 96.56 40.00 38.46 39.22 

C9 96.89 53.57 50.00 51.72 

C10 96.44 35.48 47.83 40.74 

C11 95.44 44.74 45.95 45.33 

C12 96.78 44.83 50.00 47.27 

C13 95.89 57.14 39.02 46.38 

C14 97.33 46.43 59.09 52.00 

C15 96.00 46.34 57.58 51.35 

C16 95.67 54.55 55.81 55.17 

C17 95.89 40.62 41.94 41.27 

C18 97.67 65.38 58.62 61.82 

C19 96.78 50.00 44.83 47.27 

C20 96.33 51.35 55.88 53.52 

C21 96.22 44.19 65.52 52.78 

C22 97.56 55.56 76.92 64.52 

C23 97.33 56.52 48.15 52.00 

C24 97.11 62.50 46.88 53.57 

C25 97.22 52.00 50.00 50.98 

C26 96.78 42.86 48.00 45.28 

C27 97.44 60.00 53.57 56.60 

C28 95.67 53.12 41.46 46.58 

C29 96.56 45.83 37.93 41.51 

C30 96.33 40.00 44.44 42.11 

Average 96.59 49.25 49.10 48.69 

A comprehensive average classifier result of the WFODL-SDC technique with AID dataset 

can be shown in Fig. 9. This figure specifies that the WFODL-SDC method gets improved 

results. According to 70% of TRAPH, the WFODL-SDC system obtained average accuy, 

precn, recal, and Fscore of 96.49%, 47.35%, 47.25%, and 47.15%. Similarly, with 30% of 

TESPH, the WFODL-SDC algorithm gives average accuy, precn, recal, and Fscore of 

96.59%, 49.25%, 49.10%, and 48.69%. 

 

Fig. 9. Average of the WFODL-SDC model with AID dataset 
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Fig. 10. Accuy curve of the WFODL-SDC technique at AID dataset 

The efficiency of the WFODL-SDC system with AID dataset is graphically illustrated in Fig. 

10 in the form of TRAA and VALA curves. This figure exhibits useful analysis of the 

behaviour of the WFODL-SDC method over multiple epoch counts, demonstrating its 

learning process and generalization capabilities. Noticeably, the figure infers an incessant 

improvement in the TRAA and VALA with progress in epochs. It is sure the adaptive nature 

of the WFODL-SDC method with pattern recognition process at TRA and TES data. The 

increased trends in VALA outline the capability of the WFODL-SDC technique in altering 

the TRA data and exceling in providing particular classification on unnoticed data, showing 

robust generalization abilities. 

Fig. 11 shows a wide-ranging view of the TRLA and VALL results of the WFODL-SDC 

model with AID dataset over multiple epochs. The progressive decreases in TRLA highlight 

the WFODL-SDC algorithm boosting the weights and lessening the classification error on 

the TRA and TES data. The figure shows a perfect consideration of the WFODL-SDC model 

related to the TRA data, highlighting its proficiency in capturing patterns within both 

datasets. Mainly, the WFODL-SDC method continually increased its parameters in lessening 

the variances among the prediction and real TRA class labels. 

 

Fig. 11. Loss curve of WFODL-SDC model with AID dataset 
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A wide-ranging Accuycomparative analysis of the WFODL-SDC method with AID dataset 

is measured as exhibited in Table 8 and Fig. 12 [24, 25]. These experimentation findings 

display that the GoogleNet and VGG-VD-16 techniques gain lessened accuy values of 

86.39%, and 89.64%. Similarly, the ResNet50, ResNet-50+EAM, and LCNN-BFF 

algorithms are attained remarkable accuy values of 92.57%, 93.64%, and 91.66%. 

Nevertheless, the WFODL-SDC method gains exceptional outcomes with higher accuy of 

96.59%, correspondingly. 

Table 8 Accuy outcome of the WFODL-SDC model with other algorithms under AID dataset 
AID Dataset 

Methods Accuracy (%) 

GoogleNet 86.39 

VGG-VD-16 89.64 

ResNet50 92.57 

ResNet-50+EAM 93.64 

LCNN-BFF 91.66 

WFODL-SDC 96.59 

 

Fig. 12. Accuy outcome of WFODL-SDC model under AID dataset 

Thus, it is apparent that the WFODL-SDC technique  has the ability to accurately and 

efficiently identify distinct scene classes 

 

5. CONCLUSION  

In this paper, we have introduced a novel WFODL-SDC methodology on RSIs. The main 

focus of the WFODL-SDC system lies in the optimal det3ection and classification of various 

scenes that exist in it. To accomplish this, the WFODL-SDC technique involves AMF-based 

preprocessing, SE-DenseNet-based feature extractor, WFO-based parameter tuning, and AE-

based classification. Primarily, the WFODL-SDC technique involves AMF algorithm for 
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removing the noise that exists in it. Besides, the WFODL-SDC technique uses the SE-

DenseNet model for the derivation of useful feature vectors. Moreover, the WFO system was 

utilized for parameter tuning of the SE-DenseNet approach. At last, AE has been executed 

for the recognition and classification of various kinds of scenes. The simulation value of the 

WFODL-SDC technique occurs using benchmark image database. The simulation results 

implied that the WFODL-SDC algorithm achieves optimum solution with other recent 

approaches.  
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