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The primary objective of this work is to select the sliding mode transition
function in order to regulate the multivariable coupled system. An inverter
working as a parallel active power filter with three phases and three wires is
controlled using a sliding mode control technique. There is no need to split the
system model created in the "dg" synchronous reference frame into two
different rounds. Furthermore, higher stability and resilience across a broad
operating range are made possible by the suggested control method. Variable
switching properties are seen when pulse switches are controlled by sinusoidal
pulses. For continuous switching of the converter switches, spatial vector
modulation provides the active filter pulses. However, if used in practice,
standard spatial vector modulation calls for a complicated method that uses
trigonometric functions like arctan, sine, and cosine, which in turn calls for
lookup tables to store the previously calculated trigonometric values. Using
only the inverter voltage and current sensed in this study, a substantially
simplified approach is provided to create spatial vector modulation pulses for
six switches. An active shunt filter is created by the voltage source. Very good
findings are verified through simulation using PSIM and MATLAB tools. The
findings demonstrate that the controller's suggested positioning and optimal
gain settings successfully reduce the LFO. Additionally, it improves system
stability and transient capacity in the presence of severe turbulence.

Keywords: Thyristor Controller Series Compensator (TCSC), Dynamic
Stability, Variable Structure Control, eigen values, Damping Ratio.
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1. Introduction

Currently, EPS is being used extensively due to increased demand for electricity from
existing transmission lines and a shortage of new transmission lines. [beginning]. In the
presence of small disturbances, dynamic instability generates oscillations with increasing
amplitude in the range of 0.2 to 2.0 Hz. Without proper damping stabilizers, the system
becomes unstable [2].

To reduce oscillations, place a power stabilizer (PSS) on the exciter. Under heavy loads, PSS
cannot provide sufficient damping results because the system becomes unstable [3]. To
overcome the limitations of PSS, we used FACTS series controllers such as TCSC to
improve dynamic stability. FACTS controllers are more economical than new transmission
systems [4].

The linearized model of the PI controller ensures optimal performance at the operating point.
However, when the operating points and system parameters are different, the damping
controller's fixed structure does not provide optimal performance.

Variations in system parameters are compensated by an adaptive controller [5]. System
performance is improved thanks to an adaptive controller that changes system parameters.
However, adaptive controllers require online observation of network states to determine
system parameters and to quickly calculate state feedback gains. This method is limited to
simple low-order systems, so performance is not optimal.

An intelligent controller has been implemented to reduce the LFO. Fuzzy logic controllers,
Fuzzy PID and FOPID are intelligent controllers. These controllers are not suitable for
parameter variations or sudden load disturbances. This is the main limitation of this
controller [6, 7].

To overcome the above limitations, alternative control strategies have been proposed. To
overcome the above limitations and improve the stability of the network, a modern nonlinear
feedback controller is proposed. When sudden disturbances occur in the system, the VSC
controller becomes more sensitive to parameter changes. In this article, we propose a
nonlinear controller such as a slider as a control strategy. When sudden load disturbances or
parameter changes occur, the mathematical models of these controllers are adjusted to
improve the dynamic stability of the system [8].

Outkin et al. [9] proposed three alternative methods to select the resulting switching vector.
Sliding motion has desirable properties. In the first model of the system, the sliding motion is
represented by a mathematical equation with equally spaced eigenvalues. The second
problem involves minimizing the square of its value with respect to the state vector, and the
third problem involves minimizing the sliding-equivalent control problem that controls the
cost in sliding mode. The third is to minimize performance indicators and corresponding
control issues related to controlling rolling operating costs.

Therefore,mentioned literature review shows that conventional controllers do not provide
sufficient damping and require more time to reach the steady state point when sudden
disturbances occur. To overcome this difficulty, a nonlinear feedback controller is proposed,
namely H. VSC based on sliding mode. The stability of the network depends on the sliding
surface control law. The control law forces the trajectory of states to change infinitely to
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achieve the control goal. Modified structure with line stabilizer applies VSC theory to single-
machine systems and improves system damping in critical modes at rated load compared to
conventional controllers. Systematic description of the critical mode switching hyperplane
and the switching vector for the two state variables Ad and Aw [10]. Its VSPSS
recommendation, ideal for multi-machine networks. The proposed method is optimized by
selecting the switching hyperplane according to the squared power index to minimize the
running time in sliding mode. The optimal selection of the weight matrix in the performance
metrics for converting between hyperplane and vector is very difficult [11,12]

A variable output feedback structure was applied to a single machine infinite bus (SMIB)
system using TCSC. The input signal of the

VSC is considered as active power and reactive power. The effectiveness of the controller is
demonstrated through time domain analysis. VSC provides superior dynamic performance in
critical modes of the test system compared to TCSC feedback and no TCSC [13].

The mathematical analysis, current insertion design, and dynamic modelling of the first
suggested FACTS device in the series are the study's key goals. H. VSC and TCSC. To
increase the network's damping ratio (DR), a variable output feedback gain control is
suggested in this work. It would move the critical mode to the left side of the S-plane. Speed
is employed as the response variable, as opposed to the study by [14]. Additionally, VSC is
unaffected by changes in parameter values. To gradually increase muscle input power, the
performance of the variable TCSC construct was compared to the TCSC response with PSS
and without control.

A computer simulation is run on an EPS with TCSC to show the viability of the suggested
output response VSC. The simulation findings demonstrate that the suggested variable
structure with TCSC can enhance the network's damping properties when compared to a
single system's TCSC response at rated load with PSS. Can anything be drawn from this?

2. System investigated

As illustrated in Figure 1, we looked into the SMIB system's small-signal model to assess the
local LFO. For a private system, the IEEE Type 1 exciter and flux decay model of this
machine was taken into consideration [15]. The linearized Heffron-Phillips (HP) model
underwent dynamic stability investigation is depicted in Figure 2. Reference [16] contains
data on dynamics and excitation.

vV, £6° v, £0°
GEN R, X,

\
(ld +|q)ej(5—n/2)

Fig.1:Schematic diagram of a SMIB bus system.
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The starting values of various variables are calculated using steady state equations in order to
determine the K constant. The K constant is disabled in Figure 2. K; to K¢ as 0.78, 0.63,
0.39, 0.975,0.038 and 0.698.

2 Hs

Fig.2. Linearized HP model for a SMIB system.

The Differential Algebraic Equation (DAE) of the EPS is expressed as follows [15]
X=fXY) (1)
0=gXY) )

Equation (1) in Figure 1 represents the differential equation for the generator and load,
whereas Equation (2) represents the algebraic equation. To derive the eigenvalues from the
system matrix, linearize the given equation.

X =AX+BU (3)
Y = CX 4)

Where 'U' stands for the control/input vector, X' stands for the state vector, and "Y' is the
output vector. The state matrix is represented by matrix A, the control matrix by matrix B,
and the output matrix by matrix C.

Where,
X =(AEy" ASAw AEgq)andu = [ATy AVie]

The system matrix’A’ is the order of 4x4

~04304  -0.1654 0 0.1695
B 0 0 314 0
~01000  -02000 0 0

-1.3997e+003 -76.9468 0 -5
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The matrix'B’is the order of 4x2

0 0
0 0
B =
02110 ©
0 2000

The matrix’C'is the order of 1x4
c=[0o 0 1 0]

and also,without controller the transfer function of the system is

0.211s® + 1.146 s> + 50.43 s + 1.091e — 011
s*+5.43 s34+ 291.3s? +276.8s+ 11910

There are 4 eigenvalues for the transfer function mentioned above. Determine the A-matrix’s
eigenvalues using Equation (3). The test system's eigenvalues without a damping controller
are shown in Table 1.

: Frequency

Mode# Withoutcontrol DR(®) (rad/sec)
Az | -25872 *14.3260i | 01738 15.62
Ay 00245+ 7.1202i | 0.00342 .78

Table.1. Eigenvalues of the SMIB system.

The critical mode has a modest A3 4and low DR of 0.00342, which is why it is called that.
Table. 1 Because of the critical mode's low damping, oscillations grow exponentially and
never reach a stable state. To improve the dynamic stability of the network, the damping
controllers PSS and TCSC are mounted to the machine.

3. PSS

By adding supplemental damping to the rotor excitation, PSS eliminates the negative
damping. Three blocks are seen in Fig. 3. The critical mode's Az ,damping is produced by
the gain block. The block 2 is omitted and in block 3, The damping torque for the modes is
produced by the time constants T, and To.

AVref
+
A® _» STw L Ko (L+sT,)| AV. K, AE,
PS 1+5sT, (1+ST,) /| 18Ty
Washout Phase AV,  Exciter

Compensation

Fig.3. IEEE Type-1 exciter with PSS

The Deviation of speed from synchronous speed i.e Aw,,, and deviation of voltage i.e AVj,
are the input and output of PSS damping controller. At the summing point AVg is combined
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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WithAV,.¢ and AV, , so as to mitigate the oscillations in the network[2,14]. The calculation of
system matrix(Agys),B and C equations of the system with PSS are presented in[16].

The input to the PSS isAw,,,andAVy is the output of the PSS. To mitigate the oscillations, at
the summing point AVg, AV, andAV,¢s are combine [2]. After, the insertion of PSS, the
system matrixAgys, B and C equations are presented in [16].

Mode # System with PSS DR (D) Frequency
(rad/sec)
Asp 22125+ 15.48i 0.1825 15.6
Asa | 03790 % 7.755i 00501 | 757
Asg -10.4290 1.0 10.40

Table.2. Eigenvalues of thenetwork with PSS.

The DR of the crucial mode in Table 2 is enhanced from 0.00342 to 0.0501 with the addition
of PSS. The DR of the mode gets better, but by connecting the TCSC to the network, it can
get even better.

4. TCSC

[1] As indicated in Fig. 1, the system being studied consists of a synchronous generator
connected to a large power system via a transmission line with a TCSC. A TCSC controller
manages the variable series compensation, DX, that the TCSC offers. The next section will
construct a variable structure TCSC controller to enhance the dampening of system
oscillations. The block diagram of the excitation system is shown in Fig. 2, and it may be
characterized by the differential equations shown below[17].

The transmission line is connected in series with the TCSC controller. The series
reactance in the transmission line changes as the firing angle changes. The TCSC damping
controller is shown in Fig. 4.

/—.\Ia.\;

+s AG ] AXres(
A i sT, 1+sT)
Erese . ™ ) 1 +5T,
1+5T, 1+sT, N SITCse
Gain Washout Lead-Lag / TCSC internal

stage L= Min delay

Fig.4.TCSC damping controller.

In Fig. 4, there are three blocks that resemble PSS damping controllers [13]. By varying the
firing angle, the system's net reactance will change, which improves the damping of the
system. When TCSC is added, the two state variables, Acc and AXycsc are added to the
generator state matrix of Equ. (3). Results the eigenvalues of the system matrix increased by
two. The values of TCSC are presented in[15].

The K - constants for SMIB system with TCSC are calculated using the equations given in
[16].

K3 =0.5313, K, =0.4952,K; =0.9751, K, =0.5668,
Ks =0.0374, and Kg =0.8231
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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X =[AE, A8 AwAEg

A_TCSC=

B_TCSC=

[-0302 -0.1
0 0
-01 -021
-16533 -75.7
1.520 2.65
0 0
0 0
0 0
0.22 0
0 2005
-435 0
0 0

Ax AXTCSC]
0 05 0
314 0 1
0 0 0.62
0 -50 2003
-43 0 -208
0 0 0

C_TCSC=|{0 0 3 0 0 O

(®)

o O O O o o

and also, the transfer function of the system with TCSC controller is

0.212s° +3.34s* + 71.58s* +567.9s + 25.78s

s® +27.18s° +4632s* +6075s° +18270s> +11780% + 4287

For the above transfer function, 6 eigenvalues are present. Table. 3, represents the
eigenvalues of the test system after insertion of TCSC. The critical mode DR improved to

0.2050 from 0.0501, respectively.

Table 3. Eigenvalues of test system with feedback TCSCdamping controller.

Mode # System with TCSC DR (Q) Frequency
(rad/sec)
Aqy -3.2100 + 16.101 0.1960 16.400
Asa 09710 T 4631 0.2050 4.73
Asg -0.040,-17.80 1.0,1.0 0.040, 17.80

5. Variable Structure System (VSS)

To enhance the dynamic stability, the damping effect significantly improved by the control
signal 'u’ , from the Eq. 3.For different operating points, the damping effect can be

significantly improved.
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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The state feedback for the linear state regulator is designed as
U=K".X (6)

K is the feedback gain matrix in Equation (6) above, and it is chosen using the quadratic
minimization strategy.

A change in structure occurs at the switching hyperplane and is known as the switching
function.

S=G'X=0 (7)

In equ. (7),'G’, represents the constant vector.

The following are the requirements for sliding modes states to occur on a sliding surface:
Ltg_o-S > 0and Ltg_y+S < 0

The aforementioned conditions are necessary for sliding mode to exist

va K} L(Ke KXY

Fig.5. Block diagram representation of Variable Structure with TCSC.

The block diagram of VSS is depicted in Fig. 5. There are two steps in this Fig. 5. The
control rule (K.), which places the state trajectories on the sliding surface (S), is the first
stage. The second stage (K;), which moves the states to the sliding surface, is the third stage
[18-20].

Creating Variable Structures Power system thyristor-controlled series compensator with
desired eigenvalues operating in sliding mode

TCSC is used in series with a transmission line to improve the dynamic stability. The TCSC
may adjust its apparent reactance smoothly and quickly by altering the thyristors' firing
angles [21].

The first (n-1) rows of the transformation matrix M are chosen to be orthogonal to vector b,
and the product of the nth row of M and b is chosen to be non-zero. M is therefore chosen as

O O O OO0 R
O 0O O0OO0oFr o
OO0 OoOpr oo
O OoOFr OO0OOo
P O OOOOo
Or OO0OO0OOo

The order of ‘M’ is 6x6

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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Convert the system data into state space

X=AX+BU andY =CX

v

Transform the matrix by using coordinate transformation matrix M
then the transformed matrix will be

A= MAM™; B=MB ; C=CM™tand ni=rank(A);m;=rank(B)
1

v

A f\lz:l

Divide the matrix A into sub matrices: A = MAM™ = |:
A1 A

v

Assume Q and R matrices and transform the Q matrix using

coordinate transformation matrices of Q

v

Calculate the positive definite matrix P from Riccati equation
Al P+P.Ag—PBsRsBIP+Q=0
- ~ 2~r = =
where Ag = A1 — A12.Q22.Q12 , Bs=Aq,
- - o~ a1 S
Qs =Q11 — Q12.Q27.Q12, and Rs =Qy

Design sliding surface (switching hyperplane) by optimal sliding mode
method

h=RARLP+QL) 1)<m

v

Equivalent control is given as Kq = (hB)_lHA and

Reaching control is given as K, = (hB)ﬁlH..B where B - is the
sliding margin

Total control gain is given by U(t) =—-Kguc .X(t): —(Ke + Kr)X(t)

v

Calculate sliding eigenvalues as Ag = €ig (A -BKgyic )

v

Figure 6. Flowchart for a test sysm " variable structure controller and TCSC

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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Apply the coordinate transformation,Z = MX , the matrices Aq1,A1,, A,y and Ay, of the
matrix MAg,cM™* for the system investigated, are:

Ais the order of 6x6
Aqq = (nj —m;)x(n; —m;) and it is the order of 4x4

-03 -01 0 02

0 0 314 0
-01 -01 0 O
-1646 -747 0 -5

A=

A, =(n, —m,)xm, and it is the order of 4x2

0 O
'&12 _ 0 O

0 05

0 2000

A,y =m; x(n; —m;) and it is the order of 2x4

~ 0 O 0 O
Agr=
15 25 -40 O

,3\22 =m;xm; and it is the order of 2x2

i [0 o
22710 -208

CALCULATE ‘P’ MATRIX: P is the solution of Riccati equation

418 -85 1367 -0.0 ~1999.8
5. _|-85 24 25 -00 5, —0.4+i5.1
MC 11367 25 97307 -2.4 Cl_04-i51
PAg + AlP - PBgR5'BIP + Qg =0 -000 -00 -24 00 ~1.0
- 0 0 0 0
Ksvc =
7.0376 —1.5559 39.4342 0.9883

Sliding surface S or h:

This switching sliding surface is a function of portionedA,Q matrices and transformed matrix
M).

S= léE%('&'lz-ch + 612) 'J* M

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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h | 0 0 0 0 10 10
SMC ™ 17.0376 —1.5550 39.4342 0.9883 1.00 1.0

Kesuc = (Hsvc B) “HA

-0.3437 -0.5912 9.4800 0 0.0095 4.9447}

e - L 0.8213 -0.0377 -0.2871 -0.0019 -0.00 0.9900

~\-1
Krsme = (HSMC'BT H.5 , Where § is the sliding margin and it is assumed to be 0.85

| 0 0 0 0 -0.2133 -0.2133
"710.0032 -0.0007 0.0180 0.0005 0.0009  0.0009

VSS is given by

} Linear feedback control law for

U =—KX = ~(Kg + K )X =~(Keguc +Krauc )X =

Ksmc = (Kesmc +Krsuc)
[0.3437 05912 -9.4800 0 02038 -4.7314
MC 7108211 00384 02691 0.0014 —-0.0009 —0.9909
VSS is calculated from sliding eigenvalues.

Lhe dynamics of system states with

s (Sliding eigenvalues) = eig (A— BKgvic )

Mode # | Sliding eigenvalues DR (C) Frequency (rad/sec)
Ayp | 48015+ 223761 0.2105 22.900

Azy -1.3242+ 4.6567 i 0.274 4.84

A5,6 -34.7485, -0.0400 1,1 34.7485, 0.0400

Table.4. Eigenvalues of the SMIB system with Variable Structure TCSC

The eigenvalues of the network with variable structure TCSC are shown in Table.4. Since
the system matrix has a 6th order, there are a total of 6 -eigenvalues, all of which are present
on the left side of the s-plane and the network is dynamically stable. The DR is increased to
0.274 from 0.2050 as a result of the critical mode's eigenvalue (-1.3242+ 4.6567 i) being
more moved to the imaginary axis of the s-plane. As a result, the system is more dynamically
stable when in sliding mode than when it is not.

6. Results and Discussions

The suggested variable structure controller with TCSC is put to the test by subjecting the
system to a step increase in mechanical input power. when running at nominal point P = 1.0
p.u, Q = 0.67 p.u and V=10 p.u , the dynamic response of the system is presented in
Fig.7[15,21].

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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This section's findings were produced with MATLAB. Figure 7 compares the dynamic
stability of the test systems with and without damping control, with PSS, with feedback
TCSC, and with variable structure with TCSC. The tests are run for 10 seconds to assess the
system's performance.whereas‘A s’ is the rotor angle of machine synchronous machine,
respectively.

0.03

|
ry > without control
g2 2 ——with PSS control

—TCSC with feedback contral
— TCSC with Variable Structure Control

0.02/f |

0.01

Rotor angle deviation (rad)

Time (sec)

Fig.7. Rotor angle deviation‘A § ’(rad) of the SMIBsystem without control (black line with
circles),with PSS (green colour line), with TCSC (blue colour line)and TCSC with variable
structure(red colour line).

Without damping controllers, the system is unstable. This is because the electromechanical
mode's eigenvalue, shown in Table 1 as -0.0242 + 7.0200 i, has weak damping. PSS was
attached to the exciter of the special system, and the bad damping critical eigenvalue
changed from -0.0242 7.0200 i to -0.3792+ 7.755 i (Table-2). The network's damping has
increased to 0.0467, and the TCSC feedback control has further improved the damping.

Poor damping caused the TCSC's eigenvalue to move from -0.3792+ 7.755i to -0.9710+ 4.63
i (Table 3). The mechanism now has better damping. In fact, compared to using PSS or a
controller-less oscillation, the oscillation mode has stabilized, and the selling time and peak
overshoot have both been reduced. The system's oscillation mode with TCSC has been
stabilized.

The critical eigenvalue is moved from 0.9710+ 4.63i (Table-3) to -1.3242 +4.6567 i (Table-
4) when comparing the variable structure controller with SVeC as feedback controller. As a
result of improved system damping, the system is more stable. From the dynamic response
curves, it can be shown that the variable structure TCSC stabilizes the system more than the
TCSC feedback controller.

In Fig. 7,the settling time(t), of these oscillations for ‘A8’is t;= 123.2857 s, 10.85 s, 4.385

s and 3.8771 s, and for peak overshoot (%M_P), the corresponding values are: without
control, with PSS, with feedback TCSC, and with variable structure-based TCSC,
respectively, 1.0095%, 0.8523, 0.4563%, and 0.2683%.

According to Fig. 7, the system with VSC has the smallest amplitudes, a shorter recovery
time to pre-disturbance conditions, less settling time, less overshoot, and less undershoot.

The primary benefit of this controller is that the nonlinearities of the system are taken into
account in sliding mode. The main drawback of this controller is that it is extremely

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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challenging for higher order systems. Because an observer-based sliding mode controller can
avoid both the problem of system variables being unavailable and the difficulty in measuring
system states

7. Conclusion

A structure for output feedback variables The TCSC controller was created to enhance a
power system's dynamic performance. The suggested variable structure controller's
utilization of only physically measurably speed deviation signals as controller inputs is one
of its key features. This makes it reasonably simple to construct the suggested variable
structure controller in practice. Additionally, while the system is run in sliding mode, the
dynamic performance is relatively unaffected by changes in the operating circumstances and
plant parameters. According to the results of the simulation, the variable structure TCSC
controller offers a practical way to enhance the power system's damping characteristic.
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