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This study explores the Virtual Machine Placement (VMP) optimization 

problem and its objectives, focusing on maximizing resource utilization, 

minimizing energy consumption, reducing network latency, and ensuring high 

availability. In response, the Secured Multi-Objective Optimization based 

Virtual Machine Placement algorithm (SMOOP) is proposed and evaluated. 

SMOOP aims to simultaneously optimize multiple criteria while meeting 

security requirements. The algorithm's effectiveness is assessed through 

rigorous evaluation, offering promising insights into efficient and secure virtual 

machine placement strategies.  
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1. Introduction 

The formulation of the VMP (Virtual Machine Placement) optimization problem typically 

revolves around allocating virtual machines to physical servers in a way that maximizes 

resource utilization, minimizes energy consumption, reduces network latency, and ensures 

high availability and reliability of services. The objectives we aim to accomplish with VMP 

optimization include: 

• Resource Utilization Maximization: Efficiently allocate virtual machines to physical 

servers to maximize the utilization of CPU, memory, storage, and other resources, thus 

reducing wasted capacity. 

• Energy Consumption Minimization: Consolidate virtual machines onto a minimal 

number of physical servers to reduce overall energy consumption and operational costs. 

http://www.nano-ntp.com/
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• Network Latency Reduction: Place virtual machines in such a way that 

communication between them experiences minimal latency, ensuring optimal performance 

for applications and services. 

• High Availability and Reliability: Distribute virtual machines across physical servers 

to mitigate the risk of single points of failure and ensure continuous availability of services 

in case of hardware failures or maintenance. 

Secured Multi-Objective Optimization based Virtual Machine Placement (SMOOP) 

algorithm addresses these objectives by simultaneously optimizing multiple criteria, such as 

resource utilization, energy consumption, and reliability, while ensuring security 

requirements are met. The formulation of SMOOP involves defining the following: 

• Objective Functions: These functions quantify the goals we want to achieve, such as 

maximizing resource utilization, minimizing energy consumption, reducing network latency, 

and enhancing reliability. 

• Constraints: These are the conditions that must be satisfied during the placement 

process. Constraints may include security requirements, hardware limitations, and 

application-specific considerations. 

• Decision Variables: These are the variables that the optimization algorithm 

manipulates to find the optimal placement solution. They represent decisions such as which 

virtual machines to place on which physical servers. 

• Optimization Algorithm: SMOOP utilizes a multi-objective optimization algorithm 

to search for the optimal solution that balances the trade-offs between different objectives. 

This algorithm iteratively explores the solution space to find a set of Pareto-optimal 

solutions, where no solution can be improved in one objective without worsening at least one 

other objective. 

By formulating the VMP problem and objectives in this way, SMOOP aims to provide 

efficient, secure, and balanced virtual machine placement solutions that meet the diverse 

needs of modern data center environments. 

 

2. SMOOP Design 

With the proposed security metric for VMs, we can quantify the risk level of a cloud. As a 

typical multi-objective optimization problem, the objectives may conflict with each other. 

For instance, placing more VMs on a physical server can reduce resource wastage and 

network traffic but also increase security risks due to the co-residency problem. It is 

impractical to always find a solution that minimizes all objectives simultaneously. 

Evolutionary Multi-Objective Algorithms (EMOAs), such as NSGA-II, are popular solutions 

for these types of problems. Using EMOAs, we can obtain Pareto-optimal solutions that 

balance the objectives of security, network traffic, and resource utilization. These solutions 

provide a set of optimal trade-offs, allowing us to effectively manage the competing 

objectives in cloud VM placement. 
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It's important to note that our goal is to enhance the survivability of the entire cloud, not to 

optimize the solution for any specific VM. As a result, while our approach may lower the 

security level of a particular VM, the overall security level of the cloud can still be 

improved. 

Algorithm:SMOOP 

# Initialize the candidate population using some strategy 

Candidate = init_by_strategies() 

# Loop over the number of generations 

for G in range(1, N_G + 1): 

        # Elite selection phase 

    Elite = [ ] 

    for i in range(1, N_E + 1): 

        Elite.append (Elite_choosing (Candidate)) 

        # Crossover phase to create offspring 

    Off_ C = [ ] 

    for j in range(1, N_C + 1): 

        X, Y = Random_ select(Candidate) 

        Off_ C.append (Crossover(X, Y)) 

        # Mutation phase to create mutated offspring 

    Off_M = [ ] 

    for k in range(1, N_M + 1): 

        X = Random_ select(Candidate) 

        Off_M.append (Mutation(X)) 

        # Combine Elite, crossover offspring, and mutated offspring 

    Temp = Elite + Off_C + Off_M 

        # Sort the combined population by fitness 

    Temp = fitness_sorting(Temp) 

        # Select the top candidates to form the new candidate population 

    for i in range(1, N_G + 1): 

        Candidate[i] = Temp[i] 
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3. Implementation and Evaluation of SMOOP in Java 

We implemented our solution in Java and conducted all experiments in a simulation 

environment. The input data for these experiments is provided through configuration files, 

and we employed multiple threads to enhance performance. 

 3.1.Experimental Setup 

1. Random VM Generation: 

    - A large number of VMs with diverse parameters are randomly generated to evaluate  

 SMOOP. 

    - Each VM is deployed onto a physical machine without considering migration costs 

 during the initial placement. 

2. VM Parameters: 

    - For each VM, requirements for CPU, memory, and disk space are randomly   assigned. 

    - Vulnerability scores are assigned based on a uniform distribution. 

3. Physical Machine Configuration: 

    - Physical machines are configured similarly to VMs, with randomly assigned  parameters. 

    - The numbers of VMs and physical machines vary across different experiments  to 

assess performance under various conditions. 

3.2. Performance Optimization 

Multithreading: The use of multiple threads enhances performance and efficiency, enabling 

effective management of large-scale simulations. This experimental setup is designed to 

comprehensively evaluate SMOOP's effectiveness and efficiency under diverse conditions 

and configurations.. 

3.3.Computing Complexity 

Assume there are  M  physical servers and N  virtual machines (VMs). Our algorithm 

iterates k times, with a candidate pool size of  P  in each iteration. Here,  N  is 

significantly larger than the other factors. The objective values for each Virtual Machine 

Placement (VMP) can be computed within a bound of  O(MN^2). The fitness value of a 

VMP is calculated in constant time using a fitness function, resulting in a complexity of 

O(P)  for the entire candidate pool. Sorting the candidate pool has a complexity of  O(P 

log P) . The elite selection operation takes constant time, and the crossover and mutation 

operations are bounded by O(MN^2) . Thus, the overall combined complexity of our 

algorithm is O(k(MN^2 + PMN^2 + P log P)) , simplifying to  O(kPMN^2). 

If we consider the network's cascade effect, the computation time for the risk value of 

each VM changes from  O(N^2)  to  O(N^3) , due to constructing all possible attack 

paths using Depth-First Search. Consequently, the algorithm's complexity would be 

bounded by  O(kPN^3) . 

To improve efficiency, we simplified the risk value computation while preserving 
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correct correlations. Additionally, we employed multithreading in our implementation, 

using 8 threads to simultaneously conduct elite selection, crossover, and mutation 

operations. 

 

Figure 1: Scalability 

We tested our implementation on an 8-core processor with 16GB of memory. The 

performance of our algorithm depends on the number of VMs, the number of physical 

machines, and the number of candidate placements generated in each generation. Figure 1 

shows the computation time per generation under the following settings: 1. 100 different 

placements are generated for each generation. 2. Each generation involves 270 operations. 

With 10,000 VMs and 500 physical machines, each generation takes about 15-20 minutes. 

When the number of VMs is reduced to 3,000, each generation takes approximately 2 

minutes. 

 

4. Effectiveness in Risk Reduction 

Security risk is a crucial factor in VMP. To assess whether our strategies can enhance the 

overall security of the cloud, we conducted experiments focusing solely on risk level during 

placement. Figure 2 demonstrates that non-secure network traffic bandwidth is also reduced 

by approximately 3% to 5% when optimizing multiple objectives. 
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Figure 2: Non-secure Network Traffic 

4.1.Effectiveness in Workload Balance 

In our algorithm, we prioritize evenly distributing the workload among active physical 

machines once their number is determined. Figure 3 presents experimental results with the 

following weight settings: 0.4 for risk level, 0.4 for workload balance, 0.1 for resource 

wastage, and 0.1 for network traffic in an environment consisting of 400 VMs and 60 physical 

machines. According to our experimental setup, the memory request of a VM ranges from 

4GB to 40GB, and each physical machine can provide 256GB of memory.  

4.2.Effectiveness of Multi-Objective Optimization 

In this evaluation, we consider multi-objectives on risk level, resource wastage, and network 

traffic. Figure 4 shows experimental results with weight setting (0.8 (risk level), 0.1 

(Resource Wastage), 0.1 (Network Traffic)) in an environment of 800 VMs and 60 physical 

machines. The risk level has weight of 80%, resource wastage and network traffic have 

weight of 10% for each in the fitness function. We collect the placement with the best fitness 

value. The baseline is still the best placement chosen from 100 random-FFD placements. If a 

physical machine can hold hundreds of VMs, the placement generated by FFD will be using 

the minimum number of physical With a weight setting of (0.8, 0.1, 0.1), the number of 

active physical machines is constrained, and there's notable reduction in resource wastage, 

leading to enhanced security measures.  

In another experiment, employing weight settings of (0.4 for risk level, 0.3 for Resource 

Wastage, and 0.3 for Network Traffic) within an environment hosting 3000 VMs and 200 

physical machines, the results are depicted in Figure 5. Given the higher weights assigned to 

resource wastage and network traffic, there's a controlled allowance for resource wastage, 

consequently impacting the level of security improvement achievable. It's worth noting that a 

cloud provider can always adjust optimization preferences by modifying the weights 

assigned to different objectives. 
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Figure 3: Multi-objective optimization with Workload balance 

 

Figure 4: Multi-objective optimization 

 

Figure 5: Multi-objective optimization 2 
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Figure 6: Comparison with Distribution in 1600 VMs and 120 PMs 

 

5. Comparison with random-FFD algorithm 

In our experiment with 1600 VMs and 120 physical machines, we generated 100 placements 

using the random-FFD algorithm. We selected the placement with the lowest median risk 

level value and then applied our algorithm to further reduce this risk level, ultimately 

choosing the best placement. 

As depicted in Figures 6 and 7, there's a noticeable decrease in the overall risk level of the 

VM set. The X-axis represents the risk level values of VMs, with intervals such as "<0.2" 

indicating a risk level between 10% and 20%. With 1600 VMs, the proportion of VMs with a 

risk level under 50% saw an improvement ranging from 15% to 35%. Additionally, the 

percentage of VMs with a risk level above 80% decreased from 54% to 33%. These results 

illustrate how our placement strategies significantly enhance the security level of the entire 

cloud infrastructure. 

These experimental outcomes underscore the effectiveness of our approach and its 

superiority over existing solutions. However, it's essential to note that while we quantified 

the security risk of the cloud, it remains a coarse-grained relative value. Although the median 

value proved effective, it may not always represent the optimal choice. Moreover, as 

discussed, the prioritization of strategies can be dynamically adjusted in response to real-

time environmental conditions, and new strategies may need to be incorporated to adapt to 

evolving threats. This adaptive capability ensures that our system continues to evolve to 

effectively address real-world challenges. 
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Figure 7: Accumulative Risk Value 

 

6. Conclusion: 

A comprehensive approach to security assessment in virtual machine placement, addressing 

vulnerabilities stemming from various factors such as networks, physical machines, VMs, 

and co-residence of VMs. Chapters 3 and 4 detail your security metrics, providing a solid 

foundation for measuring the security risks associated with specific VM placements. Your 

innovative approach incorporates multiple objective optimization to generate improved VM 

placements while considering resource constraints, demonstrating its effectiveness through 

experimental validation. 
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