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The primary objective of this work is to select the sliding mode transition 

function in order to regulate the multivariable coupled system. An inverter 

working as a parallel active power filter with three phases and three wires is 

controlled using a sliding mode control technique. There is no need to split the 

system model created in the "dq" synchronous reference frame into two 

different rounds. Furthermore, higher stability and resilience across a broad 

operating range are made possible by the suggested control method. Variable 

switching properties are seen when pulse switches are controlled by sinusoidal 

pulses. For continuous switching of the converter switches, spatial vector 

modulation provides the active filter pulses. However, if used in practice, 

standard spatial vector modulation calls for a complicated method that uses 

trigonometric functions like arctan, sine, and cosine, which in turn calls for 

lookup tables to store the previously calculated trigonometric values. Using 

only the inverter voltage and current sensed in this study, a substantially 

simplified approach is provided to create spatial vector modulation pulses for 

six switches. An active shunt filter is created by the voltage source. Very good 

findings are verified through simulation using PSIM and MATLAB tools. The 

findings demonstrate that the controller's suggested positioning and optimal 

gain settings successfully reduce the LFO. Additionally, it improves system 

stability and transient capacity in the presence of severe turbulence. 

Keywords: Thyristor Controller Series Compensator (TCSC), Dynamic 

Stability, Variable Structure Control, eigen values, Damping Ratio.  
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1. Introduction 

Currently, EPS is being used extensively due to increased demand for electricity from 

existing transmission lines and a shortage of new transmission lines. [beginning]. In the 

presence of small disturbances, dynamic instability generates oscillations with increasing 

amplitude in the range of 0.2 to 2.0 Hz. Without proper damping stabilizers, the system 

becomes unstable [2]. 

To reduce oscillations, place a power stabilizer (PSS) on the exciter. Under heavy loads, PSS 

cannot provide sufficient damping results because the system becomes unstable [3]. To 

overcome the limitations of PSS, we used FACTS series controllers such as TCSC to 

improve dynamic stability. FACTS controllers are more economical than new transmission 

systems [4]. 

The linearized model of the PI controller ensures optimal performance at the operating point. 

However, when the operating points and system parameters are different, the damping 

controller's fixed structure does not provide optimal performance. 

Variations in system parameters are compensated by an adaptive controller [5]. System 

performance is improved thanks to an adaptive controller that changes system parameters. 

However, adaptive controllers require online observation of network states to determine 

system parameters and to quickly calculate state feedback gains. This method is limited to 

simple low-order systems, so performance is not optimal. 

An intelligent controller has been implemented to reduce the LFO. Fuzzy logic controllers, 

Fuzzy PID and FOPID are intelligent controllers. These controllers are not suitable for 

parameter variations or sudden load disturbances. This is the main limitation of this 

controller [6, 7]. 

To overcome the above limitations, alternative control strategies have been proposed. To 

overcome the above limitations and improve the stability of the network, a modern nonlinear 

feedback controller is proposed. When sudden disturbances occur in the system, the VSC 

controller becomes more sensitive to parameter changes. In this article, we propose a 

nonlinear controller such as a slider as a control strategy. When sudden load disturbances or 

parameter changes occur, the mathematical models of these controllers are adjusted to 

improve the dynamic stability of the system [8]. 

Outkin et al. [9] proposed three alternative methods to select the resulting switching vector. 

Sliding motion has desirable properties. In the first model of the system, the sliding motion is 

represented by a mathematical equation with equally spaced eigenvalues. The second 

problem involves minimizing the square of its value with respect to the state vector, and the 

third problem involves minimizing the sliding-equivalent control problem that controls the 

cost in sliding mode. The third is to minimize performance indicators and corresponding 

control issues related to controlling rolling operating costs.  

Therefore,mentioned literature review shows that conventional controllers do not provide 

sufficient damping and require more time to reach the steady state point when sudden 

disturbances occur. To overcome this difficulty, a nonlinear feedback controller is proposed, 

namely H. VSC based on sliding mode. The stability of the network depends on the sliding 

surface control law. The control law forces the trajectory of states to change infinitely to 
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achieve the control goal. Modified structure with line stabilizer applies VSC theory to single-

machine systems and improves system damping in critical modes at rated load compared to 

conventional controllers. Systematic description of the critical mode switching hyperplane 

and the switching vector for the two state variables ∆δ and ∆ω [10]. Its VSPSS 

recommendation, ideal for multi-machine networks. The proposed method is optimized by 

selecting the switching hyperplane according to the squared power index to minimize the 

running time in sliding mode. The optimal selection of the weight matrix in the performance 

metrics for converting between hyperplane and vector is very difficult [11,12]  

A variable output feedback structure was applied to a single machine infinite bus (SMIB) 

system using TCSC. The input signal of the 

VSC is considered as active power and reactive power. The effectiveness of the controller is 

demonstrated through time domain analysis. VSC provides superior dynamic performance in 

critical modes of the test system compared to TCSC feedback and no TCSC [13]. 

The mathematical analysis, current insertion design, and dynamic modelling of the first 

suggested FACTS device in the series are the study's key goals. H. VSC and TCSC. To 

increase the network's damping ratio (DR), a variable output feedback gain control is 

suggested in this work. It would move the critical mode to the left side of the S-plane. Speed 

is employed as the response variable, as opposed to the study by [14]. Additionally, VSC is 

unaffected by changes in parameter values. To gradually increase muscle input power, the 

performance of the variable TCSC construct was compared to the TCSC response with PSS 

and without control. 

A computer simulation is run on an EPS with TCSC to show the viability of the suggested 

output response VSC. The simulation findings demonstrate that the suggested variable 

structure with TCSC can enhance the network's damping properties when compared to a 

single system's TCSC response at rated load with PSS. Can anything be drawn from this? 

 

2. System investigated 

As illustrated in Figure 1, we looked into the SMIB system's small-signal model to assess the 

local LFO. For a private system, the IEEE Type 1 exciter and flux decay model of this 

machine was taken into consideration [15]. The linearized Heffron-Phillips (HP) model 

underwent dynamic stability investigation is depicted in Figure 2. Reference [16] contains 

data on dynamics and excitation. 

GEN
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Fig.1:Schematic diagram of a SMIB bus system. 
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The starting values of various variables are calculated using steady state equations in order to 

determine the K constant. The K constant is disabled in Figure 2. K1 to K6 as 0.78, 0.63, 

0.39, 0.975,0.038 and 0.698. 
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Fig.2. Linearized HP model for a SMIB system. 

 

The Differential Algebraic Equation (DAE) of the EPS is expressed as follows [15] 

Ẋ = f(X, Y)  (1) 

0 = g(X, Y)     (2) 

Equation (1) in Figure 1 represents the differential equation for the generator and load, 

whereas Equation (2) represents the algebraic equation. To derive the eigenvalues from the 

system matrix, linearize the given equation. 

Ẋ = AX + BU     (3) 

Y = CX      (4) 

Where 'U' stands for the control/input vector, 'X' stands for the state vector, and 'Y' is the 

output vector. The state matrix is represented by matrix A, the control matrix by matrix B, 

and the output matrix by matrix C. 

Where,   

X = (∆Eq
′ ∆δ∆ω ∆Efd) andu = [∆TM ∆Vref]    

The system matrix′A′ is the order of 4×4 
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The matrix′B′is the order of 4×2 
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The matrix′C′is the order of 1×4 

 0100C =  

and also,without controller the transfer function of the system is 

 

0.211s3 + 1.146 s2 + 50.43 s + 1.091 e − 011

s4 + 5.43 s3 + 291.3 s2 + 276.8 s + 11910
 

There are 4 eigenvalues for the transfer function mentioned above. Determine the A-matrix's 

eigenvalues using Equation (3). The test system's eigenvalues without a damping controller 

are shown in Table 1. 

Mode# Withoutcontrol DR(𝛇) 
Frequency 

(rad/sec) 

𝚲𝟏,𝟐 -2.5872  14.3260 i 0.1738 15.62 

𝚲𝟑,𝟒 -0.0245  7.1202i 0.00342 7.78 

Table.1. Eigenvalues of the SMIB system. 

The critical mode has a modest 𝚲𝟑,𝟒and low DR of 0.00342, which is why it is called that. 

Table. 1 Because of the critical mode's low damping, oscillations grow exponentially and 

never reach a stable state. To improve the dynamic stability of the network, the damping 

controllers PSS and TCSC are mounted to the machine. 

 

3. PSS 

By adding supplemental damping to the rotor excitation, PSS eliminates the negative 

damping. Three blocks are seen in Fig. 3. The critical mode's 𝚲𝟑,𝟒damping is produced by 

the gain block. The block 2 is omitted and in block 3, The damping torque for the modes is 

produced by the time constants T1 and T2. 
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Fig.3. IEEE Type-1 exciter with PSS 

The Deviation of speed from synchronous speed i.e ∆𝛚𝐦, and deviation of voltage i.e ∆𝐕𝐒, 

are the input and output of PSS damping controller. At the summing point ∆𝐕𝐒 is combined 
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with∆𝐕𝐫𝐞𝐟 and ∆𝐕𝐭 , so as to mitigate the oscillations in the network[2,14]. The calculation of 

system matrix(𝐀𝐒𝐘𝐒),B and C equations of the system with PSS are presented in[16]. 

The input to the PSS is𝚫𝛚𝐦,and𝚫𝐕𝐒 is the output of the PSS. To mitigate the oscillations, at 

the summing point 𝚫𝐕𝐒, 𝚫𝐕𝐭 and𝚫𝐕𝐫𝐞𝐟 are combine [2]. After, the insertion of PSS, the 

system matrix𝐀𝐒𝐘𝐒, B and C equations are presented in [16]. 
Mode ≠ System with PSS DR (𝛇) Frequency 

(rad/sec) 

𝚲𝟏,𝟐 -2.2125  15.48i 0.1825 15.6 

𝚲𝟑,𝟒 
-0.3792 7.755i 

0.0501 7.57 

𝚲𝟓,𝟔 -10.4290 1.0 10.40 

Table.2. Eigenvalues of thenetwork with PSS.

 
The DR of the crucial mode in Table 2 is enhanced from 0.00342 to 0.0501 with the addition 

of PSS. The DR of the mode gets better, but by connecting the TCSC to the network, it can 

get even better. 

 

4. TCSC 

[1] As indicated in Fig. 1, the system being studied consists of a synchronous generator 

connected to a large power system via a transmission line with a TCSC. A TCSC controller 

manages the variable series compensation, Dx, that the TCSC offers. The next section will 

construct a variable structure TCSC controller to enhance the dampening of system 

oscillations. The block diagram of the excitation system is shown in Fig. 2, and it may be 

characterized by the differential equations shown below[17].  

      The transmission line is connected in series with the TCSC controller. The series 

reactance in the transmission line changes as the firing angle changes. The TCSC damping 

controller is shown in Fig. 4. 

 

Fig.4.TCSC damping controller. 

In Fig. 4, there are three blocks that resemble PSS damping controllers [13]. By varying the 

firing angle, the system's net reactance will change, which improves the damping of the 

system. When TCSC is added, the two state variables, ∆∝ and ∆𝐗𝐓𝐂𝐒𝐂 are added to the 

generator state matrix of Equ. (3). Results the eigenvalues of the system matrix increased by 

two. The values of TCSC are presented in[15]. 

The K - constants for SMIB system with TCSC are calculated using the equations given in 

[16]. 

5313.0K3 = , 0.4952K4 = , 9751.0K1 = , 5668.0K2 = , 

0374.0K5 = , and 8231.0K6 =  
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𝐗 = [∆𝐄𝐪
′ ∆𝛅 ∆𝛚∆𝐄𝐟𝐝 ∆∝ ∆𝐗𝐓𝐂𝐒𝐂]  (5) 
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and also, the transfer function of the system with TCSC controller is  

42871178018270607524631827

7825956758713432120
23456

345
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ssss.s.s
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For the above transfer function, 6 eigenvalues are present. Table. 3, represents the 

eigenvalues of the test system after insertion of TCSC. The critical mode DR improved to 

0.2050 from 0.0501, respectively.  
Mode ≠ System with TCSC DR (𝛇) Frequency 

(rad/sec) 

𝚲𝟏,𝟐 -3.2100   16.10 i 0.1960 16.400 

𝚲𝟑,𝟒 
-0.9710   4.63 i 

0.2050 4.73 

𝚲𝟓,𝟔 -0.040,-17.80 1.0, 1.0 0.040, 17.80 

Table 3. Eigenvalues of test system with feedback TCSCdamping controller. 

 

5. Variable Structure System (VSS) 

To enhance the dynamic stability, the damping effect significantly improved by the control 

signal ′𝐮′ , from the Eq. 3.For different operating points, the damping effect can be 

significantly improved.  
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The state feedback for the linear state regulator is designed as  

𝐔 = 𝐊𝐓. 𝐗     (6) 

K is the feedback gain matrix in Equation (6) above, and it is chosen using the quadratic 

minimization strategy. 

A change in structure occurs at the switching hyperplane and is known as the switching 

function. 

𝐒 = 𝐆𝐓𝐗 = 𝟎 (7) 

In equ. (7),′𝐆′, represents the constant vector. 

The following are the requirements for sliding modes states to occur on a sliding surface: 

𝐋𝐭𝐒→𝟎−𝐒̇ > 𝟎and 𝐋𝐭𝐒→𝟎+𝐒̇ < 𝟎 

The aforementioned conditions are necessary for sliding mode to exist 

 

Fig.5. Block diagram representation of Variable Structure with TCSC. 

The block diagram of VSS is depicted in Fig. 5. There are two steps in this Fig. 5. The 

control rule (Ke), which places the state trajectories on the sliding surface (S), is the first 

stage. The second stage (Kr), which moves the states to the sliding surface, is the third stage 

[18–20]. 

Creating Variable Structures Power system thyristor-controlled series compensator with 

desired eigenvalues operating in sliding mode 

TCSC is used in series with a transmission line to improve the dynamic stability. The TCSC 

may adjust its apparent reactance smoothly and quickly by altering the thyristors' firing 

angles [21]. 

The first (n-1) rows of the transformation matrix M are chosen to be orthogonal to vector b, 

and the product of the nth row of M and b is chosen to be non-zero. M is therefore chosen as 
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The order of ‘M’ is 6×6 
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Figure 6. Flowchart for a test system's variable structure controller and TCSC 

 

Equivalent control is given as ( ) HAhBK
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e
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Reaching control is given as ( ) =
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sliding margin 

Total control gain is given by ( ) ( ) ( ) ( )tXK+KtX.KtU reSMC −=−=  
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Convert the system data into state space 

Ẋ = AX + BU    and Y = CX 

Transform the matrix by using coordinate transformation matrix M  
then the transformed matrix will be 

1M.A.MA
~ −= ; B.MB

~
= ; 1M.CC

~ −= and ni=rank(A);mi=rank(B) 

 

Assume Q and R matrices and transform the Q  matrix using 
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Calculate the positive definite matrix P  from Riccati equation
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 Design sliding surface (switching hyperplane) by optimal sliding mode 
method 
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Calculate sliding eigenvalues as ( )SMCS K.B
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Apply the coordinate transformation,𝐙 = 𝐌𝐗 , the matrices 11A , 12A , 21A  and 22A of the 

matrix 1
SVeC MMA −  for the system investigated, are:  

A
~

is the order of 6×6 

( ) ( )iiii11 mnmnA
~

−−=  and it is the order of 4×4 
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CALCULATE ‘P’ MATRIX: P is the solution of Riccati equation 
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Sliding surface S or h: 
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
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Linear feedback control law for 

VSS is given by  
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The dynamics of system states with 

VSS is calculated from sliding eigenvalues. 

S (Sliding eigenvalues) = ( )SMCK.B
~

A
~

eig −  

Mode # Sliding eigenvalues DR ( )  Frequency (rad/sec) 

2,1  -4.8015  22.376 i 0.2105 22.900 

4,3  -1.3242  4.6567 i 0.274 4.84 

6,5  
-34.7485, -0.0400 1,1 34.7485, 0.0400 

Table.4. Eigenvalues of the SMIB system with Variable Structure TCSC 

The eigenvalues of the network with variable structure TCSC are shown in Table.4. Since 

the system matrix has a 6th order, there are a total of 6 -eigenvalues, all of which are present 

on the left side of the s-plane and the network is dynamically stable. The DR is increased to 

0.274 from 0.2050 as a result of the critical mode's eigenvalue (-1.3242+ 4.6567 i) being 

more moved to the imaginary axis of the s-plane. As a result, the system is more dynamically 

stable when in sliding mode than when it is not. 

 

6. Results and Discussions 

The suggested variable structure controller with TCSC is put to the test by subjecting the 

system to a step increase in mechanical input power. when running at nominal point P = 1.0 

p.u , Q = 0.67 p.u and Vt=1.0 p.u , the dynamic response of the system is presented in 

Fig.7[15,21]. 
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This section's findings were produced with MATLAB. Figure 7 compares the dynamic 

stability of the test systems with and without damping control, with PSS, with feedback 

TCSC, and with variable structure with TCSC. The tests are run for 10 seconds to assess the 

system's performance.whereas‘Δ  ’ is the rotor angle of machine synchronous machine, 

respectively. 

 

Fig.7. Rotor angle deviation‘Δ  ’(rad) of the SMIBsystem without control (black line with 

circles),with PSS (green colour line), with TCSC (blue colour line)and TCSC with variable 

structure(red colour line). 

Without damping controllers, the system is unstable. This is because the electromechanical 

mode's eigenvalue, shown in Table 1 as -0.0242 + 7.0200 i, has weak damping. PSS was 

attached to the exciter of the special system, and the bad damping critical eigenvalue 

changed from -0.0242 7.0200 i to -0.3792+ 7.755 i (Table-2). The network's damping has 

increased to 0.0467, and the TCSC feedback control has further improved the damping. 

Poor damping caused the TCSC's eigenvalue to move from -0.3792+ 7.755i to -0.9710+ 4.63 

i (Table 3). The mechanism now has better damping. In fact, compared to using PSS or a 

controller-less oscillation, the oscillation mode has stabilized, and the selling time and peak 

overshoot have both been reduced. The system's oscillation mode with TCSC has been 

stabilized. 

The critical eigenvalue is moved from 0.9710+ 4.63i (Table-3) to -1.3242 +4.6567 i (Table-

4) when comparing the variable structure controller with SVeC as feedback controller. As a 

result of improved system damping, the system is more stable. From the dynamic response 

curves, it can be shown that the variable structure TCSC stabilizes the system more than the 

TCSC feedback controller.  

In Fig. 7,the settling time(ts), of these oscillations for ‘∆δ’is st = 123.2857 s, 10.85 s, 4.385 

s and 3.8771 s, and for peak overshoot (%M_P), the corresponding values are: without 

control, with PSS, with feedback TCSC, and with variable structure-based TCSC, 

respectively, 1.0095%, 0.8523, 0.4563%, and 0.2683%.  

According to Fig. 7, the system with VSC has the smallest amplitudes, a shorter recovery 

time to pre-disturbance conditions, less settling time, less overshoot, and less undershoot. 

The primary benefit of this controller is that the nonlinearities of the system are taken into 

account in sliding mode. The main drawback of this controller is that it is extremely 
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challenging for higher order systems. Because an observer-based sliding mode controller can 

avoid both the problem of system variables being unavailable and the difficulty in measuring 

system states 

 

7. Conclusion 

A structure for output feedback variables The TCSC controller was created to enhance a 

power system's dynamic performance. The suggested variable structure controller's 

utilization of only physically measurably speed deviation signals as controller inputs is one 

of its key features. This makes it reasonably simple to construct the suggested variable 

structure controller in practice. Additionally, while the system is run in sliding mode, the 

dynamic performance is relatively unaffected by changes in the operating circumstances and 

plant parameters. According to the results of the simulation, the variable structure TCSC 

controller offers a practical way to enhance the power system's damping characteristic. 
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