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In this review paper attention will be centered on the various synthesis 

techniques of ZnO thin films, because the synthesis process directly affects the 

cost and flexibility in the production of gas sensing equipment. ZnO is our 

choice because it is a versatile material with outstanding electrical, optical, and 

chemical characteristics. Due to their strong sensing response, simple 

fabrication, long-term stability, and cost-effectiveness, ZnO-based thin films are 

a good choice for a gas sensor that has attracted a lot of attention due to their 

versatility in applications such as gas sensors, microelectronics, solar cells, and 

optoelectronics industries. Thin films have a wide range of qualities specified 

by film thickness, morphology, structural properties, and composition, which 

are required to fulfil the necessities of a broad range of diverse applications. 

This article aims to provide a broad research status of various synthesis 

processes of ZnO thin films. 

Keywords: ZnO, Physical Techniques, Chemical Techniques, Gas Sensor, 

MOx, Gas sensing, Nano materials (NPs), Nanotechnology. 

 

 

1. Introduction 

Rapid rise of industrialization and urbanization have caused critical air pollution. Air 

pollution is an indicator of environmental changes that impact health and human being. It 

also affects plants and materials and has been attributed to emissions from industries, 

vehicles, and kitchens and waste decay besides the emission from natural sources viz., soil 

erosion, sea spray, forest fire, volcanoes etc. Air pollution causes global warming, climate 

change and affects human being and environment directly and indirectly (J. Zheng et al., 

2009). 

http://www.nano-ntp.com/
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ZnO has a number of advantages over conventional metal oxide-based gas sensors, including 

low cost and non-toxicity in nature, making it environmentally acceptable. ZnO-based gas 

sensors are widely used in a variety of applications because of their excellent sensing 

response, superior selectivity, ease of manufacturing, low cost, good thermal and chemical 

stability, and non-toxicity, Furthermore, with a bandgap of 3.37 eV and a significant exciton 

binding energy of 60 meV (Rai et al., 2012; J. Zheng et al., 2009). It has seen an enormous 

exploration of metal oxide semiconductor-based gas sensors that have great properties of an 

ideal gas sensor throughout the last few decades. SnO2, ZnO, WO3, Fe2O3, and CuO with 

various morphologies like thin films, nanoplates, nanowires, nanorods, nanoflowers, 

nanoneedles, and nanoribbons have all been investigated as metal oxide based gas sensors 

(P. Dwivedi et al., 2017; Nunes et al., 2019; Umar et al., 2017; Vallejos et al., 2018). Sensing 

response of the gas sensor depends upon the dimension of nanostructures. By using various 

synthesis methods, numerous types of morphologies and nanostructures can be achieved. As 

synthesis methods for achieving the necessary morphologies and nanostructures, spray 

pyrolysis, sol-gel, dip coating, spin coating, chemical vapour deposition (CVD), radio 

frequency (RF) sputtering, template synthesis method, molecular beam epitaxy, and 

hydrothermal deposition have all been examined (Baratto, 2018; Mondal & Sharma, 2016; 

Studenikin et al., 1998; Yang et al., 2013; Znaidi, 2010).  Table 1 shows successfully Zinc 

oxide deposition via the different synthesis process. Several studies on the fabrication of 

Zinc oxide films using various techniques have been conducted. The goal of this project is to 

provide a quick overview of unique ZnO thin film processes. 

Table 1: Various types of ZnO morphologies and nanostructure grown by different synthesis 

techniques 
ZnO Nano Scale  Substrate Deposition Technique Reference 

ZnO thin film Quartz MOCVD (Pati et al., 2013) 

ZnO thin film Sapphire Sol-gel (Chia et al.,, 2013) 

ZnO nanoflowers Al2O3 Hydrothermal (Song et al., 2019) 

ZnO nanorods Silicon  RF magnetron sputtering (Sundara Venkatesh et al., 2014) 

ZnO nanofibers SiO2 Electro spinning (Aziz et al., 2018) 

ZnO nanowires Zn Seed layer  CVD (Rodwihok et al., 2019) 

ZnO layer Sapphire  MBE (El-Shaer et al.,2005) 

Al-ZnO thin film Glass  Spray pyrolysis (Kolhe et al., 2018) 

ZnO thin film Soda lime glass  Electron beam (Ani et al., 2020) 

ZnO thin film Soda lime glass  Atomic layer deposition (Tammenmaa et al., 1985) 

 

2. Various thin film deposition techniques 

Thin films have an amazing impact on today's modern technology. Because of the significant 

support they provide to these applications, they operate as a spine for advanced applications 

in several domains such as optical devices, environmental applications, communications 

devices, energy storage devices, and so on  (Nwanna et al., 2020). All of the critical 

challenges in thin film applications are caused by morphology and stability. The deposition 

procedures have a strong influence on the shape of thin films. Thin films can be deposited 

using both physical and chemical methods (Znaidi, 2010). Spray pyrolysis (Omura et al., 

1999), Sol-gel (Thiagarajan et al., 2017), Dip coating (Ray et al., 1998), Hydrothermal 

synthesis  (Suchanek & Riman, 2006), Pulsed laser deposition approach (J. J. Park et al., 

2015), Spin coating (Ilican et al., 2008), chemical vapour deposition (CVD) (Hwang & Lee, 
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2010) , and Atomic layer deposition systems (Levy et al., 2008) are some of the advanced 

thin film deposition techniques and ideas covered here. These days, so many technologies 

are utilized for reducing the materials into nano-size and nano-thickness. This reducing 

behaviour of materials into nano-materials leads to the innovation of new and unique 

behaviour in optical, electrical, optoelectronic, dielectric applications, etc. Thin films or 

coatings, a new branch of material science, are a thin layer of materials in which the 

thickness differs from nanometres to micrometres. Just like all other materials, the structure 

of thin films or coatings is categorized into two main types, which are: amorphous structure 

and polycrystalline structure. These structures formation relies upon preparation condition 

and nature of materials. The two parts of the thin films include: the layer and the substrate. 

Here we will discuss about different type deposition techniques of thin films: 

 2.1 Spray pyrolysis-Spray pyrolysis is one of the advanced techniques of thin film 

deposition that consists of chemical reduction approach in which for the production of 

finished product, endothermic thermal disintegration occurs on the heated area of the 

substrate. Spray pyrolysis is the process of formation of chemical compound layer on the 

surface of heated substrate by spraying a solution. The metallic compounds that this 

technique uses are either dissolved in a liquid mixture or sprayed by a spray nozzle on pre-

heated substrate accompanied by gaseous substance.  

 

Figure 1: Schematics of Spray Pyrolysis set up 

The spray pyrolysis can be controlled by the parameters such as: temperature of the 

substrate, thickness, concentration of the solution, air flow rate through the nozzle, nozzle 
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substrate distance and solution composition (Filipovic et al., 2013) Spray pyrolysis is a 

chemical solution technique that generates the completed product by producing endothermic 

thermal disintegration on the heated surface of the substrate utilising a chemical reduction 

strategy (Nwanna et al., 2020). There have been various reports on the fabrication of Zinc 

oxide thin films using the Spray pyrolsis technology, such as Zinc oxide (ZnO) thin films 

generated on a glass substrate using an aqueous solution precursor of zinc acetate dihydrtae 

(Zn(CH3COO)22H2O) by mani et al.(Mani & Rayappan, 2014). A variety of processes was 

used to characterise the prepared thin film for various properties. The deposited films were 

polycrystalline with a wurtzite crystal structure, according to X-ray diffraction (XRD) 

analysis. Using Scherrer's formula, the average crystallite size for ZnO thin films was found 

to be 28 nm. SEM (Scanning electron micrographs) clearly show that morphology of ZnO 

thin films contain uniformly dispersed and firmly packed spherical grains with distinct grain 

boundaries. Another study by Shewale (Shewale & Yu, 2016) investigated Un-doped and Ti-

doped ZnO thin film for H2S gas sensing properties  prepared by chemical spray pyrolysis on 

the glass substrate. According to XRD analysis the films are polycrystalline zinc oxide with 

a hexagonal wurtzite structure, and the 2 wt% Ti doping resulted in the best crystallinity. FE-

SEM investigations corroborate the XRD findings, revealing polygonal granular surface 

morphology for 2 wt% Ti doped ZnO films with high grain sizes. The H2S gas sensing 

properties of all the films are investigated finally At 200°C operating temperature, a 2 wt% 

Ti doped ZnO thin film exhibits a maximum gas response (0.29) to 20 ppm H2S gas 

exposure and shows strong selectivity over other organic gases. Table 2 summarises several 

key studies on the ZnO-thin films based gas sensor using the spray pyrolysis technique. 

Table.2 Spray pyrolysis for the growth of the ZnO based thin film for gas sensing. 

Material Nano  type Substrate Target gas Reference 

ZnO Thin film - Alcohol (Singh et al., 2012) 

ZnO Thin film Glass NH3 (Mani & Rayappan, 2014) 

ZnO Thin film Glass Ethanol (Tarwal et al., 2013) 

ZnO Thin film Glass CO2 (Hunge et al., 2018) 

Mg-ZnO Thin film Glass NH3 (Kulandaisamy, Reddy, et al., 2016) 

Co-ZnO Thin film Glass Acetaldehyde (Kulandaisamy et al., 2016) 

ZnO Nanorods Glass H2S (Shinde et al. 2012) 

Cu-ZnO Thin film Glass H2S (Shewale et al., 2013) 

In-ZnO Thin film Soda lime glass Methanol (Bharath et al., 2018) 

Al-ZnO Thin film Glass H2S (Badadhe & Mulla, 2011) 

2.2 Sol-gel- Another technique of thin film deposition is sol-gel technique. It is a flexible wet 

chemical process. It is used for the preparation of innovative materials like ceramics and 

inorganic-organic hybrid materials. Basically, this method includes transition of solution to 

semi-solid phase. In simple words, it is the conversion from liquid sol to sol gel. The major 

use of this technique is for the synthesis of nano particles, nano fibres, thin film coating, 

mesoporous films and materials, and exceptionally porous aero gel materials. In the process 

of producing a solid solution from small molecules, metal oxide is used (C. Brinker et al., 

1992). 
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Figure 2: Schematics of Sol-gel process 

The sol-gel process (Figure 2) is a saturated chemical reaction in which tiny molecules are 

used to make solid materials. It’s a technique for coating glass or metals with single- or 

multi-component oxide coatings. It usually requires making a sol from a mixed 

homogeneous solution, changing it into a gel by the polycondensation process, and then heat 

treating the substance with respect to the desired material (Schubert, 2015). There have been 

numerous investigations on the synthesis of Zinc oxide thin films by the help of Sol-gel 

process. (Khan et al., 2017) Sol-gel is used to build multilayer thin layers of zinc oxide 

(ZnO) on a glass substrate. Prepared thin film samples with 1, 3, and 5 layers are ready for 

analysis. The existence of ZnO in these films is confirmed by this XRD pattern. The 

morphological qualities can be seen in the SEM data. There were no cracks in any of the 

deposited films, and the grain structure was evenly dispersed.in a another study, the 

development of ZnO thin films utilizing the sol gel approach was analysed (Muthukrishnan 

et al., 2016). ZnO has been produced effectively utilising a low-cost and simple approach. A 

detailed characterisation has been completed and described. X-ray diffraction was used to 

determine the crystallinity and crystallite size of the produced thin film. Using the (002) 

plane, XRD confirms the presence of hexagonal wruzite structure, and Peak broadening 

concludes the production of nano particles and average crystallite size of the film was 

determined to be 20 nm. The chemiresistive approach was used in the sensing studies, in 

which the chemical reaction between adsorbed oxygen on the material surface and the target 

gas results in resistance fluctuation. The response and recovery times for various acetone 

concentrations are measured in seconds. With a response of 1.08, the lowest detection limit 

of a room temperature ZnO thin film was found to be 2 ppm of acetone. Table 3 summarises 

various significant findings on the sol gel technique-based ZnO-thin films based gas sensor. 



2313 Rajni Kant Verma et al. Synthesis and Fabrication Techniques of ZnO....                                                              
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

Table 3: Sol-gel process for the growth of the ZnO based thin film for gas sensing. 

Material Nano level type Substrate Target gas Reference 

ZnO Thin film Glass H2S (Nimbalkar & Patil, 2017) 

ZnO Thin film Alumina Acetone (Kakati et al., 2010) 

Cu-ZnO Thin film Glass C3H8 (Gómez-Pozos et al., 2016) 

Au-ZnO Thin film Alumina NO2 (Gaiardo et al., 2016) 

Ni-ZnO Thin film Glass H2 (Soleimanpour et al., 2013) 

Mg-ZnO Thin film Glass Acetic acid (Khorramshahi et al., 2018) 

ZnO Thin film Glass NH3 (C.-F. Li et al., 2014) 

Al-ZnO Thin film Glass NH3 (Aydın et al., 2019) 

ZnO Thin film Glass NH3 (S. L. Patil et al., 2010) 

ZnO Thin film Quartz CH4 (Pati, 2017) 

2.3 Spin coating technique-Another technique of thin film deposition is spin coating which is 

the process of depositing thin film on the plane substrate, accompanied by sol gel technique. 

The sol gel is added upon the substrate at the canter to spin the substrate with specific 

revolution per minute. The coating material spreads over the substrate uniformly because of 

the centrifugal force. Viscosity, ratio of the solution and the solvent used are some of the 

factors on which the thickness of the film depends. Fabrication is also done through spin 

coating technique like, fabricating film layers by the use of prepared sol gel of the needed 

film material as well as fabricating a uniform thin film in nano scale thickness. Layer by 

layer spin coating at suitable temperature followed by drying at each step can be highly 

useful way in achieving required thickness of the film. The films that are already fabricated 

are expected to evaporate the solvent by heating for few seconds and then finally annealed at 

a higher temperature to form films. The spin that is maintained up to 20-80 revolutions per 

second for 30-60 seconds can be useful for obtaining photoresistive thin film layers of 1 

micrometer thickness (Tyona, 2013).  

 

Figure 3: Schematics of Spin coating process 
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The spin coating approach has been employed in a variety of studies to create ZnO thin films 

for gas sensing (Rambu et al,, 2013). They examined the spin coating on pristine ZnO and 

Fe-Doped thin film for the gas sensing. The examined films have a polycrystalline structure, 

according to X-ray diffraction analysis. The structural properties of the films were found to 

be highly influenced by the Fe concentration in the ZnO host. Ethanol, methane, and acetone 

sensitivity tests were carried out. The experimental results show that the investigated films 

are extremely sensitive to acetone, with Fe doping increasing the sensitivity value. An 

exceptionally responsive gas sensor film was generated, according to their research. Table 4 

summarises some of the most important findings from the spin coating technique-based 

ZnO-thin films gas sensor. 

Table.4 Spin coating process for the growth of the ZnO based thin film for gas sensing. 

Material Nano level type Substrate Target gas Reference 

ZnO Thin film Silicon oxide Phosphate (Foo et al., 2013) 

Cdo-ZnO Thin film Glass Oxygen (Rajput et al., 2018) 

Y-ZnO Thin film Glass - (Thirumoorthi et al., 2015) 

ZnO Thin film Glass - (Gadallah et al., 2013) 

ZnO Thin film Glass - (Heredia et al., 2014) 

ZnO Thin film Hydrophilic glass  Propyl alcohol  (Cheng et al., 2004) 

CuO-ZnO Thin film ITO glass - (Prabhu et al., 2017) 

Al-ZnO Thin film Glass H2 (Hou & Jayatissa, 2017) 

ZnO Thin film Glass NO2 (Chougule et al., 2012) 

Au-ZnO Thin film Glass Acetone (Deshwal & Arora, 2018) 

Na-ZnO Thin film Glass CO2 (Basyooni et al., 2017) 

2.4 Dip coating- The process of dipping flat or cylindrical substrate in a solution for the 

purpose of coating the substrate is known as dip coating. There are various stages involved 

in this method. Immersion: The process of immersion of substrate at a uniform speed in the 

material precursor solution. Pull up: Immersed substrate has to be kept in the solution for a 

fixed duration and then slowly pulling it out from the solution. Deposition: Uniform 

deposition of thin film layer takes place when the substrate is slowly pulled up from the 

solution. The thickness of the layer is controlled by the withdrawal rate i.e. faster pull up 

results in thick layers while slower pull up results in thin layer. The withdrawal rate can be 

controlled by highly advanced programmable set up. In these programmable set up, the dip 

time as well as pull up time can be pre-programmed. Drainage: In this stage, the liquid that is 

deposited in excess is drained from the substrate. Evaporation: Solvent is evaporated and 

thin layer forms in this stage. In case of volatile solvent, e.g. alcohol, the process of 

evaporation begins during pulling up of substrate from the solution (C. J. Brinker et al., 

1991). 

https://www.sciencedirect.com/topics/engineering/propyl-alcohol
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Figure 4: Schematics of dip coating process 

We have number of studies that have used the dip coating process to develop a ZnO for the 

gas sensing. On p-silicon (100) substrates, ZnO thin films are produced using a sol–gel 

procedure and then dip-coated for use as a hydrogen gas sensor (Dey et al., 2018). The 

addition of dopants such as Au and Pd used to improve the gas response and electrical 

properties. At annealed temperatures of 550, 450, and 350 °C, FESEM analysis confirms that 

Au-modified and Pd-modified grain sizes are smaller than typical ZnO-based thin-film 

sensors. Furthermore, as compared to pd/ZnO and undoped ZnO thin-film sensors at 

annealing temperatures of 350°C and 450°C, Au-modified ZnO-based thin-film sensors have 

showed maximum sensitivity and small grain size at annealing temperatures of 550 °C. This 

study results appears to be suitable for gas detection. The dip coating technique-based ZnO-

thin films gas sensor yielded some of the most noteworthy findings, which are summarised 

in Table 5. 

Table 5: Dip coating process for the growth of the ZnO based thin film for gas sensing. 

Material Nano level type Substrate Target gas Reference 

CeO2-ZnO Thin film Glass C6H6 (Ge et al.,  2007) 

ZnO Thin film Glass Monoethnol (Musat et al. 2008) 

ZnO Nanorod Glass SO2 (Yuliarto et al. 2017) 

La-ZnO Nanocorn Glass H2 (Venkatesh et al., 2014) 

Y-ZnO Thin film Glass NO2 (Kılınç et al., 2012) 

Fe-ZnO Thin film Glass Ethanol (Pronin et al., 2014) 

ZnO Thin film Glass NO (Septiani et al., 2019) 

ZnO Thin film Glass C6H6 (Tian et al., 2012) 

In-ZnO Thin film Glass NO2 (Bhatia & Verma, 2018) 

ZnO Thin film Glass NH3 (Vanaraja et al., 2016) 

2.5 Vacuum evaporation-In this technique, coating material is evaporated into vapor. 

Vaporization of coating material takes place by passing high current through the source in 

vacuum. After that vapor formation of coating material, it gets depozsited on the surface 

areas of substrate. Tungsten and tantalum are used as charges or boats during the evaporation 

to keep the source material over them. For the evaporation, resistive heating method is used 

along with that a typical pressure of 10-4 – 10-6 Torr has to be maintained within the vacuum 
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chamber. In order to prevent the solid particles from reaching the substrate, there is a large 

distance between the source material and the substrate. High vacuum coating with thermal 

evaporation process and thin thickness of about 100±5nm is required to prepare thin films of 

LDH’s which are extremely amorphous in nature and can be used as solar cell and transistor. 

Here are the average direct energy gaps for different nanostructure films  (Janarthanan et al., 

2021) 

 

Figure 5:  Schematics of vacuum evaporation process 

Because of its exceptional interfacial characteristics, vacuum evaporated ZnO thin films for 

gas sensing are becoming increasingly popular. Dev et al., (Dev et al., 2020) investigated 

thin films of pure and In-ZnO produced on a glass substrate, they added to the body of 

information about this deposition process. For acetylene gas sensing, these zinc oxide thin 

films were made via vacuum evaporation on a glass substrate. The crystalline structure of 

pure ZnO and In–ZnO thin films is determined using an X-Ray diffractometer. The nature of 

pure ZnO and In–ZnO thin films is polycrystalline, according to XRD analysis. FESEM, 

AFM, and FTIR techniques, as well as gas sensing applications, were used to characterise 

thin films. It also shown that the maximum sensitivity for acetylene gas 3% In-ZnO thin film 

is 29.06 at 150 °C working temperature for 100 ppm gas concentration. In Table 6, some 

interesting results are shown for the vacuum evaporation technique-based ZnO-thin films gas 

sensor. 
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Table 6: Vacuum evaporation for the growth of the ZnO based thin film for gas sensing. 
Material Nano level type Substrate Target gas Reference 

ZnO Thin film Glass LPG (Iftimie et al., 2008) 

ZnO Thin film Glass NO2 (Shishiyanu et al., 2005) 

ZnO Thin film Al2O3 - (Rambu et al., 2012) 

ZnO Thin film Si CH4 (Sunipa et al.,2017) 

ZnO Thin film Glass NH3 (Fairose et al., 2017) 

MnO2-ZnO Thin film Glass NH3 (L. A. Patil et al., 2011) 

ZnO Thin film Glass LPG (Sheeba et al., 2017) 

ZnO Thin film Si - (Hassan & Hashim, 2013) 

ZnO Nanowires Glass NH3 (A, Kampara et al., 2018) 

Cr2O3-ZnO Thick film - NH3 (D. R. Patil et al., 2007) 

2.6 Electron beam evaporation-Tungsten and tantalum filament produces the electron beam 

which is deflected by magnetic field (which guides the electron beam from the filament 

towards the source material) and electric field (which guides the beam over the substrate) 

ensuring the uniformity in heating as well as formation of vapor. Vapor reaches the substrate 

and forms the thin layer over the substrate. Various materials require different higher film 

thickness but the favourable maximum thickness is 300nm (Chrisey & Hubler, 1994). 

 

Figure 6: Electron beam deposition process 

Field electron emission and thermionic emission might all be used to create electron beams. 

The formed electron beam increases in kinetic energy and is focused towards the evaporation 

material; as these electron beams make contact with the evaporation material, the electrons 

quickly lose their power. Through contact with the material for evaporation, the electrons' 
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kinetic energy is converted to various energy types. The created thermal energy heats the 

substance, causing it to evaporate and thus sublimate. The melt or the solid can produce 

vapour if the vacuum levels and temperature are high enough, but a low vacuum level and 

temperature will affect the vapour formation. As a result, the resulting vapour might be used 

to coat surfaces (Hossain et al., 2018). To create zinc oxide films, a lot of work has been 

done utilising the electron beam evaporation process technology. Teimoori et al., (Teimoori 

et al., 2015) investigated semiconducting ZnO thin films generated by electron beam 

evaporation for H2 gas detection. The X-Ray Diffraction (XRD) method was employed to 

investigate the crystallographic structure of ZnO thin films, while a Field Emission Scanning 

Electron Microscope (FESEM) was used to investigate the surface shape and chemical 

composition. A four probe method and a Hall Effect study system were used to measure 

sample electrical resistivity and carrier concentration. The effect of film thickness on the 

electrical characteristics and sensitivity of ZnO thin films to H2 gas at 40 ppm was studied. 

The results revealed that films with a thickness of 100 nm had the best sensitivity, while 

increasing thickness decreased sensitivity. For the creation of a ZnO-based thin film for gas 

sensing, an electron beam evaporation approach was used. As indicated in Table 7, a gas 

sensor based on ZnO-thin films generated some intriguing results. 

Table 7: Electron beam evaporation for growth of ZnO based thin film for gas sensing. 
Material Nano level type Substrate Reference 

ZnO Thin film Glass (Agarwal et al., 2006) 

ZnO Thin film Glass (Liu, Yu, & Lai, 2014) 

ZnO Thin film Sapphire (Aghamalyan et al., 2003) 

Al-ZnO Thin film Glass (Sahu, Lin, & Huang, 2008) 

C-ZnO Thin film Soda lime (Akbar et al., 2011) 

ZnO Thin film Glass (Mahmood et al., 2010) 

ZnO Thin film Glass (Varnamkhasti et al. 2012) 

Ag-ZnO Thin film Glass (Kim et al., 2009) 

ZnO Thin film Quartz (Choi et al., 2009) 

ZnO Thin Silicon (Al Asmar et al., 2005) 

2.7 Pulsed laser deposition-As the same name suggests, oilseed laser beam is used in this 

technique. In the vacuum chamber, pulsed laser beam is directly focused on to the source 

material. In pulsed laser deposition technique, photon interaction ablates the material which 

creates a laser plume that is collected on the substrate. Vapor pressure of a target material 

plays a crucial role in deposition of material on the substrate. Target material and the 

substrate must have a tiny distance between them. Within 10-15 minutes, high quality 

samples can be produced (Chrisey & Hubler, 1994). 
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Figure 7: Schematics of Pulsed laser deposition process 

A pulsed laser deposition technique was employed to create a ZnO-based thin film for gas 

sensing after extensive research. A gas sensor based on ZnO-thin films produced some 

intriguing results, as shown in Table 8. 

Table.8 Pulsed laser depositionfor the growth of the ZnO based thin film for gas sensing. 
Material Nano level type Substrate Target gas Reference 

ZnO Thin film SiO2 Butane (Mazingue et al., 2005) 

ZnO Thin film - NH3 (Dikovska et al., 2007) 

ZnO Thin film Glass H2 (Stamataki et al., 2009) 

ZnO Thin film Quartz - (Kumar et al., 2019) 

WO3-ZnO Thin film Glass - (Ngom et al., 2009) 

ZnO Thin film Soda lime - (Tsoutsouva et al., 2011) 

ZnO Thin film Glass LPG (Al-Assiri et al., 2016) 

ZnO Thin film GaAs - (Shan et al., 2004) 

ZnO Thin film SiO2 H2 (Brilis et al., 2005) 

ZnO Thin film Silicon NH3 (Huotari et al., 2015) 

2.8 Sputtering deposition-In this deposition technique, fast ions or particles eject particles 

from the source material. These ejected particles get deposit on the surface areas of substrate. 

Here, the ejected atoms which have a wide energy of about 10eV comes out from cathode 

and moves into the straight path towards anode where cathode is target material and anode is 

substrate. 1% ejected ions that get sputtered are ionized. By bombardment of other particles 

possessing higher energy, atoms or molecules of the sample are ejected from the target. This 

process is known as sputtering. Sputtering has further two types: DC Sputtering, and RF 

Sputtering There was one more type of sputtering known as diode sputtering which was 

employed until mid-1970s as diode sputtering incurred higher cost and low deposition. Later 

on, this technique is used in its new modified version called magnetron sputtering. 

Magnetron sputtering is a vacuum deposition technique having high deposition rate. 
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Sputtering technique is much better than vacuum evaporation technique as in sputtering 

technique sputtered atoms have higher energy which results in better deposition over 

substrate (Depla, Mahieu, & Greene, 2010). 

 

Figure 8: Schematics of sputtering deposition process 

2.9 Magnetron sputtering deposition- Magnetron sputtering deposition technique uses 

plasma for coating and falls under physical vapor deposition technique. Sputtering machine 

is used in this technique which is filled with inert gas of argon. In the sputtering machine, 

ions are bombarded towards sputtering material. Argon ions are attracted towards the target 

material and sputtering atoms are ejected from the material, moving towards the substrate for 

the deposition only when negative voltage is applied. Plasma as well as energetic sputtered 

atoms are produced using magnetron sputtering machine. Plasma density on the cathode can 

be increased by introducing a magnetic field which causes the constraint on the charged 

particles (Liao et al., 2021) .  

 

Figure 9: Schematics of magnetron sputtering deposition techniques 
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There are two types of magnetic sputtering deposition techniques. These are: 

1. DC(Direct Current) magnetron sputtering (Hanby et al., 2018) 

2. RF(Radio Frequency) magnetron sputtering (Sato et al., 2020) 

Magnetron sputtering uses periodic waveform such as asymmetric bi-polar mid frequency 

pulsed waveforms. 

2.10 DC sputtering deposition-For the purpose of bombardment, argon ions are used and on 

the target material 2-5kV DC voltage is applied along with that a pressure of about 1-

10mTorr is applied. Basically, DC sputtering deposition technique is just for the conducting 

target materials and not for the insulating target materials (Rasheed & Barillé, 2017). This is 

because on insulating target materials, ions are accumulated over them. Target material act 

as a cathode towards which argon ions are moved and bombardment takes place due to 

which target atoms break out from the target materials and sputtering atoms move in a 

straight path towards the substrate to get deposit on it through which a thin layer forms in a 

very short period of time (Goh, 2017).  

 

Figure 10: Schematics of DC sputtering deposition process 

2.11 RF sputtering deposition - Radio waves are produced by ionized gas atoms in the 

chamber. This technique uses radio frequency power source. Bombardment takes place in 

the target material only when ionized gas atoms move towards it and after bombardment, 

sputtering atoms broke out from the target material which then move straight to the substrate 

and form a layer over it (Thao et al., 2021). Unlike DC sputtering deposition technique, RF 

sputtering technique is used for both conducting as well as insulating materials. Frequency of 

the radio waves is between 0.5-3.0MHz for the ceramic deposition. The whole process takes 

place during two half cycles of AC power out of which one is negative while the other is 

positive. When the target material is negatively charged during the first half cycle, ions 

accelerate towards the target and bombard to split out sputtering atoms. These sputtering 

atoms remain with the target material until the polarity is changed and when the target 

material gets positively charged during the second half cycle, sputtering atoms move away 

from target material towards the substrate to form a thin film over it (Baratto, 2018).  
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Figure 11: Schematics of RF sputtering deposition process 

2.12 Reactive sputtering deposition-In this technique, chemical reaction takes place in which 

target material reacts with a gas which is mixed with an inert gas to form the sputtering 

atoms. Inert gas like argon and Reactive gas like oxygen to form oxides, nitrogen to form 

nitrides, methane or propane to form carbides, etc. are used in this technique. Reactive 

sputtering deposition technique occurs in vacuum chamber (Iqbal & Mohd-Yasin, 2018). 

The sputtering atoms produced are then accelerated towards the substrate to form thin film 

layer. Flat panel display, solar cell and films are fabricated with good optical components 

due to this technique.(Guillén & Herrero, 2019) 
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Figure 12: Schematics of Reactive magnetron sputtering deposition process 

Another effective method for fabricating ZnO nanostructures on the suitable substrate is 

sputtering deposition. It is the most favourable technology for the deposition of ZnO 

nanostructures due to its excellent adherence and homogeneity throughout the substrate. 

Sputtering works on the principle of atoms being ejected from a source material and 

deposited on a substrate. The plasma deposition procedure uses argon as the process gas. The 

RF power, substrate temperature, argon flow, target to substrate distance, and gas pressure 

all play a role in the sputtering process. Putting an RF magnetron sputtering technique, 



2323 Rajni Kant Verma et al. Synthesis and Fabrication Techniques of ZnO....                                                              
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

Ranwa et al.(Ranwet al., 2014) grew vertically aligned ZnO nanorods without using any 

metal catalyst on the substrate. The growth parameters were set at 500°C, 2x10-2 mbar, 60 

sccm, 150 W, and 14 cm, respectively, for substrate temperature, chamber pressure, Ar gas 

flow rate, RF power, and substrate to target distance. RF sputtering, DC sputtering, and 

magentron sputtering are all options in the sputtering deposition process. All of these 

approaches are better suited to creating ZnO nanostructures. Some of the top studies linked 

to the various sputtering processes are listed in table 9. 

Table 9: Various sputtering deposition process for the growth of the ZnO based thin film for 

gas sensing. 
Deposition technique Material Nano type Substrate Target gas Reference 

Rf magnetron sputtering Y-ZnO Thin film Si NH3 (Vinoth et al., 2018) 

Magnetron sputtering ZnO Thin film Si NH3 (Y. Zheng et al., 2020) 

Rf sputtering ZnO Thin film Glass NH3 (Vinoth et al., 2018) 

RF magnetron sputtering ZnO Thin film SiO2 NH3 (M. Dwivedi et al., 2015) 

DC reactive sputtering ZnO Thin film Glass CO2 (Kannan et al., 2014) 

DC magnetron sputtering ZnO Thin film Glass Ethanol (Hosseinnejad et al., 2016) 

DC reactive sputtering ZnO Thin film Si Humidity (Kannan et al., 2010) 

RF magnetron sputtering Al-ZnO Thin film Si Ethanol (Chou et al., 2006) 

RF magnetron sputtering Cu-ZnO Thin film Glass H2S (Girija et al., 2016) 

Sputtering Cu-ZnO Thin film Glass CO (Gong et al., 2006) 

2.13 Chemical vapor deposition- In this technique, the reactor gas reacts with another gas at 

a high temperature. Then the gases involved in reaction mixed in the reactor and are 

deposited on the substrate surface. For example, methane is used as a reactor gas maintained 

at higher temperature in chemical vapor deposition technique (Manawi et al., 2018). Table 

10 summarizes some of the most notable discoveries from the chemical vapour deposition 

technique for ZnO-thin film gas sensors. 

 

Figure 13: Schematics of chemical vapour deposition process 

Table 10: Chemical vapour deposition process for the growth of the ZnO based thin film for 

gas sensing. 
Material Nano level type Substrate Target gas Reference 

ZnO Nanowires Glass CO (Kiasari et al., 2014) 

ZnO Thin film Glass - (Masuda, 2008) 

ZnO Thin film Glass - (Lu et al., 2007) 

ZnO Thin film Quartz Dimethaylamine (S. Roy & Basu, 2002) 

ZnO Thin film Glass Acetone (Shao et al., 2014) 



                                   Synthesis and Fabrication Techniques of ZnO.... Rajni Kant Verma et al. 2324 
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

ZnO Thin film Glass - (Roro et al., 2008) 

ZnO Nanocactus Glass NH3 (Ryu et al., 2015) 

ZnO Nanotetrapods Glass Ethanol (K. Zheng et al., 2010) 

ZnO Thin film Sapphire - (Kawaharamura et al., 2008) 

ZnO Nanorods Glass O3 (Chien et al., 2010) 

2.14 Plasma enhanced chemical vapor deposition (PECVD) - Plasma is used in this 

technique to ionize atoms or molecules. These ionized atoms or molecules deposit on the 

surface of the substrate to form a thin layer. High frequency waves such as microwave, ultra, 

high or radio frequency are used to induce plasma (Warner et al., 2013). The frequency 

range can be from 0-13.56MHz. Microwave frequency such as 2.45GHz is used in electrical 

power supply in plasma enhanced chemical vapor deposition technique (Teixeira et al., 

2011). Table 11, Summarises some of the most important discoveries from the plasma 

enhanced chemical vapour deposition technique-based ZnO thin films gas sensor. 

 

Figure 14: Schematics of PECVD Process 

Table 11: PECVD process for the growth of the ZnO based thin film for gas sensing. 
Material Nano level type Substrate Target gas Reference 

ZnO Nanorods - Formaldehyde (N. Han et al., 2010) 

ZnO Nanorods - Formaldehyde (Hu et al., 2012) 

ZnO Thin film Si - (Sanchez-Valencia et al., 2014) 

ZnO Thin film Si - (Chao & Wei, 2015) 

ZnO Thin film Glass Antibacterial (Panigrahi et al., 2011) 

ZnO Thin film Silicon - (Chao & Wei, 2014) 

ZnO Thin film Al2O3 - (J. Sun et al., 2008) 

ZnO Thin film Si - (B. S. Li et al., 2002) 

ZnO Thin film Si - (Hacini et al., 2021) 

ZnO Thin film Si - (Arif, 2015) 

2.15 Atomic layer deposition (ALD)-Gas phase chemical process is utilized in atomic layer 

deposition. The whole chemical process goes on in sequential manner. First of all, first gas is 

introduced in the chamber. The first gas forms the first layer known as monolayer over the 

substrate. Then the second gas is introduced in the chamber to react with the monolayer to 

form the required thin film over the substrate(Sanctis, Krausmann, Guhl, & Schneider, 

2018). ALD was used to create ZnO nanostructured materials with a variety of 

morphologies, and the gas sensing characteristics and transduction process were 

investigated. Table 12 summarises some of the most significant findings from the ZnO-thin 

films gas sensor based on the ALD deposition process. 
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Figure 15: Schematics of Atomic layer deposition technique process 

Table 12: ALD process for the growth of the ZnO based thin film for gas sensing. 
Material Nano level type Substrate Target gas Reference 

ZnO Thin film - - (Pung et al., 2008) 

ZnO Thin film Al2O3 CO (V. A. T. Dam et al. 2010) 

ZnO Thin film Si RH (V. Dam et al., 2011) 

ZnO Thin film Quartz C2H5OH (Naumenko et al., 2013) 

ZnO Thin film Si NH3 (Hong et al., 2016) 

ZnO Nanorods Si NO2 (S. Park et al., 2013) 

ZnO Nanowires Sapphire NH3 (S. Park et al., 2014) 

ZnO Nanorods Si H2 (S. Park et al., 2014) 

ZnO Fibers Si O2 (J. Y. Park et al., 2010) 

ZnO Nanorods p-Si C6H6 (Mirzaei et al., 2016) 

2.16 Hydrothermal technique-Hydrothermal synthesis technique is a crystallising and 

producing nanomaterial directly from solutions by using single heterogeneous phase 

processes in an aqueous medium at higher temperature and pressure. It is a process which 

produces oxide powder with a small size distribution at low temperature, avoiding 

calcination (Zeng et al., 2015). In this technique the temperature is usually between the 

boiling point of water and critical temperature (Tc = 374ºC) with a pressure more than 

100kPa after a complete process desired product achieved with some impurities. For remove 

these impurities product will wash with deionized water to remove the impurities. After 

washed product will drying in air, ceramic nanoparticles with excellent dispersion formed 

will achieved (K. Sun et al., 2011).  
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Figure 16: Schematics of Hydrothermal deposition technique process 

Another synthesis method for ZnO nanostructures is the hydrothermal process, which 

involves growing ZnO nanostructures in an autoclave at a lower temperature than other 

methods. The formation of ZnO nanostructures, on the other hand, takes longer than other 

approaches. Finally, the growth of nanostructures is triggered by the establishment of a 

nucleation site. This approach has various advantages, including low temperature growth, 

low cost, and shapes of nanostructures based on material composition, different pressure, and 

high crystallinity (Baruah & Dutta, 2009). In Table 13, we summarize a number of studies 

on hydrothermal-based ZnO thin films. 

Table 13: Hydrothermal deposition process for the growth of the ZnO based thin film for gas 

sensing. 
Material Nano level type Substrate Target gas Reference 

ZnO Thin film Glass NO2 (V. Patil et al., 2018) 

ZnO Nanowire Glass H2 (Sinha et al., 2016) 

ZnO Nanorods Si H2 (J. Wang et al., 2006) 

ZnO Thick film Alumina VOCs (Bai et al., 2010) 

ZnO Nanorods Glass LPG (Gurav et al., 2014) 

ZnO Nanorods Glass NO2 (Jagadale et al., 2018) 

ZnO Microtube Si CO (J. X. Wang et al., 2007) 

Co-ZnO Nanorods FTO Glass NO2 (Zou et al., 2015) 

ZnO Core-shell SiO2 H2 (Tsai et al., 2019) 

CeO2-ZnO Thick film Alumina Ethanol (Rajgure et al., 2014) 

There are numerous ways available for creating ZnO-based nanostructured. Each approach 

has its own specialty. Table 14 summarises the Advantages, Disadvantages and applications 

of each approach. 
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Technique Advantages Disadvantages Application Reference 

Spray Pyrolysis 

➢ It is both cost-

effective and simple to carry 

out. 
➢ Coating can be 

done on surfaces with 

complicated geometries 
➢ It produces a thin 

layer that is relatively 
uniform and of high quality. 

➢ Dopant could be 

easily added. 

➢ With a greater 
grain size, there is less 

consistency in the film. 

➢ Low rate of 
deposition. 

➢ Solution 
squandered 

➢ It employed in 
gas sensor, solar cell, 

and solid oxide fuel 

cell applications. 

(Kozhukharov & 

Tchaoushev, 2013; 
Leng et al., 2019) 

Sol-gel 

➢ It operates at low 

temperatures. 
➢ It has the ability to 

produce extremely fine 

particles. 
➢ Energy 

consumption is reduced. 

➢ The cost of the 
precursor materials may 

be too expensive. 

➢ its sensitivity 
to moisture 

➢ During drying, 

moist gel shrinks and 
cracks. 

➢ It's employed in a 
variety of 

applications, 

including protective 
coatings, catalysts, 

piezoelectric devices, 

and insulating 
materials. 

(Attia, 2012; Pierre, 
2020) 

Spin coating 

➢ The thickness of a 

thin film can be easily 
changed. 

➢ Consistent thin 

film produced at a minimal 

cost. 

➢ It results in less 

material loss. 

➢ The material 

efficiency is really low. 
➢ Produces 

several layers of 

deposition. 

➢ It can be found in 
electronic 

semiconductors, 

spectroscopic gas 

sensors, and other 

applications. 

(Kaviyarasu et al., 

2017; Tyona, 2013) 

Dip coating 

➢ It is inexpensive. 

➢ It is simple to 

control the thickness. 
➢ It have ability to 

cover the entire surface of the 
substrate 

➢ The thickness 
of the layer varies over 

the entire substrate. 

➢ On the bottom 
of pieces, fatty margins 

form. 
➢ It's a slow and 

arduous procedure. 

➢ It's employed in 
the production of 

bulk items including 

coated textiles and 
filters. 

(Ceratti, Louis, 

Paquez, Faustini, & 
Grosso, 2015; Tang & 

Yan, 2017) 

 
 

 

Hydrothermal 
technique 

➢ It is appropriate 

for large, high-quality crystal. 
➢ It's simple to 

control the product's 

morphology. 
➢ It created good 

crystallinity ions. 

➢ The cost of an 

autoclave is high. 

➢ operates at a 
high temperature 

➢ Concerns 

about safety 

➢ It's employed in 
develop Nano 

crystals, gas sensor 

applications, and 
research labs. 

(A. Han, Zhang, Li, 

Wang, & Li, 2020; 
Suchanek & Riman, 

2006) 

Vacuum 
evaporation 

➢ Films is extremely 

pristine and of exceptional 

quality. 
➢ The film's growth 

method is rather 

straightforward. 
➢ It is simple 

equipment that is 

straightforward to use. 

➢ It's possible 
that the amount of source 

material used isn't very 

high. 
➢ Many 

chemicals and alloy 

combinations are just 
difficult to deposit. 

➢ Without 

correct fixturing and 

movement, there is a lack 

of homogeneity in film 

thickness over wide 
areas. 

➢ It is used in 
Optical interference 

coatings, decorative 

coatings, permeation 
barrier films 

materials, and 

electrically 

conducting films. 

(Asatekin et al., 2010; 

Jamkhande, Ghule, 
Bamer, & Kalaskar, 

2019) 

Pulsed laser 
deposition 

➢ Multi-component 

film is readily available. 
➢ It has a high rate 

of deposition. 

➢ Its deposition 

is sluggish on average. 
➢ It has a patchy 

coverage. 

➢ Solar cells, optical 

industries, and 
microelectronics all 

employ it. 

(Boyd, 1994; 

Morintale, 
Constantinescu, & 

Dinescu, 2010) 
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➢ It's simple to clean 

and can make a wide range of 
thin film materials. 

Sputtering 
deposition 

➢ It can deposit 
metals, insulators, alloys, and 

composites. 

➢ Uniform thickness 
over vast substrates, big area 

targets might be used. 

➢ Deposition control 
that is more repeatable 

➢ Some 

materials have a slow 
deposition rate. 

➢ Ion 

bombardment has caused 
damage to the substrate. 

➢ Ionic 

bombardment causes 
some materials (such as 

organics) to deteriorate. 

➢ Integrated circuits, 

coating on glass, 
microelectronics all 

employ it. 

(Abegunde, Akinlabi, 

Oladijo, Akinlabi, & 

Ude, 2019; Baptista, 
Silva, Porteiro, 

Míguez, & Pinto, 

2018) 

Chemical vapor 
deposition 

➢ It can be used in 

Ceramics, glass, metals, and 
metal alloys are among the 

foundation materials. 

➢ High purity 
➢ Due to its 

excellent adhesion qualities, 

it stays connected in high-
stress settings and when the 

surface flexes. 

➢ Surface that is 
difficult to mask. 

➢ Size is 

restricted by the capacity 
of the reaction chamber. 

➢ In most cases, 

it's used at greater 
temperatures. 

➢ It is used in 
integrated circuits, 

conductors, fiber 

optics, passivation 
layer, sensor etc. 

(Heydari 
Gharahcheshmeh & 

Gleason, 2019; 

Manawi et al., 2018) 
 

Atomic layer 

deposition 

➢ Its ultra-thin, high-
quality films. 

➢ Processing at a 

low temperature. 

➢ The ALD 

mechanism's self-assembled 

nature. 

➢ It has a high 
rate of material waste. 

➢ The viability 

of the economic. 

➢ the time it will 

take for chemical 

reactions to occur. 

➢ It used in Li-ion 

batteries, micro-
elecro mechanical 

conformal, and nano 

coating films, fuel 
cells etc. 

(Oviroh, Akbarzadeh, 

Pan, Coetzee, & Jen, 

2019; Weber, Julbe, 

Ayral, Miele, & 

Bechelany, 2018) 

 

3. Conclusion 

Several deposition processes were used to successfully manufacture ZnO thin films. To 

characterise and examine the produced thin films, several technologies such as XRD, SEM, 

FESEM, AFM, EDX, and UV-Vis spectrophotometer were used. Film thickness, surface 

morphology, electrical characteristics, and optical properties of produced ZnO thin films are 

all related to the deposition procedure used in this work. The exceptional quality of ZnO film 

has grabbed academic interest, and their manufacturing methods have already provided some 

research results. As new fields of application emerge, the technology for making them is 

projected to advance significantly, allowing ZnO films with more consistent performance to 

become more industrialised. 
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